
Exercise 1   
An area of 104 km2 of high seismicity is affected by an earthquake of magnitude 

M = 5.5 Richter every 80 years. 

For this area the max acceleration is given through the following relationship: 

log 𝑎 = 1.88 + 0.48𝑀 − 1.62 log(𝛥 + 15) 

where α is expressed in cm/sec2 and Δ is the epicentral distance in km. Please: 

1. Construct the probabilistic curve of exceeding (repeat period curve) in the 
seismic area. Before you draw the curve, calculate the repeat periods Ti, for 
the values of α i = 50, 100, 150 and 200 cm/sec2. Where is the curve 
converging, when T converges to infinite? 

2. Calculate the design period Td for a usual structure, when the probability of 
exceeding is p(Δt) = 0.10 and the useful life, Δt = 50 years. Which is then the 
corresponding peak ground acceleration? 

3. Estimate the useful life that corresponds to the design – peak – ground – 
acceleration for a probability of exceeding p(Δt) = 0.20 and structures 
designed with an importance factor 1.30.   

Solution  

1. Probabilistic curve of exceeding 

Taking into account the given data, for each acceleration value, we calculate 
(through the given relation) the epicentral distance Δ and then the repeat period T. 

1. α1 = 50 cm/sec2  

𝑙𝑜𝑔50 = 1.88 + 0.48 ∙ 5.5 − 1.62𝑙𝑜𝑔 (𝛥1 + 15) 

𝑙𝑜 𝑔(𝛥1 + 15) = 1.7414  ⇒  𝛥1 + 15 = 101.7414  ⇒  𝛥1 ≅ 40.13 𝑘𝑚 

2. α2 = 100 cm/sec2  

𝑙𝑜𝑔100 = 1.88 + 0.48 ∙ 5.5 − 1.62𝑙𝑜𝑔 (𝛥2 + 15) 

𝑙𝑜 𝑔(𝛥2 + 15) = 1.5556  ⇒  𝛥2 + 15 = 101.5556  ⇒  𝛥2 ≅ 20.94 𝑘𝑚 

3. α3 = 150 cm/sec2  

𝑙𝑜𝑔150 = 1.88 + 0.48 ∙ 5.5 − 1.62𝑙𝑜𝑔 (𝛥3 + 15) 

𝑙𝑜 𝑔(𝛥3 + 15) = 1.4469  ⇒  𝛥3 + 15 = 101.4469  ⇒  𝛥3 ≅ 12.98 𝑘𝑚 

4. α4 = 200 cm/sec2  

𝑙𝑜𝑔200 = 1.88 + 0.48 ∙ 5.5 − 1.62𝑙𝑜𝑔 (𝛥4 + 15) 

𝑙𝑜 𝑔(𝛥4 + 15) = 1.3697  ⇒  𝛥3 + 15 = 101.3697  ⇒  𝛥3 ≅ 8.43 𝑘𝑚 



The relation that compares the repeat periods T0 and Ti with the areas A0 and Ai 
for two different regions under the same seismic event is: 

𝐴0
𝐴𝑖

=
𝑇𝑖
𝑇0

 

where:  Ai = πΔi
2 ,  A0 = 104 km2  and  T0 = 80 years. Therefore 

𝑇𝑖 =
𝐴0 ∙ 𝑇0
𝜋𝛥𝑖2

 

For Δ1 = 40.13 km 

𝑇1 =
104 ∙ 80
𝜋 ∙ 40.132

= 158.14 𝑦𝑒𝑎𝑟𝑠 

For Δ2 = 20.94 km 

𝑇2 =
104 ∙ 80
𝜋 ∙ 20.942

= 580.85 𝑦𝑒𝑎𝑟𝑠 

For Δ3 = 12.98 km 

𝑇3 =
104 ∙ 80
𝜋 ∙ 12.982

= 1511.30 𝑦𝑒𝑎𝑟𝑠 

For Δ4 = 8.43 km 

𝑇4 =
104 ∙ 80
𝜋 ∙ 8.432

= 3585.05 𝑦𝑒𝑎𝑟𝑠 

The above results are tabled as follows: 

Acceleration (cm/sec2) Epicentral distance (km) Repeat period (years) 

50 40.13 158.14 

100 20.94 580.85 

150 12.98 1511.30 

200 8.43 3585.05 

On the basis of these data the repeat-period-curve can be constructed. In fact, 
through a brief EXCEL program developed for this purpose, many different values of 
the above parameters can be provided showing thus the change between acceleration 
and repeat period, of course through the epicentral distance which does not appear in 
the graph. The program data along with the graph are depicted on the last page. 

When T converges to infinite, obviously the acceleration converges to a 
maximum value which corresponds to a zero epicentral distance. 

This maximum value can be estimated from the initial formula, putting Δ = 0. 

log𝑎𝑚𝑎𝑥 = 1.88 + 0.48 ∙ 5.5 − 1.62 log(0 + 15)  

⇒ 𝑙𝑜𝑔𝑎𝑚𝑎𝑥 = 2.6147   ⇒    𝒂𝒎𝒂𝒙 = 𝟒𝟏𝟏.𝟖𝟒 𝒄𝒎/𝒔𝒆𝒄𝟐 

2. Design period 



Given are:  Δt = 50 years  and  p(Δt) = 0.10. The design period is therefore: 

𝑻𝒅 =
−𝛥𝑡

ln(1 − 𝑝) =
−50

ln(1 − 0.1) = 𝟒𝟕𝟒.𝟓𝟔 𝒚𝒆𝒂𝒓𝒔 

The peak ground acceleration can be approached by two ways: 

i) Directly through the probabilistic curve of exceeding and 
ii) Following the reverse procedure; i.e. from Td (years), estimating the 

epicentral distance Δ, which then yields α. 

In our case, for Ti =474.56 years, the previous relation, 

𝑇𝑖 =
𝐴0 ∙ 𝑇0
𝜋𝛥𝑖2

    →     474.56 =  
104 ∙ 80
𝜋𝛥𝑖2

 

yields Δi = 23.16 km. Then from the initial formula we get: 

log𝑎 = 1.88 + 0.48 · 5.5 − 1.62 log(23.16 + 15),  or 

logα = 1.9578  and  α = 90.74 cm/sec2. 
3. Useful life 

Given are:  Importance factor = 1.30  and  p(Δt) = 0.20. 

Once the importance factor affects the design peak ground acceleration αd, the 
resulting new one is: αd = Σ3∙α = 1.30∙90.74 = 117.96 cm/sec2. 

Then the equation 

log 117.96 = 1.88 + 0.48 · 5.5 − 1.62 log(𝛥 + 15) 

will yield the value of the epicentral distance  Δ = 17.45 km. 

The corresponding design period is therefore: 

𝑇𝑛𝑒𝑤 =
𝐴0 ∙ 𝑇0
𝜋𝛥𝑖2

=
104 ∙ 80
𝜋 ∙ 17.452

= 835.85 𝑦𝑒𝑎𝑟𝑠 

Finally, the life period is estimated from the formula: 

𝑇𝑑 =
−𝛥𝑡

ln(1 − 𝑝)  ⇒  835.85 =
−𝛥𝑡

ln(1 − 0.2) 

⇒  - Δt = 835.85∙ln0.8  and  Δt = 189 years.   
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  101859249,62 390,54 0,5 2,5917 
            25464812,40 370,96 1 2,5693 
            6366203,10 336,26 2 2,5267 
            2829423,60 306,52 3 2,4865 
            1591550,78 280,81 4 2,4484 
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            1018592,50 258,42 5 2,4123 
           707355,90 238,78 6 2,3780 
           519690,05 221,45 7 2,3453 
           397887,69 206,06 8 2,3140 
           314380,40 192,33 9 2,2841 
           254648,12 180,03 10 2,2553 
           63662,03 104,38 20 2,0186 
           28294,24 69,47 30 1,8418 
           15915,51 50,19 40 1,7006 
           10185,92 38,29 50 1,5831 
           7073,56 30,37 60 1,4824 
           5196,90 24,79 70 1,3943 

            3978,88 20,71 80 1,3161 
            3143,80 17,61 90 1,2457 
            2546,48 15,19 100 1,1817 
            636,62 5,51 200 0,7414 
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100,00
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350,00
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0,00 5000000,00 10000000,00 15000000,00 20000000,00 25000000,00 30000000,00



 
 

Exercise 2 

An earthquake of magnitude 6.0 on the Richter scale occurs every 90 years in a 
region of 104 km2, where a structure is going to be constructed.  

Following the directions provided in the Greek Seismic Code, for q=1 and soil class A,  

1. Calculate the peak ground acceleration expected at the site of the structure 
for the above earthquake. 

2. Draw the probabilistic curve of exceeding for the peak ground acceleration at 
the site of the structure. 

3. Draw the elastic design acceleration spectrum 
a) For 20% probability of exceeding in 50 years and 
b) For 10% probability of exceeding in 80 years, 

Recommendation: Use the Ambrasseys, Simpson & Bommer (1996) attenuation 
relationship for rocks and 16% probability of exceeding. 

Solution  

The expected peak ground acceleration for an earthquake at the site of the structure 
can be calculated through the attenuation relationship of Ambraseys, Simpson & 
Bommer (1996) for Δ=0. 

logα = -1.47 + 0.266Μ – 0.922∙logR + 0.100SA + 0.094SS + 0.25P, 

where   M=6.0,  𝑅 = √𝛥2 + 3.52  and  Δ=0. 

SA,S are dummy variables for the site class. For rocks, their values are: 

SA = 0  and  SS = 0.  

It is also P=1 for 16% probability of exceeding. Therefore: 

logα = -1.47 + 0.266x6.0 – 0.922log(3.5) + 0.25,  or 

logα = - 0.1256   and finally  α = 0.749. 

1. In order to draw the probabilistic curve of exceeding, which represents the 
values of ground acceleration versus repeat period, we have to fill up the 
following table: 

αi(g) Δ i(km) Ti(years) 

0.05 65.81 66.15 

0.10 30.88 300.48 

0.20 14.23 1415.10 

0.30 8.77 3728.09 

0.40 5.96 8073.45 



0.50 4.14 16685.90 

0.70 1.39 148548.07 

0.74 0.56 899710.03 
 

Example of procedure: 

For α i = 0.10,   

log0.10 = -1.47 + 0.266∙6.0 – 0.922∙log�𝛥𝑖2  +  3.52 + 0.25 ,    or 

log�𝛥𝑖2  +  3.52 = 1.492,   or   Δi = 30.88 km. 

Then, taking into account that the seismic area Ai (associated with the value ai) 
is a circle with a radius Δi, where the unknown repeat period Ti corresponds, from 
the data of the given area A0 with its repeat period T0, we can solve for Ti the 
equation 

iiTATA =00   where  2
iiA ∆⋅= π  

Therefore: Ti = A0T0/πΔi
2.   

If we put:  A0 = 104 km, T0 = 90 years  and  Δi = 30.88 km, then it yields 

Ti = 104x90/π∙30.882 = 300.48 years. 

 

2. The relation connecting the repeat period, TE, of an earthquake along with a 
structure’s useful period of life, Δt, and the probability p of exceeding the 
earthquake’s magnitude, is 

𝑇𝐸 =
−𝛥𝑡

ln (1 − 𝑝)
 



a) If we put Δt = 50  and  p = 0.20, it yields TE = 224.07 years 

Using the above graph, referring to the probabilistic curve of exceeding, 
for TE = 224.07 years, we end up with the corresponding peak ground 
acceleration, which is aa = 0.07g. 

b) Similarly, in the above equation, if we put Δt = 80  and  p = 0.10, it yields 
TE = 759.3 years. 

Again, making use of the above graph, for TE = 759.3 years, we find the 
corresponding acceleration ab = 0.15g. 

For both cases, the elastic design acceleration spectrum will be created 
according to the Greek seismic code, taking into account the restrictions of the 
problem. 

For soil class A, it is T1 = 0.1  and  T2 = 0.4. 

Also for q = 1,   it is:    

𝛷𝑑(𝑇)
𝐴𝛾𝐼

=
𝜂𝜃𝛽0
𝑞

  𝑜𝑟  
𝛷𝑑(𝑇)
𝐴 ∙ 1

=
1 ∙ 1 ∙ 2.5

1
= 2.5 

Therefore:   Φd(Ta)(g) = 2.5∙0.07 = 0.175  and 

        Φd(Tb)(g) = 2.5∙0.15 = 0.375 

 

 

The spectrum starts from the peak ground acceleration and increases linearly 
up to the point [0.1, Φd(T1)], because T1 = 0.1. 

Then, keeping a constant value up to T2 = 0.4, it follows the path shown by the 
corresponding equation, in which equation the first term is the constant value 
Φd(T1) of the spectral acceleration, while the second term is the ratio T2/T, 
raised to the power of 2/3. 

 



 
Exercise 3 
A research for determining the local seismic hazard where an important structure is 
going to be constructed, gave the curve shown in Fig. 1.  Calculate: 

1. The peak ground acceleration, according to which common structures are 
going to be constructed for a life duration and a probability of exceeding 
proposed in EC8. 

2. The life duration, corresponding to the peak ground acceleration, for a 
structure of important factor 1.15 and a probability of exceeding 20%. 

3. The max magnitude of an earthquake, assuming that its epicenter is located 
at the site of the structure. Use Fig.1 and the following attenuation 
relationship: 

logA = 1.86 + 0.49M – 1.65 log(Δ+15)        (Δ in km, A in cm/sec2, and g = 10 m/sec2) 

An earthquake in the area of the structure resulted to the spectrum shown in Fig. 2. 
Calculate the probability of occurrence for a life duration 50 years. 

 

 



 

Solution  

According to EC8, the proposed life duration for common structures is Δt = 50 years, 
while the probability of exceeding is p = 10%. 

The repeat period is therefore:  

𝑇𝐸 =
−𝛥𝑡

ln (1 − 𝑝)
=

−50
𝑙𝑛0.90

= 475 𝑦𝑒𝑎𝑟𝑠 

Using the curve in Fig. 1 for the above repeat period, we find the corresponding peak 
ground acceleration A = 0.24g. 

1. The design acceleration, being dependant on the importance factor, is for the 
new building,   A = 1.15∙0.24g = 0.276g. 

Using the same curve for the new ground acceleration, we find  TE = 800 years. 
Therefore: 

𝑇𝐸  =  
−𝛥𝑡

ln (1 − 𝑝)
      ⇒       800 =  

−𝛥𝑡
𝑙𝑛0.90

     ⇒      𝜟𝒕 =  𝟖𝟒 𝒚𝒆𝒂𝒓𝒔 

2. Since the epicenter of the earthquake is on the site of the structure, it follows 
that Δ = 0. 

The max acceleration, according to fig. 1, is:   maxA = 0.5g = 500 cm/sec2. 

Therefore, the attenuation relationship becomes 

log500 = 1.86 + 0.49M – 1.65∙log(0 + 15), 

from which, the yielding max magnitude of the earthquake, is   M = 5.7 

3. Using the spectrum of fig. 2, for T = 0, we obtain the peak ground 
acceleration,   A = 0.25g. 

From the curve of Fig. 1,   for A = 0.25g,  we find   TE = 500 years. 

 Therefore: 

𝑇𝐸  =  
−𝛥𝑡

ln (1 − 𝑝)
      ⇒      500 =  

−80
ln (1 − 𝑝)

     ⇒      ln(1 − 𝑝) = −0.16 

Consequently 

1 – p  =  e-0.16  =  0.852      ⇒      p  =  0.148  =  14.8 %. 



Exercise 4 

A series of elastic acceleration spectra of Kalamata’s earthquake (1986) is 
depicted in the figure below. Calculate: 

1. The max acceleration of the earthquake. 
2. The spectral magnification factor, i.e. the ratio of max spectral acceleration to 

the max ground acceleration, for dumping ratios   ζ = 2,  5  and  10 %. 
3. The max displacement and the max seismic force of the following structures, 

which present the following respective seismic characteristics: 
a) Reinforced concrete (RC) building:  T = 0.12 sec,  m = 1000 t  and  ζ = 5 % 
b) R.C. building:  T = 0.25 sec,  m = 3000 t  and  ζ = 5 % 
c) R.C. structure:  T = 0.32 sec,  m = 3000 t  and  ζ = 5 % 
d) R.C. bridge:  T = 1.20 sec,  m = 10000 t  and  ζ = 5 % 
e) Steel structure:  T = 0.60 sec,  m = 500 t  and  ζ = 2 %  and 
f) Timber building:  T = 0.20 sec,  m = 200 t  and  ζ = 10 %. 

4. Draw the relative displacement-spectrum for  ζ = 5 %. Calculate the values of 
displacement by taking natural periods from 0 to 1.0, using a step of 0.10 sec. 



Solution  

1. The max acceleration of the earthquake corresponds to T = 0, when the 
structure obviously cannot undertake any relative displacement. 

From the spectrum, for  T = 0  yields  PSA = 0.27g. 

2. The maximum spectrum accelerations, corresponding to the three requested 
damping ratios are: 

For  ζ = 2 %    ⇒    PSA = 1.82 g  

For  ζ = 5 %    ⇒    PSA = 1.25 g  

For  ζ = 10 %    ⇒    PSA = 0.80 g  

Consequently the spectral magnification factor is respectively: 

  For  ζ = 2 %    ⇒    𝛽 = 1.82·𝑔
0.27∙𝑔

= 𝟔.𝟕𝟒 

  For  ζ = 5 %    ⇒    𝛽 = 1.25·𝑔
0.27∙𝑔

= 𝟒.𝟔𝟑 

  For  ζ = 10 %    ⇒    𝛽 = 0.80·𝑔
0.27∙𝑔

= 𝟐.𝟗𝟔 

3. Maximum displacement and seismic force 
a) R.C. building,  T = 0.12 sec,  m = 1000 t  and  ζ = 5 % 

From spectrum, for  T = 0.12    ⇒    PSA = 0.45 g  

The max seismic force is estimated through the equation  P = PSA∙m,  where  m  is 
the mass of the structure. Hence: 

Pmax = 0.45∙g∙1000 t = 1000 Mgr∙0.45∙10 m/sec2 = 4500 kN. 

From theory of single degree of freedom (SDOF) structures, it holds: 

𝑇 = 2𝜋�
𝑚
𝑘

   ⇒    𝑘 =
4𝜋2𝑚
𝑇2

 

where k is the stiffness of the structure. If  δ  is the displacement of the above mass, 
then  P = k∙δ.  In this equation, if  k  is replaced by the value taken from the previous 
equation, it yields 

𝑃 =
4𝜋2𝑚
𝑇2

𝛿 = 𝑃𝑆𝐴 · 𝑚   ⇒    𝛿 =
𝑃𝑆𝐴 ∙ 𝑇2

4𝜋2
 

The displacement,  δ,  of the structure is therefore: 

𝜹 =
0.45 ∙ 10 𝑚

𝑠𝑒𝑐2 ∙ 0.122𝑠𝑒𝑐2

4𝜋2
= 𝟎.𝟎𝟎𝟏𝟔 𝒎 



b) R.C. building:  T = 0.25 sec,  m = 3000 t  and  ζ = 5 % 

Similarly, from spectrum, for  T = 0.25    ⇒    PSA = 0.80 g. Therefore 

Pmax = 3000∙0.80∙10 = 24000 kN and 

𝜹 =
𝑃𝑆𝐴 ∙ 𝑇2

4𝜋2
=

0.80 ∙ 10 ∙ 0.252

4𝜋2
= 𝟎.𝟎𝟏𝟑 𝒎 

c) R.C. structure:  T = 0.32 sec,  m = 3000 t  and  ζ = 5 % 

Similarly, from spectrum, for  T = 0.32    ⇒    PSA = 1.25 g. Therefore 

Pmax = 3000∙1.25∙10 = 37500 kN and 

𝜹 = 𝑃𝑆𝐴∙𝑇2

4𝜋2
= 1.25∙10∙0.322

4𝜋2
= 𝟎.𝟎𝟑𝟑 𝒎. 

d) R.C. bridge:  T = 1.20 sec,  m = 10000 t  and  ζ = 5 % 

Similarly, from spectrum, for  T = 1.20    ⇒    PSA = 0.25 g. Therefore 

Pmax = 10000∙0.25∙10 = 25000 kN and 

𝜹 =
𝑃𝑆𝐴 ∙ 𝑇2

4𝜋2
=

0.25 ∙ 10 ∙ 1.202

4𝜋2
= 𝟎.𝟎𝟗𝟏 𝒎 

e) Steel structure:  T = 0.60 sec,  m = 500 t  and  ζ = 2 %   

Similarly, from spectrum, for  T = 0.60 and ζ = 2%  ⇒  PSA = 0.80 g. Therefore 

Pmax = 500∙0.80∙10 = 4000 kN and 

𝜹 =
𝑃𝑆𝐴 ∙ 𝑇2

4𝜋2
=

0.80 ∙ 10 ∙ 0.602

4𝜋2
= 𝟎.𝟎𝟕𝟑 𝒎 

f) Timber building:  T = 0.20 sec,  m = 200 t  and  ζ = 10 % 

Similarly, from spectrum, for T = 0.20 and ζ = 10%  ⇒  PSA = 0.45 g. Therefore 

Pmax = 200∙0.45∙10 = 900 kN and 

𝜹 =
𝑃𝑆𝐴 ∙ 𝑇2

4𝜋2
=

0.45 ∙ 10 ∙ 0.202

4𝜋2
= 𝟎.𝟎𝟎𝟒𝟓 𝒎 

4. Displacement spectrum 

The displacements SD will be calculated through the equation  SD = PSA/ω2, where: 

𝜔 =
2𝜋
𝛵

 



For each value of period T, a value of acceleration is yielded through the spectrum, 
along with a value of ω. The following table summarizes the results. 

T (sec) PSA (m/sec2) ω (1/sec) SD (m) 

0.00 2.70 ∞ 0.0000 

0.10 4.00 62.83 0.0010 

0.20 5.50 31.42 0.0056 

0.30 11.20 20.94 0.0251 

0.40 8.40 15.71 0.0340 

0.50 7.70 12.57 0.0488 

0.60 6.10 10.47 0.0556 

0.70 5.70 8.98 0.0707 

0.80 3.70 7.85 0.0600 

0.90 2.90 6.98 0.0595 

1.00 2.00 6.28 0.0507 
 

 

Displacement spectrum 

 

 



Exercise 5 

Two similar water towers, illustrated on Fig. 1 of next page, are founded  on different 
grounds; one on the rock at point A, the other on a thick ground layer at point B. 

During a seismic event, two accelerographs, that existed on places A and B, recorded 
this vibration. The data analysis of records which followed, gave the elastic spectral 
accelerations (damping ratios ζ = 5%), depicted on Figure 2. 

Calculate: 

1. The max acceleration developed on the base of each tower. 
2. The max acceleration and the corresponding seismic force developed on the 

center of gravity (CG) of each tower. 
3. The shear force and bending moment developed on the base of each column, 

provided the structure behaved elastically. 
4. The max elongation of water pipe that connects the two towers between the 

points A and B. 
5. The max elongation of the same water pipe, if it connected the two towers 

between the points A’ and B’. 
6. Estimate the dumping ratio ζ of the thick ground layer, considering that it 

behaves elastically. 

Data – Assumptions: 

• The water towers present a dumping ratio ζ = 5%, which is different from that 
of the ground layer. 

• The towers rest on 4 similar columns, having a cross section  0.50 x 0.50 m 
and a height  h = 6.0 m. 

• Total weight of each tower, included water, is W = 1000 kN. 
• Young modulus of elasticity for Reinforce Concrete, E = 21∙103 MPa. 
• The ground layer behaves as SDOF with a self period, Tg = 0.5 sec. 
• The points A and B’’ of the rock move together as a unit. 
• Before calculating the dumping ratio ζ of the ground layer, take into account 

the modification factor η, given by the Greek Seismic Code (EAK 2000), where 
it is stated that 

PSA(ζ) = PSA(ζ=5%)∙η , 

where 

𝜂 = �
7

𝜁 + 2
  . 

 



 



 
 

Solution  

Using the elastic acceleration spectra for points A and B for T = 0, we get directly the 
max ground acceleration: 

For point A:  Sα (A) = 0.15g 

For point B: Sα (B) = 0.20g 

1. Since the dumping ratios for both – the spectra and towers – are the same, 
i.e. ζ = 5%, the max acceleration, developed on the center of gravity (CG) of each 
water tower, is possible to be estimated through their self-period T, making use of 
their elastic acceleration spectra. If Tt is the self-period of the water tower, it is: 

𝑇𝑡 = 2𝜋�
𝑚
𝑘𝑡𝑜𝑡

 

where  m is the total tower mass  which is: 

m = W/g = 1000 kN/10 m/sec2 = 100 kN·m-1·sec2  

and ktot  is the total tower stiffness, which is:  ktot = 4kc.  A double fixed column, 
obviously develops a stiffness, kc, which is: 

𝑘𝑐 =
12𝐸𝐽
ℎ3

 

where E is the Young modulus of elasticity, h the height of column and J the second 
moment of area of its cross section, which is: 

𝐽 =
𝑏ℎ3

12
=

0.504

12
= 0.005208 𝑚4 

Therefore 

𝑘𝑐 =
12 ∙ 21 ∙ 106 𝑘𝑁𝑚2 ∙ 0.005208𝑚4

6.03 𝑚3 = 6076 𝑘𝑁/𝑚 

which yields a  ktot = 4kc =  4∙6076 = 24305 kN/m  and finally a self-period of tower 

𝑇 = 2𝜋�100 𝑘𝑁∙𝑚−1∙𝑠𝑒𝑐2

24305 𝑘𝑁/𝑚
  = 0.403 sec 

For the water tower WT1, the spectrum at point A for a period  T = 0.403 sec, gives 
an acceleration of: 

Sα (A) = 0.275g 



 

Similarly, for the tower WT2, the spectrum at point B for the same period  T = 0.403 
sec, gives an acceleration of: 

Sα (B) = 0.45g. 

Therefore the horizontal seismic forces developed at their center of gravity are: 

F1 = m∙Sα(A) = 100 kN∙m-1∙sec2 ∙0.275g = 275 kN  and 

F2 = m∙Sα(B) = 100 kN∙m-1∙sec2 ∙0.45g = 450 kN. 

2. The maximum shear force developed at the base of each column, Q, is the 
quarter of the corresponding force acted at the CG. Furthermore, for a double fixed 
column, the bending moment at both, foot and head sections, is  M = Q∙h/2. Hence: 

For water tower WT1:   Q1 = F1/4 = 275/4 = 68.75 kN and 

     M1 = Q1∙h/2 = 68.75∙6/2 = 206.25 kNm, while 

For water tower WT1:   Q2 = F2/4 = 450/4 = 112.5 kN and 

     M2 = Q2∙h/2 = 112.5∙6/2 = 337.5 kNm. 

3. The maximum elongation of the water pipe is obviously expressed by the 
relevant displacement of the point A with respect to B. 

Point A is on the rock while point B is on a ground layer founded on the rocky mass. 
Besides given is that the rocky mass is moving as a solid body, i.e. points A and B’’ 
move in the same way. Therefore the problem is to find out the relevant 
displacement of point B’’ with respect to B. 

It has been assumed that the ground layer behaves as SDOF oscillator founded on 
the rock, with a self-period  Tg = 0.5 sec. For every SDOF oscillator is stated that: 

𝑆𝑑 =
𝑆𝑎
𝜔2 =

𝑆𝑎

�2𝜋
𝑇 �

2 

where:   Sd is the spectral relevant displacement of the oscillator 
Sα is its absolute acceleration and 
T, ω are respectively its natural period and frequency. 

In our case Sα is the absolute spectral ground-layer-mass acceleration (the mass is 
considered to be concentrated in the point B), where it is  Sα(Β) = 0.20g. Therefore: 

𝑆𝑑(𝐵) =
𝑆𝛼(𝐵)

�2𝜋
𝑇𝑔
�
2 =

0.20𝑔

� 2𝜋
0.5 𝑠𝑒𝑐�

2 = 0.012 𝑚 



 

In other words, since point B (ground) has been moved with respect to point B’’ 
(rock) 0.012 m, this distance obviously represents the max elongation of the water 
pipe between the points A and B. 

4. For two oscillators, presenting self-periods T1, T2 and dumping ratios ζ1, ζ2 
their max distance is 

𝛥𝑙 = �𝑢12 + 𝑢22 , 

where u1, u2 is the max displacement of each oscillator with respect to its base. 

Regarding the case of relevant displacements, Sd(A΄), Sd(B΄) of the water towers 
with respect to their base, it holds that: 

𝑆𝑑(𝐴′) =
𝑆𝛼(𝐴′)

�2𝜋
𝑇 �

2 =
0.275𝑔

� 2𝜋
0.403�

2 = 0.011 𝑚 

𝑆𝑑(𝐵′) =
𝑆𝛼(𝐵′)

�2𝜋
𝑇 �

2 =
0.45𝑔

� 2𝜋
0.403�

2 = 0.018 𝑚 

The max elongation of the water pipe A΄B΄ is therefore 

𝛥𝑙 = �0.0112 + 0.0182 = 0.021 𝑚 

5. The ground layer is simulated with a SDOF oscillator presenting a self-period 
T = 0.5 sec, which, having fixed (founded) on point B΄΄ of the rock, has a maximum 
acceleration obtained from the spectrum, PSα(B) = 0.20g. Since the rocky mass is 
moving as a solid body (points A and B΄΄ present the same displacement), it yields 
that 

Spectrum of point B΄΄ = Spectrum of point A 

The dumping ratio ζ of the ground layer is unknown; however, if it was 5%, like 
rock’s, then we could use for the ground the spectrum of point A. 

Using the spectrum of point A, for Tg = 0.5 sec, we find a max acceleration for an 
imaginary point B in the case where all the ground was a rock, PSα(B)[5%] = 0.25g, 
which is different from the real one, PSα(B)[ζ] = 0.20g. The difference of the two 
acceleration values is due to the different dumping of the ground layer. 

From the Greek Seismic Code, it holds:    

PSα(B)[ζ] = PSα(B)[5%]·η   (1) ,      where  𝜂 = � 7
𝜁+2

   (2) . 

From  (1)  ⇒  0.20g = 0.25g∙η  ⇒  η = 0.8. 

From  (2)  ⇒  0.8 = � 7
𝜁+2

  ⇒  ζ = 8.94%. 



 

Exercise 6 
A) The single-storey R.C. structure illustrated below, was designed and 

constructed following the terms of the Greek Seismic Code (EAK 2000). 

For the following data: Seismic Risk Zone II, Soil class A, Importance Category S2 = 1, 
Damping Ratio ζ = 5% and Foundation Factor θ = 1.0, calculate: 

1. The design base shear force along with the design shear force and bending 
moment of column K1. 

2. The maximum expected displacement of the building. 

B) After the construction, a recalculation of the seismic hazard showed that the 
max expected ground acceleration is 0.36g. In the case of having an earthquake 
event of this level, calculate: 

1. The ductility developed by the structure. 
2. The shear force and bending moment of column K1. 
3. The max displacement of structure during the earthquake. 

Data 

• The columns, of height h = 3.0 m, behave as double fixed elements. 
• Young’s modulus of elasticity E = 30∙106 kN/m2, g = 10 m/sec2. 
• Direction of earthquake’s design: x-x. 
• Ignore the rotation of structure. 
• The structure exhibits 40% overstrength. 
• For mass calculation take also into account 30% of the live load. 
• Permanent and live load: 10 kN/m2 on the slab surface. 
• Behavior factor (from EAK 2000) q = 3.5 



 
 

Solution  

A1) In general, the strategic procedure to be followed in cases of a seismic 
design, is to calculate the main parameters useful for the critical design values. 

In our case, the mass, stiffness and natural period of the structure are the 
critical parameters before estimating the design base shear force. 

Seismic Load Combination: Q = g + 0.3·q, where g the permanent given load 
and q is the live load. If B is the weight of the structure’s slab, then 

B = (6.0∙4.0)m2(10 kN/m2 + 0.3∙10 kN/m2) = 312 kN. The mass of structure is 

𝑚 =  
𝐵
𝑔

=  
312 𝑘𝑁

10 𝑚/𝑠𝑒𝑐2
= 31.2 𝑀𝑔𝑟  𝑜𝑟  𝑡. 

Since the seismic direction is x-x the stiffness parameters will be considered 
with respect to the y-y axis. 

Second moments of inertia – Stiffness. It is: 

𝐽1𝑦 =
𝑏ℎ3

12
=

1.0 ∙ 0.33

12
= 2.25 ∙ 10−3 𝑚4 

𝑘1𝑦 =
12𝐸𝐽1𝑦
ℎ3

=
12 ∙ 30 ∙ 106  �𝑘𝑁𝑚2�2.25 ∙ 10−3 𝑚4

33 𝑚3 = 30000 𝑘𝑁/𝑚 

Similarly 

𝐽2𝑦 =
𝑏ℎ3

12
=

0.30 ∙ 0.83

12
= 0.0128 𝑚4 

𝑘2𝑦 =
12𝐸𝐽2𝑦
ℎ3

=
12 ∙ 30 ∙ 106 · 0.0128

33 
= 170667 𝑘𝑁/𝑚 

Due to the point-symmetry of the structure’s plan, k1y = k3y and k2y = k4y. 
Therefore the total stiffness of structure is: 

Ktot = 2(k1y + k2y) = 2(30000 + 170667) = 401334 kN/m. 

The mass and stiffness parameters of a structure are enough to calculating its 
natural period T. Therefore: 

𝑇 = 2𝜋�
𝑚
𝑘𝑡𝑜𝑡

= 2𝜋�
31.2 𝑀𝑔𝑟

401334 𝑘𝑁/𝑚
= 0.055 𝑠𝑒𝑐. 

Since 0 ≤ T < T1 due to the soil class A of the structure,  



 

the design acceleration parameter Φd(T)/Aγ I is given by the equation: 

𝛷𝑑(𝑇)
𝐴 ∙ 𝛾𝛪

= 1 +
𝛵
𝛵1
�
𝜂 ∙ 𝜃 ∙ 𝛽0

𝑞
− 1� 

where q = 3.5 for inelastic behavior of the structure. Substituting 

𝛷𝑑(𝑇) = 0.24𝑔 ∙ 1.0 �1 +
0.055
0.10

�
1.0 ∙ 1.0 ∙ 2.5

3.5
− 1�� = 0.20𝑔 

The design base seismic horizontal force of the structure, is therefore 

Pd = m∙Φd(T) = 31.2 Mgr∙0.20g = 62.4 kN 

The design shear force of column K1 is 

𝑽𝒅𝟏 =
𝑘1
𝑘𝑡𝑜𝑡

𝑃𝑑 =
30000

401334
62.4 = 𝟒.𝟔𝟔 𝒌𝑵 

As a result, the design bending moment of the same column is obviously 

𝑴𝒅𝟏 = 𝑉𝑑1 ·
ℎ
2

= 4.66
3
2

= 𝟔.𝟗𝟗 𝒌𝑵𝒎 

 A2) The displacement of the structure corresponding to the yield point is 

𝛿𝑦 =
𝑃𝑑
𝑘𝑡𝑜𝑡

=
62.4 𝑘𝑁

401334 𝑘𝑁𝑚
= 1.55 ∙ 10−4 𝑚 

Consequently the max displacement is: 

δmax = q∙δy = 3.5∙1.55∙10-4 = 5.43·10-4 m 

B1) The ductility developed by the structure can be defined by the equation 

𝜇 = 𝑞 =
𝑃𝑒𝑙
𝑃𝑟𝑒𝑎𝑙

 

where Pel is the elastic seismic horizontal force coming from the ideal elastic system, 
i.e. the new earthquake, presenting a max ground acceleration A’ = 0.36g and a 
behavior factor q’ = 1.0, while Preal is the real seismic horizontal force at first yield, 
coming from the old one at first yield, Pd, multiplied by the overstrength factor, 
which is 1.4.  

This factor (see p. 125 Penelis – Kappos) takes into account the variability of the 
yield stress fy and the probability of strain-hardening effects in the reinforcement. 

The earthquake acceleration of the new seismic event, derived for the same 
local conditions, is 



 

𝛷′𝑑(𝑇) = 0.36 ∙ 1.0 �1 +
0.055
0.10

�
1.0 ∙ 1.0 ∙ 2.5

1.0
− 1�� = 0.657𝑔 

Pel = m∙𝛷′𝑑(𝑇) = 31.2∙0.657g = 204.98 kN 

Preal = 1.4∙Pd = 1.4∙62.4 = 87.36 kN  

Therefore: 

𝝁′ =
𝑃𝑒𝑙
𝑃𝑟𝑒𝑎𝑙

=
204.98
87.36

= 𝟐.𝟑𝟓 

B2) The real shear force and bending moment of the column K1 can be 
similarly calculated 

𝑽𝒓𝒆𝒂𝒍,𝟏 =
𝑘1
𝑘𝑡𝑜𝑡

𝑃𝑟𝑒𝑎𝑙 =
30000

401334
87.36 = 𝟔.𝟓𝟑 𝒌𝑵 

𝑴𝒓𝒆𝒂𝒍,𝟏 = 𝑉𝑟𝑒𝑎𝑙,1 ·
ℎ
2

= 6.53
3
2

= 𝟗.𝟖 𝒌𝑵𝒎 

B3) Applying, as before, a similar way of thinking, the max displacement of the 
structure is 

δ'max = μ’∙δy,real 

where δy,real is the displacement of the structure corresponding to the first yield, 
which is 

𝛿𝑦,𝑟𝑒𝑎𝑙 =
𝑃𝑟𝑒𝑎𝑙
𝑘𝑡𝑜𝑡

=
87.36

401334
= 2.18 ∙ 10−4 𝑚 

Consequently the maximum displacement is 

δ'max = μ’∙δy,real = 2.35∙2.18∙10-4 = 5.12·10-4 m. 

  



 

Exercise 7 

The R.C. bridge presented below, was designed according to Greek Seismic Code for zone I, 
soil class B, Importance category Σ3, Behavior factor q = 3 and Foundation factor θ = 1.0. 
During the design procedure the rotation of bridge was ignored. 

After the completion of the structure, an earthquake occurred in the area, the elastic 
response spectrum of which, for the y-y direction, is depicted in Fig. 2. 

Calculate the displacement ductility factor for pier M2 during the y-y seismic direction, 
taking also into account the rotation of the bridge. 

Data and assumptions 

• Uniformly distributed load on the bridge:  25 kN/m2  
• Young’s modulus of elasticity:  E = 3∙107 kN/m2  
• Overstrength factor for piers:  1.2 
• Piers, presenting a circular cross section with diameter D = 1.7 m, behave as single 

fixed members (cantilevers) 
• Ignore Kωi. 

 

 



 

Solution  

Seismic characteristics of structure before earthquake 

Stiffness of piers along the y-y direction: 

𝑘1 =  
3𝐸𝐽1
ℎ13

=  
3 ∙ 3 ∙ 107 ∙ 𝜋 ∙ 1.74/64

7.03
= 107 575.65 𝑘𝑁/𝑚 

𝑘2 =  
3𝐸𝐽2
ℎ23

=  
3 ∙ 3 ∙ 107 ∙ 𝜋 ∙ 1.74/64

13.03
= 16 794.92 𝑘𝑁/𝑚 

Therefore:  ktot = k1 + k2 = 124 370.57 kN/m 

Mass, period and seismic design acceleration of structure: 

𝑚 =  
𝑊
𝑔

=  
48 ∙ 12 ∙ 25

10
= 1 440 𝑀𝑔𝑟 

𝑇 = 2𝜋�
𝑚
𝑘

= 2𝜋�
1 440

124 370.57 
= 0.676 𝑠𝑒𝑐 

For zone I, it is:  A = 0.16g. Also given are: 

Important factor: Σ3 = 1.15 

Behavior factor:  q = 3 

Soil class A → θ = 1.0  and  η = 1.0.  

For soil class A, it is:  T1 = 0.10 sec,  T2 = 0.60 sec.  

Since  T=0.676 > T2=0.60, we use equation 3 of the seismic code, i.e. 

𝑅𝑑(𝑇) =  𝛾𝛪𝛢
𝜂𝜃𝛽0
𝑞

�
𝛵2
𝛵
�
2
3

= 1.15 ∙ 0.16𝑔
1.0 ∙ 1.0 ∙ 2.5

3
�

0.60
0.676

�
2
3

= 0.142𝑔 

The horizontal seismic force on the y-y direction is therefore: 

F = m∙Rd(T) = 1 440∙0.142g = 2 044.8 kN 

Consequently the design shear force developed at pier M2, is: 

𝑉𝑑
𝑀2 = 𝐹

𝑘2
𝑘𝑡𝑜𝑡

= 2 044.8 
16 794.92

 124 370.57
= 276.13 𝑘𝑁 

Calculation of shear force at pier M2 after the seismic event 

Our target is to find out the relevant displacement of pier M2, taking also into account the 
rotation of the bridge. For this reason we need to locate both the centre of gravity (CG) and 
the centre of elastic rotation (CER). 



 

Initially we install a Cartesian coordinate system with its zero point on the bottom left of the 
deck. 

 

Due to the symmetry of the structure’s plan, both of the above centres will be on the 
horizontal axis of symmetry of the plan. Besides, the CG will be on the vertical axis of 
symmetry, presenting thus coordinates (24, 6) m. 

In order to calculate the abscissa (horizontal distance from vertical axis) of CER, along with 
the components of the rotational stiffness, we fill up the following table: 

Ki 
xi 

(m) 

Diy 

(kN/m) 

xiDiy 

(kN) 

𝒙� = 𝒙 − 𝒙𝑪𝑬𝑹 

(m) 

𝒙�𝟐𝑫𝒊𝒚 

(kNm) 

M1 12.0 107 575.65 1 290 907.8 -3.241 1 129 983.3 

M2 36.0 16 794.92 604 617.1 20.759 7 237 537 

S  U  M 124 370.57 1 895 524.9  8 367 520.3 

Before filling up the �̅�  (and possibly 𝑦�) field of the table we calculate the abscissa of CER, 
which is: 

𝑥𝐶𝐸𝑅 =  
∑�𝑥𝑖 ∙ 𝐷𝑖𝑦�

∑𝐷𝑖𝑦
=  

1 895 524.9
124 370.57

= 15.241 𝑚 

Then, the coordinates of the ith column with respect to the CER system, are 

�̅�𝑖 = 𝑥𝑖 − 𝑥𝐶𝐸𝑅      

(and     𝑦�𝑖 = 𝑦𝑖 − 𝑦𝐶𝐸𝑅   respectively if we have more columns vertically). 



 

Therefore we can proceed to filling up the last (two) column(s) of the table. 

Similarly, the rotational stiffness of the bridge will be calculated through the form 

𝑘𝜔 =  ∑�𝐷𝑖𝜔 + �̅�𝑖2𝐷𝑖𝑦 + 𝑦�𝑖2𝐷𝑥�. 

However, since the first term will be omitted, while, due to the symmetry, 𝑦�𝑖  = 0, it yields 
that 

𝑘𝜔 =  ∑��̅�𝑖2𝐷𝑖𝑦� = 8 367 520.3  𝑘𝑁𝑚/𝑟𝑎𝑑. 

Now the displacement of pier M2 due to the y-y earthquake, taking also into account the 
rotation of the structure, will be evaluated through the following formula, derived from page 
52 of theory  

𝑣𝑀2 =
𝑃𝑦
𝑘𝑦

+
−𝑃𝑥 ∙ 𝑦�𝐶𝐺 + 𝑃𝑦 ∙ �̅�𝐶𝐺

𝑘𝜔
�̅�𝑆 

The first term comes from the y-y shift of the bridge as a whole, while the second 
expresses again the y-y movement of the Pier M2 due to the bridge’s rotation. It has to be 
noted that the second term is different from point to point, depending on the location of the 
pier with respect to the CER. 

Making use of the given spectrum, for T = 0.676 sec, it yields that PSA = 0.155g.  

The seismic elastic force, Py, on the y-y direction is therefore: 

Py = m∙PSA = 1 440∙0.155g = 2 232 kN 

Besides, it is: 

𝒙�𝑪𝑮 =  𝑥𝐶𝐺 − 𝑥𝐶𝐸𝑅 = 24.0− 15.241 = 8.759 𝑚, 

𝒚�𝑪𝑮 = 0      while 

𝒙�𝑺 =  �̅�𝑀2 =  𝑥𝑀2 − 𝑥𝐶𝐸𝑅 = 36.0 − 15.241 = 20.759  𝑚. 

The displacement of pier M2 is therefore: 

𝑣𝑀2 =
𝑃𝑦
𝑘𝑦

+
𝑃𝑦 ∙ �̅�𝐶𝐺
𝑘𝜔

�̅�𝑆 =  
2 232

 124 370.57
+

2 232 ∙ 8.759
8 367 520.3

20.759 = 0.06645 𝑚 

Consequently the relevant elastic shear force will be: 

𝑉𝑀2 =  𝑘2 ∙ 𝑣𝑀2 = 16 794.92 ∙ 0.06645 = 1 116 𝑘𝑁 

The displacement ductility factor of pier M2 can finally be estimated as: 

𝝁𝑴𝟐 =  
𝑉𝑀2

1.2 ∙ 𝑉𝑑
𝑀2

=  
1 116

1.2 ∙ 276.13
= 𝟑.𝟑𝟕 . 



 

Exercise 8 

The single storey framed structure illustrated in Fig. 1, was designed according to the 
Greek seismic code for zone II, soil class A and importance category 2. During the 
design procedure, the rotation of structure was ignored. 

After the end of structure, an earthquake on the y-y direction occurred in the area, 
the elastic response spectrum of which is illustrated in Fig. 2.  

Calculate the displacement ductility factor, developed at column K4, for the above 
seismic direction y-y, taking also into account the rotation of the structure. The over-
strength of the column was evaluated to be 20%. 

Data: Weight of building 1000 kN, additional load at point A, 200 kN, Young’s 
Modulus of Elasticity for reinforced concrete, E = 30x106 kN/m2, g = 10 m/sec2 and 
height of storey h = 3 m. The columns behave as double fixed elements. 

 

Figure 1 

 

Figure 2



 
 

Solution  
Α) Evaluation of the design shear force for column K4 

 Stiffness of columns: 

𝐾1,3
𝑦 =

12𝐸𝐼
ℎ3

=
12 ∙ 30 ∙ 106 ∙ 0.3 ∙ 0.63/12

3.03 
= 72000 𝑘𝑁/𝑚 

𝐾2,4
𝑦 =

12𝐸𝐼
ℎ3

=
12 ∙ 30 ∙ 106 ∙ 0.34/12

3.03
= 9000 𝑘𝑁/𝑚 

Total K = 2(K1,3
y + K2,4

y) = 162000 kN/m 

W = 1000 + 200 = 1200 kN 

m = W/g = 1200/10 = 120 Mgr 

𝑇𝑦 = 2𝜋�
120

162000
= 0.171 𝑠𝑒𝑐 

For soil class A, it is  T1 = 0.10 sec  and  T2 = 0.40 sec.  Since T1 < Ty < T2, 

It follows that  𝑅𝑑(𝑇𝑦) = 𝛾1𝛢
𝜂𝜃𝛽0
𝑞

, where: 

 Importance category, is  Σ2   ⇒   γΙ = 1.0 
 Zone II   ⇒   A = 0.24g 
 Soil class A   ⇒   θ = 1.0 
 q = 3.5   (framed structure) 
 η = 1.0   (reinforced concrete) 

Therefore    𝑅𝑑(𝑇𝑦) = 1.0 ∙ 0.24 ∙ 𝑔 1.0∙1.0∙2.5
3.5

= 0.1714𝑔  and 

F = m∙Rd(Ty) = 120∙0.1714g = 205.68 kN. 
Consequently the design shear force for the column K4 is: 

𝑉𝑦𝑑
𝐾4  =  205.68 ∙

9000
162000

 =  11.43 𝑘𝑁. 

B) Evaluation of Vy
K4 after the earthquake 

For calculating the displacement ductility factor of column K4 we need to estimate 
the relevant elastic shear force of the column, which will be derived from its total 
displacement.  

Using the elastic spectrum (Fig.2), for Ty = 0.171 sec  ⇒  PSA = 0.30g.  
Now we have to take into account the rotation of the structure. For this reason 

we install a Cartesian system with its point of origin (0,0) at the bottom left end of 
the column K3. 

Coordinates of the centre of gravity (centroid) K: 
The structure presents symmetry of the columns’ loads Fi with respect to 

horizontal axis. Hence the coordinate of the centroid is: 

  yK = 2.0 m. 



 
 

Now, if Sy is the first moment of area (weights) of the structure with respect to 
the y-axis, then the abscissa (horizontal distance from axis) of the centroid is: 

xK = Sy/ΣF i = Σ(Fi∙xi)/ΣFi = (1000∙3.0 +200∙5.0)/1200 = 3.33 m 

Coordinates of the center of elastic rotation (CER), E: 
The structure also presents a stiffness-symmetry of columns with respect to 

horizontal axis. 
Therefore the coordinate (vertical distance from horizontal axis) of its CER, is:    

yE = 2.0 m. 

The following table comprises the procedure to be followed in order to calculate 
the abscissa of CER and then the displacement of K4, where: 

• xi, yi are the coordinates of the ith column’s cross sectional cendroid with 
respect to the Cartesian system, 

• Dix, Diy are the stiffnesses of the ith column with respect to the x and y 
direction of the Cartesian system respectively, 

• �̅�, 𝑦� are the coordinates of the columns cendroid with respect to the 𝑋� and 𝑌�  
axes (that have as origin the CER) parallel to x and y. 

Ki 
xi 

(m) 

yi 
(m) 

Dix 
(kN/m) 

Diy 
(kN/m) 

xiDiy 
𝒙�𝒊 

(m) 
𝒚�𝒊 

(m) 
𝒙�𝒊𝟐𝑫𝒊𝒚 
(kNm) 

𝒚�𝒊𝟐𝑫𝒊𝒙 
(kNm) 

K1 0.15 3.70 18000 72000 10800 -0.63 1.70 28576.8 52020 

K2 5.85 3.85 9000 9000 52650 5.07 1.85 231344.1 30802.5 

K3 0.15 0.30 18000 72000 10800 -0.63 -1.70 28576.8 52020 

K4 5.85 0.15 9000 9000 52650 5.07 -1.85 231344.1 30802.5 

S  U  M 54000 162000 126900   519841.8 165645 

Before we fill up the �̅� and 𝑦� fields of the table, we calculate the abscissa of CER, 
which is: 

𝑥𝐸 =
∑(𝑥𝑖 ∙ 𝐷𝑖𝑦)
∑𝐷𝑖𝑦

=
126900
162000

= 0.78𝑚 

Then, the coordinates of the ith column with respect to the CER system, are 

�̅�𝑖 = 𝑥𝑖 − 𝑥𝐸      and       𝑦�𝑖 = 𝑦𝑖 − 𝑦𝐸   respectively. 

Therefore we proceed to filling up the last two columns of the table. 

If Kω is the rotational stiffness of the structure, then: 



 
 

𝐾𝜔 = ��𝐷𝑖𝜔 + �̅�𝑖2𝐷𝑖𝑦 + 𝑦�𝑖2𝐷𝑖𝑥� = 519841.8 + 165645 = 685486.8 𝑘𝑁𝑚 

(where the first term, being too small compared to the others, has been omitted). 

The displacement of column K4 on the y-y direction, taking into account both the 
shift (due to seismic force) and the rotation of the structure, is 

𝑢𝑦
𝐾4 =

𝑃𝑦
𝐾𝑦

+
𝑃𝑦
𝐾𝜔

�̅�𝐾 ∙ �̅�𝐾4 

The first term comes from the vertical movement of slab as a whole, while the 
second expresses the vertical movement of the column K4 due to the slab’s rotation. 
It has to be noted that the second term is different from point to point, depending 
on the location of the column with respect to the CER. 

The seismic elastic force along the y-y axis is:    

Py  =  m∙PSA  =  120∙0.30g  =  360 kN. 

Besides,  Ky  =  ΣDiy   and  

�̅�𝐾 = 𝑥𝐾 − 𝑥𝐸 = 3.33 – 0.78 = 2.55 m. Therefore: 

𝑢𝑦
𝐾4 =

360
162000

+
360

685486.8
2.55 ∙ 5.07 = 0.009 𝑚 = 0.9 𝑐𝑚 

The relevant elastic shear force, Pel, for the column K4 is therefore 

𝑃𝑒𝑙
𝐾4   =  Dy∙uy  =  9000∙0.009  =  81 kN. 

Finally, the corresponding ductility factor for column K4 is 

𝒒𝒚
𝑲𝟒 =

𝑃𝑒𝑙
𝐾4

1.2𝑉𝑦𝑑
𝐾4 =

81
1.2 ∙ 11.4

= 𝟓.𝟗 . 

  



 
 

Exercise 9 

The frame illustrated below consists of weightless columns of a common square section. The 
columns, single fixed at A and double fixed at D, support a stiff girder. 

The system, being designed against earthquake, gave the following acceleration spectrum: 

0.2 + 4 Τ for  0 ≤ Τ ≤ 0.2 sec 

 Sa/g     = 1.0  for 0.2 ≤ Τ ≤ 0.60 sec 

   0.60 / T  for Τ ≥ 0.60 sec. 

(a) Build up the corresponding Displacement design spectrum (in cm). 

(b) Determine the minimum cross sectional side of columns so that the maximum 
displacement, (umax), is not greater than 4 cm. 

(c) Calculate the maximum bending moment developed to each column due to the seismic 
excitation. 

Data:   

• Ε = 107 kΝ/m2 ,    
• g = 10 m/sec2. 

 



 
 

Solution  

The design acceleration spectrum, 

0.2 + 4 Τ for  0 ≤ Τ ≤ 0.2 sec 

 Sa/g     = 1.0  for 0.2 ≤ Τ ≤ 0.60 sec 

   0.60 / T  for Τ ≥ 0.60 sec, 

after a data process through or without EXCEL, leads to the following graph: 

 

(a) Using the pseudo-spectral relation 

𝑆𝑎 =  𝜔2𝑆𝑑 =  
4𝜋2

𝑇2
𝑆𝑑 

and solving for Sd, yields the displacement relation 

𝑆𝑑 =  𝑆𝑎 ∙
𝛵2

4𝜋2
 

which provides the values of displacements from the corresponding values of natural 
periods. Therefore the displacement spectrum takes the form 

𝑔(0.2+4𝛵)𝛵2

4𝜋2
   for  0 ≤ Τ ≤ 0.20 sec 

 Sd    =  
𝑔∙𝛵2

4𝜋2
    for 0.20 ≤ Τ ≤ 0.60 sec 

   0.60∙Τ∙g / 4π2    for Τ ≥ 0.60 sec, 

0
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which, after a similar process through EXCEL, leads to the following graph: 

 

(b) The demand for a maximum displacement of 4 cm, corresponds, as yielded from the 
above graph, obviously to the second branch of the spectrum, which starts from the value 
Sd = 1 cm and goes on upwards until 9 cm. The displacement limits of this branch can be 
calculated by substituting the limit values of T on the corresponding equation. 

Therefore, for the above limited value of 4 cm, it holds that: 

0.04 =
𝑔 ∙ 𝛵2

4𝜋2
 

wherefrom it yields  

𝛵 =  �
4𝜋2 ∙ 0.04

10
= 0.397 𝑠𝑒𝑐, 

a value, which is verified from the above displacement spectrum. Therefore: 

𝜔 =  
2𝜋
𝛵

=  
2𝜋

0.397
= 15.83 𝑟𝑎𝑑/𝑠𝑒𝑐. 

The oscillating mass is: 

𝑚 = 𝑞 ∙
𝐿
𝑔

= 11 ∙
11
10

= 12.1 𝑡𝑛. 
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The total stiffness of columns, responding to the maximum displacement of 4 cm, is: 

𝜔 =  �
𝑘𝑠
𝑚

    →     𝑘𝑠 = 𝑚 ∙ 𝜔2 = 12.1 ∙ 15.832 = 3032.13 𝑘𝑁/𝑚. 

Obviously ks is the sum of stiffnesses that yield respectively from the single fixed column k1 
and the double fixed k2, each one of which is: 

𝑘1 =  
3𝐸𝐼
ℎ13

=  
3 ∙ 107 ∙ 𝐼

3.33
=  834 794.22 ∙ 𝐼 

𝑘2 =  
12𝐸𝐼
ℎ23

=  
12 ∙ 107 ∙ 𝐼

5.53
= 721 262.21 ∙ 𝐼 

Therefore ks = k1 + k2 = (834 794.22 + 721 262.21)∙I .   → 

3032.13 = 1 556 056.43 ∙ 𝑰           →          Ι = 0.0019486 m4. 

Due to the square cross section (a∙a) of columns, the second moment of area with respect to 
the cendroidal axis is  

𝛪 =  
𝑎4

12
     →        𝒂 =  √12 ∙ 0.00194864   =  𝟎.𝟑𝟗𝟏 𝒎. 

(c)  Having calculated the cross sectional side, the stiffness for each one of the columns is: 

𝑘1 =  834 794.22 ∙ 𝐼 =  834 794.22 ∙ 0.0019486 =  1 626.68  𝑘𝑁/𝑚 

𝑘2 = 721 262.21 ∙ 𝐼 =  721 262.21 ∙ 0.0019486 = 1 405.45 𝑘𝑁/𝑚. 

Therefore the corresponding maximum shear forces and bending moments of the columns 
are: 

Single fixed: 

V1 = k1∙Sd = 1 626.68∙0.04 = 65.07 kN 

M1 = V1∙h = 65.07∙3.3 = 214.73 kNm 

Double fixed: 

V2 = k2∙Sd = 1 405.45∙0.04 = 56.22 kN 

M2 = V1∙h/2 = 56.22∙5.5/2 = 154.61 kNm 

  



 
 

Exercise 10 

The three-storey R.C. building of Fig.1 was designed according to the Greek Seismic Code, for 
the following parameters: 

• Seismic zone: II,   
• Soil class: B,  
• Importance factor γΙ = 1, 
• Foundation factor: θ = 1 and  
• Damping ratio: ζ = 5%. 

On the roof of the building a small R.C. floor is going to be constructed, the plan of which is 
depicted in Fig. 2. 

For a seismic direction y-y, calculate the bending moments for each column of the roof 
structure. The spectrum shown in Fig. 3 is referred to the roof of the 3-storey building. 

 

Data and assumptions 

• The roof structure, behaving as SDOF system, does not affect the overal status of the 
existing building. 

• Natural period of the three-storey building: T=0.26 sec. 
• Total uniform load on the slab of the roof structure: 11 kN/m2. 
• Columns behave as double fixed elements. 
• Young’s modulus of elasticity for R.C.  E=27∙106kN/m2. 
• g = 10 m/sec2. 

 



 
 

Solution  

A) Seismic characteristics of the existing building 

Total mass:  2∙200 + 1∙220 = 620 Mgr 

Natural period:  Tb = 0.26 sec 

Zone: II  →  A = 0.24g 

Importance factor:  γ I  = 1.0   

Behavior factor:  q = 3.5 (frame structure) → ζ = 5% → η = 1.0 

Foundation factor:  θ = 1.0. 

Soil class:  B  →  T1 = 0.15 sec,  T2 = 0.60 sec. Since  0.15 < Tb < 0.60 we use eq. 2 

The design acceleration is therefore: 

𝑅𝑑(𝑇𝑏) = 𝛾𝐼 ∙ 𝐴
𝜂 ∙ 𝜃 ∙ 𝛽0

𝑞
= 1.0 ∙ 0.24𝑔

1.0 ∙ 1.0 ∙ 2.5
3.5

= 0.171𝑔 

Consequently the design base seismic horizontal force is: 

F = m∙Rd(Tb) = 620∙0.171g = 1060.2 kN = V0. 

The above shear base force, V0, is, according to the equivalent static method, distributed to 
each floor through the formula 

𝐹𝑖 =  𝑉0
𝑚𝑖 ∙ 𝑧𝑖

∑ 𝑚𝑗 ∙ 𝑧𝑗𝑛
𝑗=1

 

𝐹1 = 1060.2
220 ∙ 4

220 ∙ 4 + 200 ∙ 7 + 200 ∙ 10
=  

1060.2
4280

880 = 217.99 𝑘𝑁 

𝐹2 = 1060.2
200 ∙ 7

220 ∙ 4 + 200 ∙ 7 + 200 ∙ 10
=  

1060.2
4280

1400 = 346.79 𝑘𝑁 

𝐹3 = 1060.2
200 ∙ 10

220 ∙ 4 + 200 ∙ 7 + 200 ∙ 10
=  

1060.2
4280

2000 = 495.42 𝑘𝑁 

Check:  ΣFi = 1060.2 kN 

The seismic force of the third floor, F3, develops obviously an acceleration, α3, on this level, 
which is: 

𝒂𝟑 =  
𝐹3
𝑚3

=  
495.42 𝑘𝑁
200 𝛭𝑔𝑟

= 2.477
𝑚
𝑠𝑒𝑐2

= 𝟎.𝟐𝟒𝟕𝟕𝒈 

B) Seismic characteristics of the roof structure 

Stiffness:  k = 4k1 ,   i.e. 



 
 

𝑘 = 4�
12 ∙ 27 ∙ 106 ∙ 0.44/12

3.03 � = 4 ∙ 25 600 = 102 400 𝑘𝑁/𝑚 

 

Mass:  m = 5.5∙3.5∙11/10 = 21.175 Mgr 

Period:  𝑇 = 2𝜋�𝑚
𝑘

 = 2π�21.175
102400

= 0.09 𝑠𝑒𝑐 

From the spectrum referred to the roof of the building, for T = 0.09 sec, through 
interpolation, it yields 

SA/Abase  =  1.9 .  Consequently 

SA = 1.9∙Abase = 1.9∙0.2477g = 0.47g. 

Therefore the total seismic force, P, of the roof structure, is: 

𝑃 =  
𝑚 ∙ 𝑃𝑆𝐴

𝑞
=  

21.175 𝑀𝑔𝑟 ∙ 0.47 ∙ 10 𝑚/𝑠𝑒𝑐2

3.5
= 28.44 𝑘𝑁 

The value of q has been taken equal to 3.5 to comply with the rest of the structure. 

This force develops a shear force to each column, which is: 

𝑉1,2,3,4 = 𝑃
1
4

= 28.44
1
4

= 7.11 𝑘𝑁 

Consequently, the corresponding bending moments developed to each column is: 

𝑴𝟏,𝟐,𝟑,𝟒 =  𝑉1,2,3,4
ℎ
2

= 7.11
3
2

= 𝟏𝟎.𝟔𝟕 𝒌𝑵𝒎 . 

  



 
 

Exercise 11   

The four-storey building illustrated below is a R.C. structure.  

1. Calculate the total shear base force along with the total shear forces and 
bending moments acting on each pair of columns, through the Equivalent 
Static Method. 

2. Construct the corresponding diagrams of shear forces and bending moments. 

Data: 
• Natural period  T = 0.65 sec,  
• Seismic Zone  I,  
• Soil Class B,  
• Importance category S2,  
• Damping Ratio  ζ = 5%,  
• Foundation factor  θ = 1.0  and  
• g = 10 m/sec2. 

 



 
 

Solution  

Equivalent Static Method 
Using the given data, we apply the following parameters: 

• Seismic Risk Zone I:  ⇒  Ground Seismic Acceleration:  A = 0.16g 
• Soil Class B:  ⇒  Characteristic Periods  T1 = 0.15 sec  and  T2 = 0.60 sec 
• Importance Category S2  ⇒  Importance Factor γΙ = 1.0 
• Damping ratio:  ζ = 5% and 
• Foundation Factor:  θ = 1.0 

For natural period T = 0.65 sec > T2, the design spectrum acceleration parameter, 
taken from equation (2.1.c) (EAK 2000), is: 

𝛷𝑑(𝑇) = 𝛾𝛪 ∙ 𝛢
𝜂 ∙ 𝜃 ∙ 𝛽0

𝑞
�
𝛵2
𝑇
�
2
3

= 1.0 ∙ 0.16𝑔
1.0 ∙ 1.0 ∙ 2.5

3.5
�

0.60
0.65

�
2
3

= 1.08
𝑚
𝑠𝑒𝑐2

 

The total mass of the structure is:  mtot = 1200∙3 + 800 = 4400 Mgr.  

Therefore the structure’s shear base seismic force is: 

P = mtot∙𝛷𝑑(𝑇) = 1.08∙4400 = 4752 kN 

According to theory, due to the fact that T < 1 sec, the above shear base force is 
distributed along the height of the structure according to the formula: 

𝐹𝑖 = 𝑃
𝑚𝑖 ∙ 𝑧𝑖

∑(𝑚𝑖 ∙ 𝑧𝑖)
 

where mi is the mass of the ith storey and zi is its corresponding height from base of 
the structure. Here it is:  

�(𝑚𝑖 ∙ 𝑧𝑖) = 1200 · 4.5 + 1200 · 7.5 + 1200 · 10.5 + 800 · 13.5 = 37800 

The seismic horizontal force for each storey is therefore: 

𝐹1 = 𝑃
𝑚1 ∙ 𝑧1

∑(𝑚𝑖 ∙ 𝑧𝑖)
= 4752

1200 ∙ 4.5
37800

= 678.86 𝑘𝑁 

𝐹2 = 𝑃
𝑚2 ∙ 𝑧2

∑(𝑚𝑖 ∙ 𝑧𝑖)
= 4752

1200 ∙ 7.5
37800

= 1131.43 𝑘𝑁 

𝐹3 = 𝑃
𝑚3 ∙ 𝑧3

∑(𝑚𝑖 ∙ 𝑧𝑖)
= 4752

1200 ∙ 10.5
37800

= 1584 𝑘𝑁 

𝐹4 = 𝑃
𝑚4 ∙ 𝑧4

∑(𝑚𝑖 ∙ 𝑧𝑖)
= 4752

800 ∙ 13.5
37800

= 1357.71 𝑘𝑁 

which, for checking, gives the sum of 4752 kN. 

The corresponding allocation of bending moments for each storey comes as a 
result of the above shear forces.  



 

Since Mi,foot = Mi,head = Mi = Fi+∙hi/2, where Fi+ is the sum of the ith plus all the 
above it seismic horizontal forces, it is: 

𝑀4 = 𝐹4
ℎ4
2

= 1357.71
3
2

= 2036.57 𝑘𝑁𝑚 

𝑀3 = (𝐹3 + 𝐹4)
ℎ3
2

= (1357.71 + 1584)
3
2

= 4412.56 𝑘𝑁𝑚 

𝑀2 = (𝐹2 + 𝐹3 + 𝐹4)
ℎ2
2

= (1131.43 + 1357.71 + 1584)
3
2

= 6109.71 𝑘𝑁𝑚 

𝑀1 = (𝐹1 + 𝐹2 + 𝐹3 + 𝐹4)
ℎ1
2

= (4752)
4.5
2

= 10692 𝑘𝑁𝑚 

Following are the corresponding shear force and bending moment diagrams. 

 

 

  



 

Exercise 12 

The four-storey building illustrated below is a R.C. structure.  

1. Examine if the dynamic (modal superposition) method is applicable, using 
only the first two modal shapes and then calculate the total shear base force 
along with the total shear forces and bending moments acting on each pair of 
columns.  

2. Construct the corresponding shear force and bending moment diagrams of 
columns. 

3. Compare your results with those of previous exercise and comment 
accordingly. 

Data: 
• Seismic Zone I, Soil Class B, Importance category S2, Damping Ratio ζ = 5%, 

foundation factor θ = 1.0 and g = 10 m/sec2. 
• Natural periods of the first two modal shapes: T1 = 0.65 sec and T2 = 0.17 sec 

respectively. 
• Eigenvalues of the first two modal shapes: 

{𝛷1} = �

𝜑41
𝜑31
𝜑21
𝜑11

� = �

1.00
0.88
0.62
0.36

�                {𝛷2} = �

𝜑42
𝜑32
𝜑22
𝜑12

� = �

1.00
0.32
−0.42
−0.86

�  

 



 
 

Solution  

The total mass of the structure is:  mtot = 3∙1200 + 800 = 4400 Mgr.  

1. Design of seismic values 

Generalized masses 

For the two given modal shapes, each generalized mass Mi, (i = 1, 2), playing the role 
of a “mass” at the ith natural oscillation of the system, is:  

𝑀1 =  𝑚1𝜑112 + 𝑚2𝜑212 + 𝑚3𝜑312 + 𝑚4𝜑412

=  1200 ∙ 0.362 + 1200 ∙ 0.622 + 1200 ∙ 0.882 + 800 ∙ 1. 02

=  2346.08 𝑀𝑔𝑟 

𝑀2 =  𝑚1𝜑122 +  𝑚2𝜑222 + 𝑚3𝜑322 + 𝑚4𝜑422

=  1200 ∙ (−0.86)2 + 1200 ∙ (−0.42)2 + 1200 ∙ 0.322 + 800 ∙ 1. 02

=  2022.08  𝑀𝑔𝑟 

Excitation factors 

These are intermediate modal magnitudes, helping to calculate the horizontal forces 
for each level; their values are: 

𝐿1  =  𝑚1𝜑11  +  𝑚2𝜑21  +  𝑚3𝜑31 +  𝑚4𝜑41   
=  1200 ∙ 0.36 + 1200 ∙ 0.62 + 1200 ∙ 0.88 + 800 ∙ 1.0 =  3032 

𝐿2  =  𝑚1𝜑12  + 𝑚2𝜑22  + 𝑚3𝜑32 + 𝑚4𝜑42   
= −1200 ∙ 0.86 − 1200 ∙ 0.42 + 1200 ∙ 0.32 + 800 ∙ 1.0 = −352 

Participation factors 

The participation factors, vi, are largely decreased by an increase of the modular 
number, i. In general, their value is   vi = Li/Mi ,   i.e: 

𝑣1 =  
𝐿1
𝑀1

=  
3032

2346.08
=  1.292 

𝑣2 =  
𝐿2
𝑀2

=  
−352

2022.08
=  − 0.174 

Check:  v1 + v2  = 1.112  ≈ 1.0 

Active Modal masses 
The active modal mass, Mai, is, for each modal shape, a quantitative criterion of the 
maximum energy of deformation and constitutes an index of its significance. 

In practice it yields the number of significant modal shapes to be taken into account, 
ignoring all the others. The sum of all the active modal masses has a constant value, 



 

Ms, close to the sum of the real masses. In general, the value of the ith modal mass, 
Mai, is  Mai = vi

2∙Mi = Li
2/Mi,  i.e: 

𝑀𝑎1 =  
𝐿12

𝑀1
=  

30322

2346.08
= 3918.5 𝑀𝑔𝑟 

𝑀𝑎2 =  
𝐿22

𝑀2
=  

(−352)2

2022.08
= 61.28 𝑀𝑔𝑟 

Check:  Ms = Ma1 + Ma2 = 3918.5 + 61.28 = 3979.78 ≈ 4400 = mtot 

It is:    Mα1 + Mα2 =  3979.78 Mgr   and 

0.9∙mtot = 0.9∙4400 = 3960 Mgr 
Since:  Ma1 < 0.9∙mtot,  but     Ma1 + Ma2 > 0.9∙mtot, 
it follows that the first modal shape is not enough, while the first two modal shapes 
are adequate to calculating the seismic response, using the given data: 

• Zone I factor = 0.16 ⇒  A  = 0.16g 
• Soil class B   ⇒  T1 = 0.15 sec,  T2 = 0.60 sec 
• Importance Category S2   ⇒  γΙ = 1.0 
• Frame structure  ⇒  q  = 3.5 

Solution for the 1st modal shape 

The natural period for this mode is T1 = 0.65 sec.  Since T1 > 0.60, it follows that 
the maximum design acceleration for the first mode is: 

𝑅𝑑(𝑇1) = 𝛾𝛪 ∙ 𝛢
𝜂 ∙ 𝜃 ∙ 𝛽0

𝑞
�
𝛵2
𝛵1′
�

2
3

=  1.0 ∙ 0.16𝑔
2.50
3.5

�
0.60
0.65

�
2
3

= 0.108𝑔 

Following the procedure presented on page 69 of handouts, the corresponding 
seismic forces per floor due to the 1st mode are: 

𝑃1,1 = 𝑚1 ∙ 𝜑1,1
𝐿1
𝑀1

𝑆𝑎1 = 𝟏𝟐𝟎𝟎 ∙ 𝟎.𝟑𝟔 ∙ 1.292 ∙ 0.108 ∙ 10 = 602.8 𝑘𝑁 

𝑃2,1 = 𝑚2 ∙ 𝜑2,1
𝐿1
𝑀1

𝑆𝑎1 =  𝟏𝟐𝟎𝟎 ∙ 𝟎.𝟔𝟐 ∙ 1.292 ∙ 0.108 ∙ 10 = 1038.15 𝑘𝑁 

𝑃3,1 = 𝑚3 ∙ 𝜑3,1
𝐿1
𝑀1

𝑆𝑎1 =  𝟏𝟐𝟎𝟎 ∙ 𝟎.𝟖𝟖 ∙ 1.292 ∙ 0.108 ∙ 10 = 1473.5 𝑘𝑁 

𝑃4,1 = 𝑚4 ∙ 𝜑4,1
𝐿1
𝑀1

𝑆𝑎1 =  𝟖𝟎𝟎 ∙ 𝟏.𝟎 ∙ 1.292 ∙ 0.108 ∙ 10 = 1116.29 𝑘𝑁 

The first modal shape contribution to the shear base seismic force is thus: 

𝑉01 = �𝐹𝑖1 = 4230.74 𝑘𝑁 



 

Solution for the 2nd modal shape 

Similarly, the natural period for this mode is T2 = 0.17 sec. Since 0.15 < T2 < 0.60, 
it follows: 

𝑅𝑑(𝑇2) = 𝛾𝛪 ∙ 𝛢
𝜂 ∙ 𝜃 ∙ 𝛽0

𝑞
=  1.0 ∙ 0.16𝑔

1.0 ∙ 1.0 ∙ 2.5
3.5

= 0.114𝑔 

In the same way, following the procedure presented on page 69 (handouts), the 
corresponding seismic forces per floor due to the 2nd mode are: 

𝑃1,2 = 𝑚1 ∙ 𝜑1,2
𝐿2
𝑀2

𝑆𝑎2 = 𝟏𝟐𝟎𝟎 ∙ (−𝟎.𝟖𝟔) ∙ (−0.174) ∙ 0.114 ∙ 10 = 204.71 𝑘𝑁 

𝑃2,2 = 𝑚2 ∙ 𝜑2,2
𝐿2
𝑀2

𝑆𝑎2 =  𝟏𝟐𝟎𝟎 ∙ (−𝟎.𝟒𝟐) ∙ (−0.174) ∙ 0.114 ∙ 10 = 99.97 𝑘𝑁 

𝑃3,2 = 𝑚3 ∙ 𝜑3,2
𝐿2
𝑀2

𝑆𝑎2 =  𝟏𝟐𝟎𝟎 ∙ 𝟎.𝟑𝟐 ∙ (−0.174) ∙ 0.114 ∙ 10 = −76.17 𝑘𝑁 

𝑃4,2 = 𝑚4 ∙ 𝜑4,2
𝐿2
𝑀2

𝑆𝑎2 =  𝟖𝟎𝟎 ∙ 𝟏.𝟎 ∙ (−0.174) ∙ 0.114 ∙ 10 = −158.69 𝑘𝑁 

The second modal shape contribution to the shear base seismic force is thus: 

𝑉02 = �𝐹𝑖2 = 69.82 𝑘𝑁 

Combining the results for the two modal shapes per each storey, we finally get: 

𝐹1 = �𝐹112 + 𝐹122 = �602.802 + 204.712 = 636.61 𝑘𝑁 

𝐹2 = �𝐹212 + 𝐹222 = �1038.152 + 99.972 = 1042.95 𝑘𝑁 

𝐹3 = �𝐹312 + 𝐹322 = �1473.502 + 76.172 = 1475.47 𝑘𝑁 

𝐹4 = �𝐹412 + 𝐹422 = �1116.292 + 158.692 = 1127.51 𝑘𝑁 

which totally give a shear base seismic force of V0 = 4282.54 kN. 

Following the previous procedure, we find the following shear forces for each 
storey: 

V4 = F4 = 1127.51 kN 

V3 = V4 + F3 = 1127.51 + 1475.47 = 2602.98 kN 

V2 = V3 + F2 = 2602.98 + 1042.95 = 3645.93 kN 

V1 = V2 + F1 = 3645.93 + 636.61 = 4282.54 kN 



 

As a result the corresponding values for bending moments, are: 

M4 = V4∙h4/2 = 1127.51∙3/2 = 1691.27 kNm, 

M3 = V3∙h3/2 = 2602.98∙3/2 = 3904.47 kNm, 

M2 = V2∙h2/2 = 3645.93∙3/2 = 5468.90 kNm, 

M1 = V1∙h1/2 = 4282.54∙4.5/2 = 9635.92 kNm, 

Following are the corresponding shear force and bending moment diagrams. 

 

 

 

Comparing the results of two methods, especially the [Q] and [M] diagrams, it is 
obvious that values coming from the modal superposition (dynamic) method are 
from 10 to 20% smaller than those coming from the equivalent static method. 

The dynamic method, although time consuming and sophisticated, seems to be 
closer to reality and this may be an additional reason to be used by computers. 

On the other hand, the simplified static method, presenting a simplicity, 
provides results that are safer for the construction, although less economical. 

 

  



 

Exercise 13 

The design flexural capacities of beams for the frame structure depicted in Fig. 1 are given 
next to the corresponding tension side of each joint (top or bottom). Calculate the minimum 
design flexural capacity of the columns to fulfil the capacity design conditions. 

Data and assumptions 

• The seismic action controls the design of beams, i.e. MRd = MEb,  

• Columns have symmetric sections and reinforcement and γRd = 1.4, 

• The greater axial load below the joint of a column, increases its flexural capacity by 
15 % compared to that above. 

For the same frame, if the columns’ flexural capacities are depicted in Fig. 2, indicate where 
the plastic hinges will form, for a seismic action from right to left. 

 

 



 

Solution  

For a column to fulfill the capacity design conditions, the minimum design flexural capacity, 
MCD,C must be: 

MCD,C = αCD∙MEC 

where MCD,C is the flexural capacity of the column, MEC is the bending moment of column, 
derived from seismic analysis and αCD the joint capacity magnification factor, yielding from 
the equation 

𝜶𝑪𝑫 = 𝜸𝑹𝑫
∑𝑴𝑹𝒅
∑𝑴𝑬𝒃

 

where ΣMRd is the sum of the beams’ flexural capacities gathered on the joint as a result of 
the column’s bending moment and ΣMEb the corresponding sum of the beams’ seismic 
moments, derived from the analysis, following always the same direction to generate MEC. 

In our case, it is:  MRd = MEb.  

Therefore  𝛼𝐶𝐷 = 𝛾𝑅𝐷 = 1.4  and   MCD,C = 1.4·MEC. 

Since the seismic action is from right to left, it follows that joints tend to turn leftwards; the 
beams, thus, reacting to this rotation, tend to turn rightwards. The values of beams’ bending 
moments, to be taken into account from both sides of the joint, are therefore the lower left 
and the upper right (tensional sides). 

The equilibrium of a typical joint, excluding those of the upper storey, gives: 

 

�𝑀𝑅𝑑 + �𝑀𝐸𝐶 = 0      

→    𝑀𝑅𝑑,𝑙 + 𝑀𝑅𝑑,𝑟 =  𝑀𝐸𝐶 + 1.15𝑀𝐸𝐶  =  2.15𝑀𝐸𝐶 

→     𝑀𝐸𝐶 =  
𝑀𝑅𝑑,𝑙 + 𝑀𝑅𝑑,𝑟

2.15
 

Capacity design is not compulsory for the upper storey. The columns’ flexural capacities are 
simply derived from the corresponding joint equilibrium, i.e. 



 

 

�𝑀𝑅𝑑 + �𝑀𝐸𝐶 = 0   

→       𝑀𝑅𝑑,𝑙 + 𝑀𝑅𝑑,𝑟 =  𝑀𝐸𝐶 

The following table provides the minimum flexural capacities for all the columns, upon and 
below of each joint. 

Joint 
Number 

MRd,l MRd,r MCD,Creq
above MCD,Creq

below 

1 
 

80 52.09 59.9 

2 60 60 78.14 89.86 

3 80 
 

52.09 59.9 

4 
 

60 39.07 44.93 

5 80 100 117.21 134,79 

6 80 
 

52.09 59.9 

7 
 

50 
 

50,0 

8 80 80 
 

160,0 

9 50 
  

50,0 

The procedure followed for joint 5, for instance, is: 

MRd,l = 80 kNm,        MRd,r = 100 kNm  

The required flexural capacities (bending moments) above and below the joint are 
therefore: 

MCD,C,req
above = 1.4∙(80+100)/2.15 = 117.21 kNm, 

MCD,C,req
below = 1.15∙MCD,C,req

above = 134.79 kNm 



 

For the beams’ flexural capacities shown in Fig. 1 and for the columns’ flexural capacities 
displayed in Fig. 2, the plastic hinges to be formed are depicted in the following figure with a 
circle. 

For instance, the required columns’ flexural capacities above and below joint 5 are: 

MCD,C,req
above = 117.21 kNm,   MCD,C,req

below = 134.79 kNm, 

while the corresponding actual capacities for the same joint are 100 and 125 kNm. 

Since 100 < 117.21  and  125 < 134.79, it yields that columns are not strong enough, and, 
therefore, the plastic hinges, will be formed at the columns themselves. 

 

Depiction of plastic hinges formed on the frame structure 

  



 

Exercise 14 
The water tower of Fig. 1, the elastic design spectrum of which is depicted in Fig. 2, has been 
constructed according to the Greek Seismic Code EAK 2000 for a behavior factor  q = 3.3,  a 
seismic risk zone I (A = 0.16g), soil category B and Importance factor Σ2 (γ = 1.0). 

A) The water tower, presenting a total weight (self-weight and water) 1200 kN and a Natural 
period T = 0.7 sec, rests on 4 similar columns. For g = 10 m/sec2, calculate: 

1. The design seismic force and the corresponding shear force and bending moment which 
is developed at the base of each column. 

2. The expected relative displacement of water tower in the case of an earthquake. 

B) After the construction of tower an earthquake occurred, the elastic response spectrum of 
which is illustrated in Fig. 3.  

Considering that the real horizontal force Preal for which yielding of columns is initiating 
is 30% greater than the corresponding design force, calculate: 

1. The ductility developed during the earthquake. 
2. The maximum shear force at each column. 
3. The maximum relative displacement of the tower during the earthquake. 
4. The maximum acceleration recorded by an accelerograph, laid on the water tower. 
5. Do you think the water tower had reached the risk of collapse during the earthquake? 

 

Fig. 1 

 
 



 

Solution  

A) The elastic design seismic force demands the corresponding horizontal seismic force, 
which will be derived through the design spectrum. 

1) Since the natural period of the structure is 0.7 sec, we are obviously on the third branch of 
the design spectrum; therefore 

𝑃𝑆𝐴
𝐴

= 2.5 �
0.6
𝑇
�
2/3

=  2.5 �
0.6
0.7

�
2/3

= 2.256 

or        PSA = 2.256∙A = 2.256∙0.16g = 0.36g 

Consequently the elastic design horizontal seismic force, Pel_d, is 

𝑃𝑒𝑙_𝑑 =  
𝑊
𝑔
∙ PSA =  

1200
10

∙ 0.36 ∙ 10 = 432 𝑘𝑁 

For q = 3.3, the design seismic force, Pd, is: 

𝑷𝒅 =  
𝑃𝑒𝑙_𝑑
𝑞

=  
432
3.3

= 𝟏𝟑𝟎.𝟗 𝒌𝑵 

Therefore, for each column, are: 

Design shear force:  Vd = Pd/4 = 32.73 kN 

Design bending moment:  Md = Vd∙h/2 = 54∙6/2 = 98.17 kNm. 

2) In the case of an earthquake, the relative displacement, SD, of the water tower can be 
calculated through the relation 

𝑃𝑆𝐴 =  𝜔2𝑆𝐷     →        𝑆𝐷 =  
𝛵2

4𝜋2
 𝑃𝑆𝐴 

For T = 0.7 sec and PSA = 0.36g, it yields 

𝑆𝐷 =  
𝛵2

4𝜋2
 𝑃𝑆𝐴 =  

0.72

4𝜋2
 0.36 ∙ 10 = 0.045 𝑚 

B) Taking into account the overstrength, developed at columns during the earthquake after 
the construction of tower, we proceed to the following steps: 

1) The ductility demanded during the earthquake is 

𝜇 =  
𝛿𝑚𝑎𝑥

𝛿𝑦
=  
𝑃𝑒𝑙
𝑃𝑦

 

where: δmax is the maximum displacement of the tower 

 δy is the displacement of the tower when first yield is initiating 

Pel is the elastic horizontal force during the new earthquake, calculated through the 
response spectrum and 

Py is the yield force, i.e. the force when first yield is initiating. 

From the given response spectrum of Fig. 3, for T = 0.7 sec, it yields PSA = 0.35g. 



 

The elastic horizontal force during the new earthquake is therefore 

Pel = m∙PSA = 120∙0.35∙10 = 420 kN. 

On the other hand, the force Py, when first yield is initiating, is 

Py = 1.3∙Pd = 1.3∙130.9 = 170.17 kN 

Consequently, the ductility developed during the earthquake is 

𝝁 =  
𝑃𝑒𝑙
𝑃𝑦

=  
420

170.17
= 𝟐.𝟒𝟕 

2) The maximum shear force which will appear after the earthquake at each column is 
obviously the corresponding to each column seismic force when first yield is initiating, i.e. 

𝒎𝒂𝒙𝑽 =  
1
4
𝑃𝑦 =  

170.17
4

= 𝟒𝟐.𝟓𝟒 𝒌𝑵 

3) The maximum relative displacement of the water tower during the earthquake will be 
calculated through a way similar to that used for the corresponding displacement at the 
design stage. The difference here is that the relative acceleration, PSA, will be derived from 
the corresponding response spectrum.  

For  T = 0.7 sec,  the response spectrum defines  PSA = 0.35g. Therefore 

𝑺𝑫 =  
𝛵2

4𝜋2
 𝑃𝑆𝐴 =  

0.72

4𝜋2
 0.35 ∙ 10 = 𝟎.𝟎𝟒𝟑 𝒎 

4) The maximum possible acceleration, αmax, which could be recorded by an accelerograph 
laid on the water tower, will obviously correspond at the time when yield is initiating at the 
columns, i.e. when the horizontal seismic force reaches the value of Py. 

In this case, it will be 

𝑃𝑦 = 𝑚 ∙ 𝑎𝑚𝑎𝑥       →         𝒂𝒎𝒂𝒙 =   
𝑃𝑦
𝑚

  =   
170.17

120
 =   𝟏.𝟒𝟐 𝒎/𝒔𝒆𝒄𝟐 

5) In order to examine the case if the water tower had reached the risk of collapse, we have 
to calculate the behavior factor, qe, developed during the earthquake and compare it with 
the corresponding behavior factor, q, which has been taken into account during the design 
phase. Then, 

• If qe < q,  the structure had not reached the risk of collapse. But 
• If qe > q,  the structure had already past the risk of collapse. 

The behavior factor, qe, developed during the earthquake, is 

qe = μ∙q0,     where 

- μ  is the ductility factor and 
- q0  is the ratio Py/Pd, i.e. the overstrength factor. 

In our case, it is  μ = 2.47  and  q0  = 1.30. Therefore 

qe = μ∙q0 = 2.47∙1.30 = 3.21 < 3.3 

Consequently the structure had not reached the risk of collapse during the earthquake. 



 

Exercise 15 

1. A structure, presenting a weight of 1500 kN, a natural period T = 0.8 sec and a 
height of 9 m, has been designed against earthquake with a behavior factor q = 
3.2. If the maximum horizontal force, carried by the structure, is Py = 450 kN, 
calculate: 

a. The corresponding maximum acceleration.  

b. The available overstrength, if the structure has been built for a design 
seismic force, Pd = 320 kN. 

c. The maximum elastic displacement that the structure can sustain. 

d. The maximum possible displacement, developed without a collapse risk, if 
the structure is really under a collapse risk for a ductility factor μ = 4.  

2. Two structures A and B present the same mass, same height and have been 
designed with the same behaviour factor, q, and the same design force, Pd. 

a. If the structure A presents triple the stiffness of B, how are the maximum 
displacements related, according to the design procedure? 

b. If the structures, instead of having the same mass, present the same natural 
period, while the structure A is designed for 3/4 the ground acceleration than 
that of structure B, repeat the question 2a. 

3. Two structures A and B present the same natural period and have been designed 
with the same behavior factor, q, and the same design acceleration Φd(T). If 
structure A presents double stiffness compared with structure B, how are the 
maximum displacements related, according to the design procedure? 

4. Two adjacent structures with same mass and same natural period have been 
designed according to EAK.  

• The first one, with  q = 1  and  Φd(T) = 0.748g, was designed on the limit 
without overstrength.  

• The second, with a  q = 3.4, presented some overstrength.  

During a seismic event, the first suffered a significant damage, while a max 
acceleration 0.32g was recorded on the roof of the second.  

What was the overstrength factor on the second structure? 

  



 

Solution  

1. a. For the maximum possible acceleration, 𝑎𝑚𝑎𝑥_𝑦, which will take place at the 
start of yielding, we obviously take into account the maximum horizontal force 
that the structure can sustain, Py, i.e. 

𝜶𝒎𝒂𝒙_𝒚 =  
𝑃𝑦
𝑚

=
450

1500/10
= 3 𝑚/𝑠𝑒𝑐2  =  𝟎.𝟑𝒈 

b. Since the structure has been built for a design seismic force, Pd = 320 kN, it 
follows that its overstrength is 

𝑃𝑦 − 𝑃𝑑
𝑃𝑑

=  
450− 320

320
= 0.4063 = 𝟒𝟎.𝟔𝟑% 

c. For calculating the max elastic displacement we will obviously use the 
above maximum possible acceleration, i.e. 

𝜹𝒎𝒂𝒙_𝒚 =
𝑎𝑚𝑎𝑥_𝑦

𝜔2 =  
𝑇2

4𝜋2
𝑎𝑚𝑎𝑥_𝑦 =  �

0.8
6.28

�
2
∙ 0.3𝑔 = 𝟎.𝟎𝟒𝟗 𝒎 

d. Since the structure is really under a collapse risk for a ductility factor  μ = 4,  
having calculated the max elastic displacement, δmax_y, at the start point of 
yielding, the maximum possible displacement will be derived making use of 
the ductility factor, i.e. 

𝜇 =  
𝛿𝑚𝑎𝑥

𝛿max_𝑦
       →         𝜹𝒎𝒂𝒙  = 𝜇 ∙ 𝛿max_𝑦 =  4 ∙ 0.049 = 𝟎.𝟏𝟗𝟔 𝒎   

2.  a. Since the two structures present the same given design properties, the 
following relations will hold: 

𝛿𝑚𝑎𝑥
𝐴  =  𝛿𝑦𝐴 ∙ 𝑞 =  

𝑃𝑦
𝑘𝐴
𝑞 

𝛿𝑚𝑎𝑥
𝐵  =  𝛿𝑦𝐵 ∙ 𝑞 =  

𝑃𝑦
𝑘𝐵

𝑞 

Dividing by parts the above equations, it yields: 

𝛿𝑚𝑎𝑥
𝐴

𝛿𝑚𝑎𝑥
𝐵 =  

𝑘𝐵
𝑘𝐴

=  
1
3

        →          𝜹𝒎𝒂𝒙𝑨 =  
𝟏
𝟑
𝜹𝒎𝒂𝒙𝑩  

b. In this case we have to correlate the maximum displacements with the 
corresponding maximum accelerations where the frequencies are involved. It is: 

TA = TB    →    ωΑ = ωΒ 

𝛿𝑚𝑎𝑥
𝐴  =  𝛿𝑦𝐴 ∙ 𝑞 =  

𝛼𝑦𝐴

𝜔𝛢2
𝑞 

𝛿𝑚𝑎𝑥
𝐵  =  𝛿𝑦𝐵 ∙ 𝑞 =  

𝛼𝑦𝛣

𝜔𝛣2
𝑞 



 

In the same way, dividing the previous equations by parts, it yields: 

𝛿𝑚𝑎𝑥
𝐴

𝛿𝑚𝑎𝑥
𝐵 =  

𝛼𝑦𝐴

𝛼𝑦𝛣
=  

3
4

        →          𝜹𝒎𝒂𝒙𝑨 =  
𝟑
𝟒
𝜹𝒎𝒂𝒙𝑩  

3. Similarly the two structures have been designed with members presenting the 
same properties, but kA = 2kB. Making use of the previous equations and 
taking also into account that the design acceleration, Φd(T), can replace the 
maximum acceleration divided by q, i.e. αmax = Φd(T)∙q, it holds: 

TA = TB    →    ωΑ = ωΒ 

𝛿𝑚𝑎𝑥
𝐴  =  

𝛷𝑑(𝑇)
𝜔𝛢2

𝑞 

𝛿𝑚𝑎𝑥
𝐵  =  

𝛷𝑑(𝑇)
𝜔𝛣2

𝑞 

and obviously     𝜹𝒎𝒂𝒙𝑨 =  𝜹𝒎𝒂𝒙𝑩  ,  i.e. independent of stiffness. 

4. The structure A has been designed elastically (q = 1) for a limit design 
acceleration Φd(T) = 0.748g, without overstrength.  

During the earthquake, it suffered significant damage. Therefore it had already past 
the point of elastic yielding under the acceleration of 0.748g. 

If structure B had also been designed elastically, it would have reached the start 
point of yielding under the same acceleration, i.e. 0.748g.  

However, due to the applied behavior factor q = 3.4, the yield point, according to 
design, has already been realized for a   

Φd(T) = 0.748g/3.4 = 0.22g. 

Consequently, since on the structure B, an acceleration of 0.32g has been recorded, 
it follows that we are already in the yielding stage and hence, the overstrength 
factor is: 

𝑃𝑦
𝑃𝑑

=  
𝑚 ∙ 𝑎𝑦
𝑚 ∙ 𝑎𝑑

=  
0.32𝑔
0.22𝑔

= 𝟏.𝟒𝟓 

 


