

 1

Multi-Agent System Design using Role Models

 The present invention relates to multi-agent system design using role

models. More specifically, although not exclusively, the invention relates to a

computer-aided method of system design which is capable of making use of 5

multiple pre-defined role models.

 Multi-agent system architectures can be naturally viewed as organised

societies of individual computational entities. Therefore, many authors argue

that social and organisational abstractions should be considered as First Class 10

design constructs. Furthermore, there is a consensus that there is no standard

best organisation for all circumstances: criteria that could affect an

organisational design decision are numerous and highly dependent on factors

that may change dynamically. However, deciding on the way a particular set

of agents will be organised is currently an issue that is ultimately left to the 15

creativity and the intuition of the system designer. This can be a serious

drawback when designing large and complex real-world agent organisations.

Many research prototypes of agent-based systems are built in an ad-hoc

manner. However, the need to engineer agent systems solving real-world 20

problems has given rise to a number of systematic methodologies for agent

oriented analysis and design including the following:

• Evans, R., MESSAGE: Methodology for Engineering Systems of Software

Agents, . 2000, BT Labs: Ipswich. 25

karageorgos
Text Box
Please note this is a draft copy of the patent document as the final one is disclosed.

 2

• Inglesias, C.A., et al., Analysis & Design of Multi-Agent Systems using MAS-

CommonKADS, in Intelligent Agents IV - Proceedings of the Fifth

International Workshop on Agent Theories, Architectures & Languages

(ATAL-97), M.P. Singh, A.S. Rao, & M.J. Wooldridge, Editors. 1998, 5

Spriger-Verlag: Berlin. p. 313-326.

• Omicini,A. SODA:Societies & Infrastructures in the Analysis & Design of

Agent-based Systems. in Workshop on Agent-Oriented Software

Engineering, 2000. Limerick, Ireland. 10

• Wooldridge, M., N.R. Jennings, & D. Kinny, The Gaia methodology for

agent-oriented analysis and design. International Journal of Autonomous

Agents and Multi-Agent Systems, 2000. 3.

 15

 All these methodologies involve a number of analysis and design sub-models

emphasising particular analysis and design aspects. Organisational settings may

either be explicitly specified in an organisational model, or implicitly defined

from the functionality that agents are assigned.

 20

 3

In all methodologies, organisational abstractions can be incorporated in the

agent system either in a top-down or bottom-up fashion according to lessons

learned from designing business organisations and distributed software systems,

or according to the philosophical preference of the authors. Furthermore,

organisation can take place either statically or dynamically. Static organisation 5

is done once and for all on design time, while dynamic organisation is done as

and when required on run-time.

Some approaches are particularly targeted on open agent systems, emphasising

the need to reinforce general organisational rules and consider organisational 10

abstractions as First Class design constructs. This application proceeds from

the belief that ensuring appropriate organisational settings is the best and

perhaps the only way to achieve smooth operation in open agent systems.

A very attractive notion for conceptual modelling of software systems is that of 15

role. Roles are also used in organisational theory and business process

modelling to represent positions and responsibilities in business organisations.

A major advantage of role-based modelling is the inherent ability to represent

encapsulated functionality. Therefore, roles are particularly suitable for 20

modelling OO (Object-Oriented) software systems. Role based modelling is

 4

mainly used in static agent organisation approaches. However, dynamic

approaches can also be supported by including role migration and role

evolution.

Roles can be used for the design of multi-agent systems: see for example the 5

Omicini and Wooldridge et al papers mentioned above, as well as Kendall,

E.A., Role models - patterns of agent system analysis & design, BT Technology

Journal, 1999. 17(4): p. 46-57; and Zambonelli, F., N.R. Jennings, & M.

Wooldridge: Organisational Abstractions for the Analysis and Design of Multi-

Agent Systems, in Workshop on Agent-Oriented Software Engineering 2000 10

Limetick, Ireland.

Agent roles are here defined in a manner similar to organisational roles

referring to a position and a set of responsibilities in an organisation. To better

represent agent concepts, the agent role definition may include additional 15

characteristics, for example planning, co-ordination and negotiation capabilities

– see for example the Kendall paper mentioned above.

Roles can be extended to create specialised roles by a process called

specialisation or refinement. Specialised roles represent additional behaviour 20

 5

on top of the original behaviour in a manner similar to inheritance in object

oriented systems.

A collection of roles and their interactions is known as a role model. Role

models represent the behaviour required to carry out some activity. An agent 5

application normally consists of more than one activitity (use cases) and hence

it will involve more than one role model.

Role models can be visualised in terms of role diagrams. A role diagram (e.g.

figure 1) is a collection of graphical primitives representing information about 10

roles and their lines of interaction.

The process of merging a number of roles into a single composite role is called

role composition. Role composition occurs when roles are allocated to agents.

In role composition, roles may semantically constrain each other. For example 15

two roles may exclude each other meaning that a single agent cannot play both

roles at the same time. Furthermore, the way that role characteristics and their

attributes are merged may be limited by various constraints. For example, the

memory required by the composite role resulting from the merging of two roles

may not be equal to the sum of the memories required by the two individual 20

roles.

 6

Figure 1 illustrates the composition of two interrelated roles 101,102 (indicated

generally by the numeral 10) with three further interrelated roles 103,104,105

(indicated generally by the numeral 12). The result, in this particular example,

consists of three inter-linked agents 106,107,108 (together represented by the 5

numeral 14).

According to a first aspect of the present invention there is provided a

computer-assisted method of designing multi agent systems, comprising:

 (a) defining a plurality of role models, some or all of the role models

including: 10

 (i) a plurality of roles;

 (ii) a representation of role interactions; and

 (iii) a representation of role compositional constraints applicable to

the respective model;

 (b) storing the role models in a library; and 15

 (c) selecting from the library a plurality of role models for use in

 the design of a multi-agent system, and merging the selected role

 models into a single system model by applying role composition to

 the individual roles dependent upon the role compositional constraints

applicable to each of the selected role models. 20

In another aspect there is provided a computer-assisted method of designing

multi-agent systems, comprising:

 (a) defining a plurality of role models, some or all of the role

 models including: 25

 7

 (i) a plurality of roles;

 (ii) a representation of role interactions; and

 (iii) a representation of role compositional constraints

 applicable to the respective model;

 (b) storing the role models in a library for later selection and 5

 re-use as required for merging into a multi agent system

 being designed.

In another aspect, there is provided a computer-assisted method of designing

multi-agent systems, comprising: 10

 (a) selecting from a library a plurality of role models for

 use in the design of a multi-agent system, each role

 model including:

 (i) a plurality of roles

 (ii) a representation of role interactions; and 15

 (iii) a representation of role compositional constraints

 applicable to the respective model; and

 (b) merging the selected role models into a single system

 model by applying role composition to the individual

 roles dependent upon the role compositional constraints 20

 applicable to each of the selected role models.

In another aspect, there is provided a computer system for facilitating the

design of multi agent systems, comprising:

 (a) means for defining a plurality of role models, some or all of the role 25

models including:

 (i) a plurality of roles

 8

 (ii) a representation of role interactions; and

 (iii) a representation of role compositional constraints

 applicable to the respective model;

 (b) a library for storing the role models; and

 (c) means for selecting from the library a plurality of role 5

 models for use in the design of a multi-agent system,

 and a synthesis engine for merging the selected role

 models into a single system model by applying role composition to

 the individual roles dependent upon the role compositional

 constraints applicable to each of the selected role models. 10

In another aspect, there is provided a computer system for facilitating the design

of multi agent systems, comprising:

 (a) means for defining a plurality of role models, some or all of the role

models including: 15

 (i) a plurality of roles

 (ii) a representation of role interactions; and

 (iii) a representation of role compositional constraints

 applicable to the respective model; and

 (b) a library for storing the role models for later selection and 20

 re-use as required for merging into a multi agent system being

 designed.

In another aspect, there is provided a computer system for facilitating the design

of multi agent systems, comprising: 25

 (a) means for selecting from a library a plurality of role models for

 use in the design of a multi-agent system, each role

 9

 model including:

 (i) a plurality of roles

 (ii) a representation of role interactions; and

 (iii) a representation of role compositional constraints

 applicable to the respective model; and 5

 (b) a synthesis engine for merging the selected role models

 into a single system model by applying role composition

 to the individual roles dependent upon the role

 compositional constraints applicable to each of the

 selected role models. 10

The invention further extends to a computer system for carrying out a

method as described in the claims, or as mentioned above.

The invention further extends to a computer program for implementing any 15

such method, as well as to a computer-readable carrier which actually carries

the such program.

The present invention provides an improved and a more systematic way to

construct large agent system design models, without having to rely entirely 20

upon the creativity and the intuition of the designer. The invention provides

that some of the knowledge of the designers of the underlying role models are

immediately available to the later system designer, eg by means of a software

tool.

 25

The invention conveniently provides a means for designers to consider

performance requirements at design time, thereby avoiding substantial runtime

Comment [SGT1]: I assume
that this is just to cover all the
bases in the work ?

 10

reorganisations for the sake of system stability.

The invention further provides for the capability of re-using organisational set-

ups, settings and characteristics which have proved successful in the past. By

classifying and noting known organisational patterns, and providing a means for 5

selecting them in a particular design context, the present invention provides for

previously-used organisational patterns to be reused, along with the knowledge

contained within them, when implementing large scale real-world applications.

To facilitate automatic tool support for role-based agent system design, the 10

present invention preferably makes use of a role algebra describing relations

between roles and their characteristics. The agent system designer may

identify role models and instantiate role interaction patterns as appropriate.

Instantiation consists of specifying all role characteristics. Subsequently, roles

are in the preferred embodiment of the invention allocated to agents, while 15

observing any compositional and/or other constraints.

The invention may be carried into practice in a number of ways and one specific

embodiment will now be described, with reference to the drawings, in which:

 Figure 1 shows the known process of role composition, previous described;

 Figure 2 shows the procedure for combining role models according to the 20

preferred embodiment of the present invention;

 Figure 3 shows a specific example in which the invention is applied to a

particular problem, using direct interaction for task allocation; and

 Figure 4 corresponds to Figure 3 except that the problem has been dealt with

by making use of mediated interaction for task allocation. 25

Comment [SGT2]: I believe
that this is the crux of the
invention - knowledge is encoded
(by the role model builder when
the role model is put in the role
library) in the form of a role
algebra.

Deleted: ¶

 11

Our view of roles is that they are representations of concrete behaviour. The

expression ‘role’, as used in this application, refers not only to a position and a

set of responsibilities in an organisation at a conceptual level, but also to the

behaviour that is associated with that position at a pragmetic level. We define 5

a role as the behaviour associated with a position and a set of characteristics

within an application domain.

More specifically, a role is capable of carrying out certain tasks and can have

various responsibilities or goals that it aims to achieve. Roles normally need to 10

interact with other roles, which are known as their collaborators. Interaction

takes place preferably by exchanging messages.

Role models that frequently occur in some application domain may be called

role interaction patterns. Role interaction patterns can be used to represent 15

recurring complex behaviour based on multiple points of interaction, and we

therefore believe that they should sensibly be considered as First Class design

constructs. Thus, interaction patterns can conveniently be used to describe

various types of recurring behaviour, including organisational behaviour,

application behaviour and computer system specific behaviour, e.g. an interface 20

to legacy systems. We identify three types of role interaction patterns:

 12

• Application patterns: These describe behaviour specific to the application

domain.

• System/utility patterns: These describe behaviour concerning non-

functional requirements of the application. For example, the behaviour

that duplicates data storage aiming to increase system reliability can be 5

described by a utility role interaction pattern.

• Organisation patterns: These specify organisational abstractions that we

would like to impose on the agent system. When organisational patterns

are composed with application patterns, they modify the way that

application functionality is realised. For example, applying a mediator 10

organisational pattern differentiates the way interaction between

application roles is done. In figure 1, roles A and B interact to realise

some application functionality. Initially, the collaborators of A and B are

B and A respectively. After merging the application pattern with the

mediator pattern, roles A and B are transformed to A’ and B’ that interact 15

only via role M. There are many other types of organisational patterns

that could be used, including master-slave, peer-to-peer and co-worker to

co-worker patterns.

 13

All of the above types of role interaction patterns, and many other types of

intrinsic or extrinsic characteristics of a multi agent system to be designed, may

in the present invention be dealt with programmatically rather than relying upon

the personal knowledge, skill or intuition of the system designer. This is

achieved by allowing for the formal encoding of these interaction patterns or 5

other characteristics as compositional constraints, associated with a particular

role model. These compositional constraints may include, but are not restricted

to, the types of constraints referred to above in the discussion of Figure 1.

In this application the expression “compositional constraints” extends to any 10

constraint or condition applicable to the composition of two or more roles into

one or more merged role or agent, and/or to the resultant characteristics of the

merged role(s) or agent(s) once the composition process has been completed.

The compositional constraints may, as mentioned above, encode intrinsic

characteristics of the application (for example that a supervisor role cannot be 15

combined into the same agent as a worker role), as well as external

characteristics (for example that the memory overhead required by a single

agent which resulted in the combining of two roles may not be the same as the

sum of the memories specified in each of those two roles).

 20

 14

The way in which the invention is preferably carried into practice will now be

described in more detail, with reference initially to Figure 2.

The system designer, in the example shown, wishing to construct a multi agent

system, initially refers to a library (indicated by the dotted lines 20) of 5

predefined role models, 21,22. In the Figure, only two role models are shown

for the sake of simplicity, although in practice of course there could well be

many more.

Each role model 21,22 within the library encapsulates a plurality of roles such 10

as 27,28 or 29,30, as well as information on the respective role interactions

within the role model, and a formal representation 25,26 of the role

compositional constraints which are applicable to the respective model. Each

role model may also encapsulate additional information, characteristics or

parameters (not shown). 15

Once the designer has selected the role models that are to be used as the basis

for the system to be built, he or she then merges those selected role models into

a single system role model 23 by passing them through a synthesis engine 24.

The synthesis engine takes the individual roles 27,28,29,30 from the selected 20

role models 21,22 and applies predefined rules of role composition to them,

 15

while at the same time respecting the conditions set out in the compositional

constraints 25,26. The result, in this particular example, is three roles/agents

32,34,36.

The designer has the option of manually controlling or influencing the process, 5

as indicated by reference numeral 38, by manual or other external inputs either

to the synthesis engine 24, or to the system model 23 itself. It should be

understood that, typically, the system designer will still have an important part

to play in generation of the final design, and it is accordingly expected that in

most cases the present invention may more properly be categorised as 10

“computer-assisted” design, rather than fully automated design.

The designer may also make use of general constraints 40, which are not

associated with any particular role model. These will be described in more

detail below. 15

Typically, instantiation of the system model 23 will occur only once the model

has been finalised, and saved by the designer in the preferred form. The model

23 could, if desired, be stored back within the library 20, thereby making it

available as a role model for possible selection at a later date by future 20

designers who may wish to combine it with other role models.

Comment [SGT3]: This is a
good point: althought we haven’t
done work on this it might be
worth noting that it is possible that
the role model be stored back with
additional constraints on the new
behaviour/characteristic holding
entities (in an instantiation =
agents, in a re-store = roles) - so
that we can state that when this
new model is to be re-used extra
constraints must be employed in
addition to the constraints inherited
from the role models it was
composed from .

 16

Alternatively, it would be possible for the system to be fully automated so that

instantiation occurs automatically once the synthesis engine is provided with

appropriate inputs. In that case, of course, reference numeral 23 represents the

running system, with reference numerals 32,34 and 36 the corresponding agents 5

within that system.

 In order to provide a defined set of inputs to the synthesis engine 24, a protocol

has to be devised for representing the compositional constraints 25,26 which are

associated with each of the role models 20,22. In the preferred embodiment, 10

we make use of a formal role algebra which describes relations between roles

and their characteristics. This algebra makes use of the following seven

algebraic relations. Let R be the set of roles in a role model. Then, for any r1,

r2 ∈ R, one and only one of the following binary relationships may hold:

 15

1. excludes ⎯ This means that r1 and r2 cannot be played by the same agent

simultaneously. For example, in a conference reviewing agent system, an

agent should not be playing the roles of paper author and paper reviewer at

the same time. Any excludes relation Ε ⊆ R×R is symmetric :

 if (r1 excludes r2) ∈ Ε then (r2 excludes r1) ∈ Ε 20

 17

2. contains ⎯ This means that one role is a sub-case/specialisation of the other.

Therefore, the behaviour it represents is completely included in the

behaviour of the other role. For example, a role representing a manager

behaviour completely contains the behaviour of the employee role. Any 5

contains relation C ⊆ R is reflexive, transitive and anti-symmetric:

 (r contains r) ∈ C, ∀ r ∈ R

 if (r1 contains r2) ∈ C and (r2 contains r3) ∈ C then (r1 contains r3) ∈ C

 if (r1 contains r2) ∈ C then (r2 contains r1) ∉ C

 10

3. addswith ⎯ The addswith relation can be used to describe that the behaviours

the two roles represent do not interfere in any way. Therefore, they can be

played by the same agent without any problems. An addswith relation Α ⊆

R×R must be symmetric:

 if (r1 addswith r2) ∈ Α then (r2 addswith r1) ∈ Α 15

4. mergeswith ⎯ The mergeswith relation can be used to describe that the

behaviours of two roles overlap to some extend. Although the two roles can

be played by the same agent, the characteristics of the role resulting from

 18

their composition are not equal to the sum of the characteristics of the two

individual roles. A mergeswith relation Μ ⊆ R×R must be symmetric:

• if (r1 mergeswith r2) ∈ Μ then (r2 mergeswith r1) ∈ Μ

5. requires ⎯ The requires relation can be used to describe that when an agent 5

plays some role it must play a number of other roles as well. This is

particularly applicable in cases where agents need to conform to general

rules or to play organisational roles. A requires relation Ρ ⊆ R×R must be

reflexive, and transitive:

 (r requires r) ∈ Ρ, ∀ r ∈ R 10

 if (r1 requires r2) ∈ Ρ and (r2 requires r3) ∈ Ρ then (r1 requires r3) ∈ Ρ

6. enables ⎯ The enables relation is mostly useful to manipulate organisational

roles. When a role enables another role this means that the second role can

actively participate in defining the agent behaviour while otherwise it 15

wouldn’t. An enables relation E ⊆ R×R is anti-symmetric:

 if (r1 enables r2) ∈ E then (r2 enables r1) ∉ E

7. disables ⎯ The disables relation prevents a role from being played by an

agent. This means that if two roles such that the first disables the second are 20

 19

allocated to the same agent, the second role will remain passive and the

behaviour it represents will not be exercised by the agent. A disables

relation D ⊆ R×R is anti-symmetric:

• if (r1 disables r2) ∈ D then (r2 disables r1) ∉ D

 5

In the preferred embodiment, the seven relations mentioned above are

exhaustive of those that can be used to construct compositional constrains, but it

will of course be understood that other embodiments might well use additional,

or other, relations.

 10

In the case of the mergeswith relation, some further specification of how the

two behaviours could be merged needs to be made. Let C be the set of all

possible role characteristics. For each characteristic x ∈ C, the respective x’

belonging to the composite role may for example be given by the formula x’ =

(r1(x) + r2(x) + c)⋅x where r1(x) and r2(x) are coefficients describing the 15

percentage of the contribution of each role to the resulting characteristic of the

composite role and c is a constant. We expect the value of these coefficients to

be in most cases 0 or 1.

 20

The compositional constraints for each role model are formally encoded by the

role model devisor in a language we have devised known as RCL (Role

Constraint Language). There are two types of expression in the current

implementation of the RCL language, namely relations and characteristics.

 5

Relations in RCL are of the form :

roleIdentifier1 roleRelationType roleIdentifier2 {

 newRoleIdentifier.characteristic = {characteristicValue1}

 newRoleIdentifier.characteristic = {characteristicValue2} 10

}

Characteristics are of the form:

roleIdentifier.characteristic = value 15

There are seven role relations, corresponding to the seven algebraic relations

mentioned above. Each role relation is described by its label, roles, constraints

and mappings, where:

 21

1. label is the name of the relation (contains, addswith, requires, enables,

disables, mergeswith, excludes);

2. roles is the set of roles that this relation applies to;

3. constraints is the test that is applied to putative role to agent maps that

decides if the map is in violation of this relation; and 5

4. mappings is the set of actions to apply to the behaviours and characteristics

of an agent that has a role with this relation allocated to it.

A performance variable may be associated with a role characteristic to describe

some part of it more fully (thereby constraining the problem more tightly).

Performance variables are parameters whole value defines the run-time 10

behaviour represented by a role. For example, role multiplicity or resource

capacity can be performance variables. Different values of role multiplicity

can be used to describe different types of dynamic behaviour. Having role

multiplicity of three means that we initially need to design three agents playing

that role with all the consequences in communication load and resource 15

consumption that this brings. Performance variables may be used when

defining compositional constraints.

Where a performance variable is used, it takes the form:

 20

roleIdentifier.characteristic.performanceVar = value

Formatted

Comment [SGT4]: Might be
worth pointing out that they can be
empty.

Deleted: ¶

 22

It is the job of the synthesis engine (24 in Figure 2) to transform the RCL it

receives as input from the selected models into the final design, if necessary

aided by manual input from the human operator. In the preferred embodiment,

the synthesis engine 24 constructs from the inputs applied to it a constraint 5

satisfaction problem which may then be solved by any appropriate conventional

library function, such as for example that provided by the standard Open Source

Java Constraint Library. We used version 2.01, beta, April 2000.

The transformation of the RCL to the ultimate design will now be described in 10

more detail, with reference to the “main algorithm”, as follows:

Main Algorithm

1. Role characteristics are retrieved for all role models that will be used in the 15

design. (RCL retrieved from role model 1,2,..., n) if userSpec != null

noDomains = userSpec

2. The RCL is transformed and satisfied :

 20

 23

2.1 The numbers of constraint problem variables is calculated

considering role multiplicity (each role corresponds to a number of

variables according to its multiplicity)

2.2 The relations are re-expressed as constraints that can be handled by 5

the Constraint Satisfaction Algorithm. (See Using the RCL relations as

tests below). These are used to test if a solution proposed by the

algorithm satisfies the constraints on the role models

2.3 The number of “domains” of the constraint satisfaction problem is 10

allocated. This corresponds to the number of agent types in the final

design.

2.3.1 if noDomains != 0 domains = noDomains

2.3.2 else domains = 1

 15

2.4. An attempt to solve the constraint satisfaction problem is made by

using the user specified algorithm, currently one of : backtracking,

backmarking or forward chaining (see Search Algorithms, below)

2.5. If a solution has been found, roles are mapped to agent types 20

according to the solution. Otherwise noDomains++

 24

2.6 if userSpec!= null && if noDomains>userSpec raise error and halt.

2.7 else goto 2.3

 5

3. Allocate behaviours to agents:

The constraints are satisfied. A map has been created which specifies which

roles will be implemented by which agents. The role characteristics must be

mapped to the agents. This is done using the RCL constrains as a program. (See

Roles mapping to agents, below) 10

Using the RCL relations as tests

The RCL relations, discussed above, are transformed into tests that can be

applied to a map of roles to agents to see if it is legal. RCL relation is (label, 15

roles, constraints, mappings). The relations that we have developed are

contains, addswith, requires, enables, disables, mergeswith and excludes. he

constraints on the role to agent maps for these relations are described below:

r excludes r’: !∃ a | r ∈a ^ r’ ∈a 20

no agent may exist that contains r and r’

 25

r contains r’: ∀ a| r ∈ a ⇒ r’ ∈a

for all the agents that contain r they must also contain r’

r contains r’ ^ r’ contains r’’: ∀ a| r ∈ a ⇒ r’ ∈a ^ r’’ ∈a

for all the agents that contain r they must also contain r’ and r’’ 5

r addswith r’ : (∃ a | r ∈a ^ r’ ∈a) v (∃ a | r ∈a ^ ∃ a’ | r’ ∈a’)

there exists an agent such that r is in that agent and r’ is in that agent, or there

exists an agent that contains r and there exists an agent that contains r’

r mergeswith r’ :∀a|r∈a⇒r requires r’ iff !(r excludes r’) 10

for all agents that contain r mergeswith r’ implies that r requires r’ if, and only

if there is no relation r excludes r’

(Mergeswith is a soft constraint on the agent model. It contains rules that

describe the value of the characteristics in the composite role, and specifies how

behaviours should be allocated to agents, but also expresses a preference that 15

roles be allocated to an agent).

 r requires r’ :∀a|r∈a⇒r’∈a

if r requires r’ then for all agents that contain r they must also contain r’

 20

Comment [SGT5]: This must
have fallen off when I sent you the
extra material.

 26

r disables r’

does not constrain the agent model it is used solely for the allocation of

behaviour to the agent

r enables r’ 5

does not constrain the agent model, used for allocation of behaviour to the

agent

Allocation of behaviours from roles to agents

 10

The RCL is used as the basis for step 3 of the main algorithm to allocate

behaviours from roles to agent specifications. Two information sources are

used to do this:

1. the role -> agent map developed by the constraint solving episode

2. the RCL specification. 15

The rules for mapping are as follows:

For each agent a':

1. obtain a list rolesina' = {r',r'',…,rn} of all the roles that map to the agent a' 20

 27

2. ∀r'∈R iff r' has_relation_with r'' ^ !(r' mergeswith r'') ⇒ r''∈

rolesWithRelationr'

3. if ∃r∈rolesina' ^ r'∈ rolesWithRelationr' ^ r excludes r' raise exception and

halt

4. ∀r'∈R iff r' mergeswith r''⇒ r''∈ mergesetr' 5

5. ∀r∈ mergesetr' apply all rules in r, remove r from mergsetr'

6. add behaviours from r to a'

7. ∀r'∈rolesWithRelationr'

7.1 if r contains r' discard r' (a' will already have all behaviors from r') remove

r' from rolesina and rolesWithRelationr' 10

7.2 if r addswith r' add behaviours from r' to a' remove r' from rolesina and

rolesWithRelationr'

7.3 if r requires r' add behaviours from r' to a' remove r' from rolesina and

rolesWithRelationr'

7.4 if r disables r' remove all behaviours from r' from a' 15

7.5 if r enables r' add all behaviours from r' to a

Search Algorithms

 20

 28

In backtracking we start assigning values to variables and check whether any of

the constraints are violated. If this happens when we have assigned a value to a

variable then we backtrack and we assign a different value to that particular

variable. If we have tried all combinations and we found no solution then no

solution exists. Backtracking is fairly inefficient since when assigning a 5

particular value to a variable causes a problem, this problem will be repeated

many times in many variable combinations. Therefore, other algorithms try to

remove combinations of values from variable domains that cause problems. In

this way the algorithms get more efficient.

 10

In backmarking the idea is that if some incombatibilities between the values of

some variables are found, these will be stored and remembered and will not be

considered again in future algorithm steps. In this way the search space is

reduced.

 15

Forward checking tries to remove possible future conflicts. When a value is

assigned to a variable, all values of remaining variables that would conflict with

this particular value are eliminated. In this way we prevent future

inconsistencies.

 20

 29

As mentioned above, the invention is not restricted in its application for use

with compositional constraints which are limited to individual role models. As

shown in Figure 2, the system may also make use of external or other

constraints 40, which may further optimise or constrain the role composition

constraint problem. These general constraints can be used to specify general 5

heuristics or rules of thumb in role composition. For example, high cohesion,

low coupling or interdependency, and proximity (keep behaviour and

information together) can be used as criteria for distributing functionality in

software components. The system designer could also define the maximum

number of roles that an agent could play, or an upper limit to the resource 10

capacity that the roles an agent plays would require. The designer might use

general constraints to indicate, for example, that roles requiring access to

similar resources may be allocated to the same agent.

In summary, to design an agent or organisation, we need to: 15

1. Define, identify or select the role models.

2. Specify the role characteristics, for example performance variables that

could affect role composition.

3. Specify role compositional constraints, using the role algebra defined

above. 20

4. Specify any general constraints.

 30

5. Merge the selected role models by applying role composition rules

subject to the constraints specified, and solve the resultant constraint

satisfaction problem.

6. Finally, allocate roles to agents.

 5

Finally, a specific example of the operation of the preferred embodiment will

now be described, in the context of a case study concerning telephone repair

service teams. The aim in this case was to build an agent system which would

assist field engineers to coordinate their work. One of the functions of this

system was that the agent system should assist field engineers in task allocation. 10

To state the problem simply: who should do what job?

Each field engineer as well as the team manager needs to be assigned with a

software agent acting as personal assistant. For this purpose, we need an

application role, the Personal Assistant (PA) role. The PA role is further 15

specialised to the Manager’s Personal Assistant (MPA) role to cover the needs

of a team manager. The field engineers personal assistants must carry out the

task allocation on their behalf and therefore we identify two further application

roles, Task Allocation Initiator (TAI) and Task Allocation Participant (TAP).

TAI and TAP interact with each other using some behavioural protocol, for 20

example contracting, to allocate telephone repair tasks. This is specified by:

 31

TAI.protocols = {contracting}

TAP.protocols = {contracting}

Let us assume that we have a customer service team consisting of three field

engineers and one manager. Then the following multiplicity’s can be specified:

PA.multiplicity = 3 5

MPA.multiplicity = 1

TAI.multiplicity = any

TAP.multiplicity = any

 In this team only one person can be a manager. Hence:

PA excludes MPA 10

 The agent associated with each field engineer must participate in task

allocation.

PA requires TAI

PA requires TAP

 There is no problem when PA, TAI and TAP are allocated to the same agent: 15

PA addswith TAI

PA addswith TAP

TAI addswith TAP

 This results in an agent system with two agent types and four agents (see

Figure 3): 20

 32

 Agent Type 1: PA, TAI, TAP

 Agent Type 2: PAM

 But, for security or privacy reasons direct agent negotiation may not be

desired. So, interactions of the field engineer personal assistant agents should

be done via an intermediary. This can be specified by using the mediator 5

pattern (see Figure 4). The mediator pattern includes the Mediator, Client and

Colleague roles. To specify mediated interaction, additional compositional

constraints are required. The TAI and TAP roles are merged with the Client and

Colleague roles. As a result, TAI interacts with TAP via the Mediator. This is

specified in RCL as follows: 10

TAI mergeswith Client {

 TAI_Client.Collaborators = {Mediator}

 TAI_Client.Protocols ={MediatedContractNet}

 }

TAP mergeswith Colleague { 15

 TAP_Colleague.Collaborators = {Mediator}

 TAP_Colleague.Protocols={MediatedContractNet}

 }

There is no problem when TAI and TAP are in the same agent with Colleague

and Client respectively: 20

 33

TAI addswith Client

TAP addswith Colleague

To ensure privacy, no field engineer personal assistant agent can be the

mediator. This is specified by:

PA excludes Mediator 5

The new set of compositional constraints results in two agent types and four

agents (see Figure 4).

 Agent type 1: PA, TAI, TAP, Client, Colleague

 Agent type 2: PAM, Mediator

 10

The current practical implementation of the present invention consists of a

custom-extension to the Zeus Agent Development Toolkit, Version 1.04. This

is a toolkit created and placed into the public domain by British

Telecommunications plc. It is available from that Company. Further details

may be found in Nwana, H.S., et al., Zeus: A toolkit for Building Distributed 15

Multi-Agent Systems, Applied Artificial Intelligence Journal, 1999. 13(1): p.

187-203.

We modified the Zeus agent development process and the Zeus AgentGenerator

tool to support role algebraic operations. The characteristics of a Zeus agent, 20

 34

for example its planning abilities, are now defined by the roles the agent plays.

The modified Zeus Agent development process includes the following stages:

 Role model specification. The role models that will be used are specified.

This involves instantiation of reusable role interaction patterns and 5

definition of role models specific to the application under development.

 Role configuration. The characteristics of each role, for example the

resources it requires and the tasks it is able to perform are specified. At this

stage any performance parameters are also defined. 10

 Task definition. Tasks are defined in detail. Tasks can be primitive,

summary, rulebase or planscripts.

 Role collaborators: The collaborators of each role are specified. 15

 Role behavioural protocols: The protocols used by a role to interact with

other roles are specified.

 35

 Role compositional constraints: The constraints that must be observed when

a role is composed with other roles are specified. At this stage the

performance parameters are assigned some value.

To provide support for the extended agent development process we modified 5

the Project Manager (PM) and Code Generator (CG) AgentGenerator

components. We constructed four new components: these were the Library

Manager (LM), Role Constraint Editor (RCE), Role Configuration (RC) and

Role Allocation (RA) components.

• The Project Manager is the main component of the Agent Generator tool. We 10

extended the PM component and the Zeus Frame based Language as

required to include support for roles and role patterns.

• LM is a component where role interaction patterns can be edited,

automatically translated to some extension of the Zeus frame-based

language and stored on disk. The LM component aims at providing 15

assistance in reusing design settings.

• RCE now supports RCL based on the role algebra we introduced. RCE

provides a convenient user interface where designers can edit and

manipulate various types of constraints in RCL. The role allocation

 36

component formulates and solves a constraint satisfaction problem based on

compositional constraints.

• The RC component was created to provide an interface for defining all

characteristics of a role.

• Finally, the CG component has been modified to generate Java code based on 5

the definitions of the roles an agent plays.

It would be possible, although not yet implemented in the current version, to

allow for role migration and role evolution.

 10

The role algebra described could be used to dynamically allocate and de-

allocate roles to agents on runtime.

By making use of the present invention, model designers are enabled to code

their expertise into their models, and save these for re-use by later system 15

designers.

 20

 37

CLAIMS:

1. A computer-assisted method of designing multi agent systems,

comprising:

 (a) defining a plurality of role models, some or all of the role models 5

including:

 (i) a plurality of roles;

 (ii) a representation of role interactions; and

 (iii) a representation of role compositional constraints applicable to

the respective model; 10

 (b) storing the role models in a library; and

 (c) selecting from the library a plurality of role models for use in

 the design of a multi-agent system, and merging the selected role

 models into a single system model by applying role composition to

 the individual roles dependent upon the role compositional constraints 15

applicable to each of the selected role models.

2. A computer-assisted method of designing multi-agent systems as

claimed in claim 1 in which the system model is itself then stored in the library

for later possible re-use as a role model. 20

3. A computer-assisted method of designing multi-agent systems, as

claimed in claim 1 or claim 2 in which the role compositional constraints are

representative of behaviour specific to a role model domain.

 25

4. A computer-assisted method of designing multi-agent systems as

claimed in any one of the preceding claims in which the role compositional

 38

constraints are representative of organisational patterns desired to be

incorporated into the system model.

5. A computer-assisted method of designing multi-agent systems as

claimed in any one of the preceding claims in which the role compositional 5

constraints are representative of characteristics external to the system model

such as, for example, computer data storage requirements.

6. A computer-assisted method of designing multi-agent systems as

claimed in any one of the preceding claims including subsequently making a 10

second selection from the library, re-using at least one of the previously-

selected role models, as the basis of another, different, system model.

7. A computer-assisted method of designing multi-agent systems as

claimed in any one of the preceding claims in which the role compositional 15

constraints are defined using a syntax enabling required or prohibited

relationships between roles to be expressed.

8. A computer-assisted method of designing multi-agent systems as

claimed in any one of the preceding claims in which the compositional 20

constraints are defined using a syntax enabling preferred or not preferred

relationships between roles to be expressed.

9. A computer-assisted method of designing multi-agent systems as

claimed in any one of the preceding claims in which the applied role 25

composition is further dependent upon general compositional constraints, not

associated with a single specific role model.

 39

10. A computer-assisted method of designing multi-agent systems as

claimed in claim 9 in which the general compositional constraints are

representative of a role allocation heuristic.

 5

11. A computer-assisted method of designing multi-agent systems as

claimed in claims 1 to 10 in which the role compositional constraints are

representative of organisational patterns desired to be incorporated into the

system model.

 10

12. A computer-assisted method of designing multi-agent systems as

claimed in claims 1 to 11 in which the role compositional constraints are

representative of characteristics external to the system model such as, for

example, computer data storage requirements.

 15

13. A computer-assisted method of designing multi-agent systems,

comprising:

 (a) defining a plurality of role models, some or all of the role

 models including:

 (i) a plurality of roles; 20

 (ii) a representation of role interactions; and

 (iii) a representation of role compositional constraints

 applicable to the respective model;

 (b) storing the role models in a library for later selection and

 re-use as required for merging into a multi agent system 25

 being designed.

 40

14. A computer-assisted method of designing multi-agent systems,

comprising:

 (a) selecting from a library a plurality of role models for

 use in the design of a multi-agent system, each role

 model including: 5

 (i) a plurality of roles

 (ii) a representation of role interactions; and

 (iii) a representation of role compositional constraints

 applicable to the respective model; and

 (b) merging the selected role models into a single system 10

 model by applying role composition to the individual

 roles dependent upon the role compositional constraints

 applicable to each of the selected role models.

15. A computer system for facilitating the design of multi agent systems, 15

comprising:

 (a) means for defining a plurality of role models, some or all of the role

models including:

 (i) a plurality of roles

 (ii) a representation of role interactions; and 20

 (iii) a representation of role compositional constraints

 applicable to the respective model;

 (b) a library for storing the role models; and

 (c) means for selecting from the library a plurality of role

 models for use in the design of a multi-agent system, 25

 and a synthesis engine for merging the selected role

 models into a single system model by applying role composition to

 41

 the individual roles dependent upon the role compositional constraints

 applicable to each of the selected role models.

16. A computer system for facilitating the design of multi agent systems,

comprising: 5

 (a) means for defining a plurality of role models, some or all of the role

models including:

 (i) a plurality of roles

 (ii) a representation of role interactions; and

 (iii) a representation of role compositional constraints 10

 applicable to the respective model; and

 (b) a library for storing the role models for later selection and

 re-use as required for merging into a multi agent system being

 designed.

 15

17. A computer system for facilitating the design of multi agent systems,

comprising:

 (a) means for selecting from a library a plurality of role models for

 use in the design of a multi-agent system, each role

 model including: 20

 (i) a plurality of roles

 (ii) a representation of role interactions; and

 (iii) a representation of role compositional constraints

 applicable to the respective model; and

 (b) a synthesis engine for merging the selected role models 25

 into a single system model by applying role composition

 to the individual roles dependent upon the role

 42

 compositional constraints applicable to each of the

 selected role models.

18. A computer program for carrying out a method as claimed in any one of

claims 1 to 13. 5

19. A computer-readable carrier carrying a computer program as claimed in

claim 18.

 43

ABSTRACT

A computer-assisted method of designing a multi agent system (23) comprises

storing predefined role models (21,22) within a library (20), selecting desired 5

models from the library, and merging them into a single system model (23).

Each model (21,22) has associated with it one or more compositional

constraints (25,26), and these are automatically taken into consideration during

role composition by a synthesis engine (24) during the merging process.

 10

 (Figure 2)

