Chapter 3
History and Definitions

Giovanna Di Marzo Serugendo, Marie-Pierre Gleizes,
and Anthony Karageorgos

Defining and implementing Self-organisation and Emergence.

Objectives The objective of this chapter is to discuss the origins and def-
initions of self-organisation and emergence. When you will have read this
chapter, you will:

e Obtain a clear understanding of the terms self-organisation and emergence
and the pros and cons of the various definitions.

e Have been introduced to most common self-organising system properties.

e Understand technical and theoretical issues which are important for effec-
tively using self-organisation and emergence in software applications.

3.1 Introduction

The issue of developing large-scale systems consisting of several (simple) compo-
nents which, without explicit central control from some external authority, would
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collectively produce some complex global result has long been the subject of many
research efforts. That global result, albeit complex, would not be chaotic or dis-
ordered, but instead it would be liable to some type of control laws, and it would
demonstrate some observable properties. In other words, that result would be a de-
sired identifiable organisation, for example a pattern, a process producing that pat-
tern, or a global system function ensuring that the system would fulfil some specific
requirements. Such a process and the resulting outcome are commonly referred to
as self-organisation and emergent phenomenon respectively. The occurrence of an
emergent phenomenon is commonly referred to as emergence. There has been re-
cently a great interest in the study, analysis and design of systems capable of pro-
ducing a collective outcome via self-organisation and emergence [14, 15, 29, 32,
72, 77]. In this context, of particular interest is the ability of self-organising systems
to have a complex collective response arising from interactions among relatively
simple individual components with limited abilities [54, 78].

The terms involved, for example organisation, self-organisation and emergence,
have been used in various disciplines, such as mathematics, physics, biology and
philosophy. These terms are increasingly used in computer science, and in partic-
ular they are widely met in the MAS research community. We need to establish
a common, consensual and operational meaning of them to enable researchers to
know if their artificial systems are self-organising or not and if there is emergent
phenomenon or not.

To this purpose, Sects. 3.2 and 3.3 define self-organisation and emergence from
the view of self-organising software, and in addition they provide an overview of
the most common other definitions available in the literature.

3.2 Self-organisation

3.2.1 History

The concept of self-organisation has been first discussed in ancient Greek philoso-
phy (see Haken in [41] referring to Paslack in [66]). In early modern times (18th and
19th centuries), self-organisation was discussed by the German philosophers I. Kant
and FEW.J. Schelling [66]. Kant related self-organisation particularly with the for-
mation of the planetary system, while Schelling’s treatment of the subject was, as
Haken states in [41], rather vague.

In more recent times the notion of “self-organising system” is traced back to the
cybernetician W. Ross Ashby, who first used it in 1947 (see [41, 68] referring to [3]).
By early 1950s, the term self-organisation had been well established in modern sci-
ences by Nobel Prize winner Ilya Prigogine and his colleagues through studies in
thermodynamics [35]. The concept of self-organisation introduced by Prigogine was
essentially based on the assumption that open systems aim to decrease their entropy
(order results from disorder) when some external energy is applied to them. The
additional energy imposed often causes matter within the system to alter its organi-
sational structure to facilitate the system reaching a new state with lower entropy.
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The export of entropy does not directly explain how or why self-organisation
does take place. Prigogine noted that self-organisation typically takes place in non-
linear systems which are far from their thermodynamic equilibrium state. That state-
ment was supported by concrete observations of self-organisation phenomena which
occur in physical systems, and it was accompanied with classical examples such as
the Benard phenomenon' example. The observations of self-organisation cases in
physical systems were complemented with more abstract and high-level analyses of
self-organising behaviour in complex autonomous systems which were carried out
by cyberneticians. These efforts resulted in the first conference on self-organising
systems which was held in 1959 in Chicago and, as stated by Heylighen [43], was
organised by the same multidisciplinary group of visionary scientists who had orig-
inally founded the discipline of cybernetics. Among the conference outcomes was
the introduction of three fundamental principles concerning self-organising systems:

e According to the “principle of self-organisation”, introduced by W. Ross Ashby,
a dynamical system, independently of its type or composition, always tends to
evolve towards a state of equilibrium. That evolution towards an equilibrium re-
duces the uncertainty regarding the state of the system, and therefore it decreases
the system’s statistical entropy. The resulting equilibrium can be interpreted as a
state where the different parts of the system are mutually adapted. Such an equi-
librium state has since been commonly known as an attractor [45, 52].

e Another cybernetician, Heinz von Foerster, formulated the principle of “order
from noise”. Foerster noted that, paradoxically, the larger the random perturba-
tions (“noise”) that affect a system, the more quickly it will self-organise (pro-
duce “order”). This can be intuitively explained as follows: the more widely a
system is made to move through its state space, the more quickly it will end up
in an attractor. If the system was not forced to move between states, no attractor
state would ever be possible to be reached, and hence no self-organisation could
take place.

e In addition to the above, Prigogine proposed the related principle of “order
through fluctuations”. According to that principle, nonlinear systems generally
have several attractor states. When a system resides in between attractors, it will
be in general a chance variation, commonly known as a “fluctuation” in thermo-
dynamics [35], that will force it to move and stabilise in some particular attractor
state.

At the same time further work on self-organisation was done in social systems.
A representative example is the theory of stigmergy which was introduced by Grassé
in 1959 after studying the social behaviour of termites [37]. Grassé summarised the
theory of stigmergy in the phrase “the work excites the workers” meaning that the
philosophy of stigmergy is to have members of a society attracted to places in the
system where most activity has recently taken place. As a consequence, the activ-
ity at these points will be increased even further until the causes of the activity,

The Benard phenomenon refers to the appearance of hexagonal cells or pattern rolls in liquids
when heated from below. See Heylighen [43] for more detail.
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for example the food availability when the goal of the societal activity is to collect
food, at these points no longer exist. In this case, self-organisation refers to changes
to the points where society members carry out their activities, which are dictated
by attractions due to stigmergy. A main aspect of the theory of stigmergy is that
interaction between society members can be effectively carried out through the en-
vironment and therefore direct communication is not mandatory. As a consequence,
no direct interactions are necessary to coordinate a social group, and coordination
and regulation tasks in a society can be realised based on information deposited into
the environment without central control. In the case of ant colonies, stigmergy is
realised by depositing chemical substances in the environment, which, as already
mentioned in Sect. 2.1.2.3, are termed pheromones.

There is a fundamental difference between the concept of self-organisation in-
troduced by Prigogine and the one suggested by Grassé€. In the first case, self-
organisation is the result of some external energy imposed to the system from its
environment. In the second one, self-organisation is the result of internal actions
of elements from within the system itself (for example in the case of an ant colony
self-organisation actions initiate from the ants themselves which implement the stig-
mergy mechanism by depositing and following pheromones).

In further developments, Koestler established in late 1960s the definition of
holons and holarchies [55]. As mentioned in Sect. 2.2.10.2 and detailed in Chap. 4,
holons are both whole systems and parts of larger systems at the same time. Ho-
larchies are hierarchies of such holons. Koestler presents a hierarchical view of
self-organisation, which is applicable in a variety of cases ranging from enterprise
organisations to the universe as a whole. The idea here is that order can result from
disorder with progressive reorganisation of relations between complex structural el-
ements at higher levels of abstraction. That high-level reorganisation results from
statistically evolving simple relations between system elements at lower levels.

More specifically, Koestler defined holons as autonomous, self-reliant units that
possess a degree of independence and handle contingencies without asking higher
authorities for instructions. These holons are also simultaneously subject to control
from one or more of these higher authorities. The first property ensures that holons
are stable forms that are able to withstand disturbances, while the latter property sig-
nifies that they are intermediate forms, providing a context for the proper function-
ality for the larger whole. Holarchies consist of self-regulating holons that function
first as autonomous wholes in supra-ordination to their parts, secondly as dependent
parts in sub-ordination to controls from higher levels, and thirdly in coordination
with their local environment.

In the 1970s Maturana and Varela, aiming to characterise the nature of liv-
ing systems, introduced the notion of autopoiesis (literally meaning “auto (self)-
creation”) as the process with which an organisation is able to reproduce itself [61].
Autopoiesis applies to closed systems, such as living organisms, consisting of au-
tonomous components that interact and collectively (re-)produce higher-level com-
ponents within the system. For example, the eukaryotic cell is made of various
biochemical components such as nucleic acids and proteins, and is organised into
bounded structures such as the cell nucleus, various organelles, a cell membrane and
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cytoskeleton. These structures, based on an external flow of molecules and energy,
produce the components which, in turn, continue to maintain the organised bounded
structure that gives rise to these components. An autopoietic system is to be con-
trasted with an allopoietic system, such as a car factory, which uses raw materials
(components) to generate a car (an organised structure) which is something other
than itself (the factory).

The notion of autopoiesis is often associated with that of self-organisation.
The reason is that the dynamics of autopoietic systems resemble those of non-
equilibrium systems; that is they include states, often called dissipative struc-
tures [43], which remain stable for long periods of time despite matter and energy
continually flowing through them. However, an autopoietic system is autonomous
and operationally closed, in the sense that every process within it directly con-
tributes to maintaining the whole. Furthermore, autopoietic system elements are
structurally coupled with their medium in a dynamic relationship that can be paral-
lelised to sensory-motor coupling. In addition, autopoiesis presupposes an organised
“self” [62], which, as Maturana argued, “arises with the system” and therefore “can-
not organise itself” (see [21] referring to Maturana). Therefore, self-organisation
is not autopoietic in its strict sense. Furthermore, since the mechanisms for self-
organisation are inherent in the system itself and not modulated by an external or-
ganisation, it is commonly accepted that it is the system that organises itself [22].

In the 1980s the first attempts to apply self-organisation concepts to various do-
mains were made. One such attempt is the development of “neural networks”, which
are simplified computer models (networks of artificial “neurons” linked with each
other either directly or indirectly) mimicking the way brain neurons are linked and
interact. There is no centralised control in neural networks, but they are capable of
processing complex patterns of input. Another example is the production of laser
light. Laser light beams result from the emission of photons of the same type, at the
same time and at the same direction from atoms or molecules that are excited by
an input of energy, and are synchronised under particular circumstances [43]. Based
on observations of such collective results resulting from cooperation (or synergy)
between system components, the German physicist H. Haken proposed the field of
Synergetics to study such phenomena [41].

In the mid-1980s the proliferation of inexpensive and powerful computers en-
abled the use of computer simulation to explore self-organising system models of
various degrees of complexity. Such systems typically included large numbers of
interacting components and were difficult to be mathematically modelled. Based on
this approach, a number of researchers associated with the Santa Fe Institute in New
Mexico pioneered the domain of Complex Adaptive Systems (CAS) [45, 52]. CAS
consist of many interacting components, which undergo constant change, both au-
tonomously and in interaction with their environment. The behaviour of such com-
plex systems is typically unpredictable, yet exhibits various forms of adaptation
and self-organisation [47]. The components of CAS are typically considered to be
agents [44, 47].

Examples of CAS include natural ecosystems comprising organisms which be-
long to many different species and interact with each other (compete or cooper-
ate) and their shared physical environment. Additional CAS examples are markets,
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where different producers compete and exchange money and goods with consumers
in a distributed and autonomous fashion. Despite markets being highly chaotic and
nonlinear systems, they tend to converge towards approximate equilibria where con-
flicting goals of producers and consumers are mutually adapted and on average satis-
fied. This balancing mechanism, achieved by market dynamics, which Adam Smith,
the father of economics, called “the invisible hand”, can therefore be characterised
as self-organisation [43].

The methods and tools used for the study of CAS enabled research in vari-
ous related areas. The biologist S. Kauffman studied the development of organ-
isms and ecosystems. Through simulations, he showed that sufficiently complex
networks of chemical reactions will necessarily self-organise into autocatalytic cy-
cles, the precursors of life [52, 53]. Another complexity theorist associated with
the Santa Fe Institute, J. Holland, studied adaptation through natural selection of
self-organising systems to a variable environment. By generalizing from the mech-
anisms through which biological organisms adapt, he provided the foundations of
Genetic Algorithms® and developed models of cognitive, ecological and economic
systems [45, 46]. Both Holland’s and Kauffman’s works have provided essential
inspiration for the new discipline of Artificial Life (AL), which was initiated by
C. Langton [56]. AL involves developing and executing software models mimick-
ing lifelike properties, such as reproduction, sexuality, swarming and co-evolution,
and subsequently concluding about real systems exhibiting these properties.

During the last 20 years, research in artificial systems has been oriented to-
wards introducing self-organisation mechanisms specifically for software applica-
tions. These different works originate from different starting points including stig-
mergy [39, 59], autopoiesis [12] and the holon concept [11, 76]. Recently, in addi-
tion to reproducing natural system behaviour into artificial systems, latest research
efforts have been oriented towards introducing self-organisation mechanisms specif-
ically for software applications [29, 34]. Part II describes such mechanisms in more
detail.

3.2.2 Definitions of Self-organisation

The concept of self-organisation has been defined in many disciplines, and it has
been viewed from different angles. In the following the most common definitions
found in the literature are presented, and a view of self-organisation from a software
engineering perspective is provided.

2Genetic Algorithms is a general approach to computer problem solving which is based on muta-
tion and recombination of partial solutions, and the subsequent selective reproduction of the most
“fit” new partial solution combinations.



3 History and Definitions 39
3.2.2.1 Overview of Self-organisation Definitions

Since the first appearance of the term, self-organisation essentially referred to a
spontaneous, dynamically produced organisation in a system without external con-
trol. For example, as mentioned in the previous section, Kant used the term to refer
to the autonomous formation of the planetary system without some central coordi-
nation point.

The formation of structures in physical systems was the basis of the view of
self-organisation adopted later in thermodynamics as well. According to Prigogine,
self-organisation resulted to alterations to structure of materials while energy was
emitted to the environment in order to lower the entropy of the system [35]. A com-
mon example is crystallisation, the appearance of a symmetric pattern of dense
matter in a system of randomly moving molecules [43], such as in the case of snow
crystals [41]. Prigogine and his colleagues proposed four necessary conditions that
must hold for self-organising behaviour to occur [65]:

1. The Mutual Casuality condition. A circular relationship must exist between at
least two of the system elements resulting in mutual influence of each other.

2. The Autocatalysis condition: There exists at least one system component which
is causally affected by other components, in a way that increases the quantity of
the first component in a nonlinear fashion.?

3. The Far-From Equilibrium condition: the system imports a large amount of en-
ergy from outside the system, uses the energy to help renew its own structures
(autopoietic behaviour) and dissipates, rather than accumulates, the accruing dis-
order (entropy) back into the environment.

4. The Morphogenetic Changes condition: The system must exhibit morphogenetic
changes, namely the system components should be able to change their char-
acteristics and behaviour [23], given appropriate conditions and stimulus.* To
receive external stimulus, at least one of the system components must be open to
external random variations originating in the system’s environment.

Bonabeau et al. [10] provide a definition drawn from the behaviour of dynamically
evolving natural systems. They consider self-organisation as a set of dynamical
mechanisms whereby structures appear at the global level of a system as a result
of interactions among its lower-level components. The rules specifying these inter-
actions are executed on the basis of purely local information, without reference to
a global pattern. Therefore, the resulting of structures is an emergent property of

3In Chemistry autocatalytic reactions are reactions in which at least one of the products is also a
reactant. Such reactions are fundamentally nonlinear, and this nonlinearity can lead to the spon-
taneous generation of order. A dramatic example of this order is the one found in living systems.
This spontaneous order creation initially seems to contradict the Second Law of Thermodynamics.
However, this contradiction is resolved when the disorder of both the system and its surroundings
are taken into account and it is recognised that energy is dissipated into the environment to lower
the entropy of the system.

4The term Morphogenesis (from the Greek morphe = shape and genesis = creation) was originally
introduced in biology to refer to a process that would cause an organism to develop its shape.
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the system, rather than a property imposed upon the system by an external ordering
influence. For example, in the case of foraging ants the emergent structures are the
spatiotemporally organised networks of pheromone trails.

Bonabeau and colleagues identified four basic requirements for self-organisation:

1. Positive feedback (amplification) which involves simple behavioural “rules of
thumb” that promote the creation of structures. Examples of positive feedback
include recruitment to a food source and reinforcement to adopt a particular role
observed in natural systems.

2. Negative feedback which counterbalances positive feedback and contributed to
stabilising the overall collective pattern. Examples of negative feedback include
satiation, exhaustion or completion. In the example of foraging ants in particular,
negative feedback could result from the limited number of available foragers, the
exhaustion of food source, and the crowding at the food source, or competition
between food sources, respectively.

3. Amplification of fluctuations such as random walks, errors and random-task
switching. In other words, small perturbations in system behaviour may increase
and affect the collective system behaviour significantly. For example, when a
new food source is found, the concentration of pheromones in the pheromone
path formed increases significantly.

4. Multiple interactions among individuals which are the basis for the collective
behaviour. More specifically, self-organisation generally requires a minimal den-
sity of mutually tolerant individual behaviours capable of using the results of
both their own activities and the activities of others. For example, trail networks
can self-organise and are formed by pheromones deposited by more than one ant.

Similar definitions drawn from natural systems are adopted by many authors, for
example in [16].

In other domains self-organisation is typically defined as the evolution of a sys-
tem into an organised form in the absence of external pressures [69]. This is explic-
itly stated by Haken [40], who considers a system as self-organising if “it acquires a
spatial, temporal or functional structure without specific interference from the out-
side”. As another example, Polani [68] considers self-organisation as a phenomenon
under which “a dynamical system exhibits the tendency to create organisation ‘out
of itself” without being driven by an external system”.

Along the same line Heylingen [43] defines self-organisation as the “spontaneous
creation of a globally coherent pattern out of local interactions”. Because of its dis-
tributed character, this organisation tends to be robust, resisting perturbations. The
dynamics of a self-organising system is typically nonlinear, because of circular or
feedback relations between the components. Positive feedback leads to an explosive
growth, which ends when all components have been absorbed into the new config-
uration, leaving the system in a stable, negative feedback state. Heylighen stresses
that the basic mechanism underlying self-organisation is the (often noise-driven)
variation which explores different regions until it enters a stable state (an attractor
state).

In a similar manner Collier [22] defines self-organisation as “a process by which
larger scale (macro) order is formed in a system through the promotion of fluctu-
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ations at a smaller (micro) scale via processes inherent solely in the system dy-
namics, and modulated by interactions between the system and its environment’.
Self-organisation occurs when the properties of a system allow it to take on a more
ordered state through the dissipation of energy (production of entropy) some of
which goes into the newly formed structure.

However, not all definitions of self-organisation involve spontaneous creation of
organisational structures. Maturana and Varela introduced autopoietic systems [61]
where some form of organised system must pre-exist for subsequent changes to the
organisation to take place, in a manner similar to re-organising systems discussed
by Collier in [21]. Maturana and Varela view autopoietic systems as networks of
interacting processes that are capable of producing (generating, transforming and
destructing) other, possibly similar, processes and that satisfy the following require-
ments:

1. They are continuously regenerated and transformed through interaction and re-
production of its members processes.

2. They constitute a concrete unity in the space where the member processes exist
and the topological domain of their associations is specified [75].

In other words, in autopoietic systems self-organisation refers to dynamic system
regeneration and transformation to some known form.

Finally, in many computer applications self-organisation has been used to the
process of changing the system’s organisation based on some internal central point
of planning or control within the system, as is the case for example in [1, 60]. This
approach is followed in many cases in natural systems> and has certain advantages,
such as better coordination efficiency and control. However, it can suffer from the
known centralised point weaknesses such as robustness and performance.

In other cases, changes to the organisation of the system are the collective result
of distributed autonomous points of control within the system. Examples include
self-organised coordination [49], multi-agent system cooperation [71] and multi-
agent system group formation [58].

3.2.2.2 Software Definition of Self-organisation

Self-organisation is an attractive approach to handle the dynamic requirements
in software. Considering the definitions given in other domains, the term self-
organisation can be used in software engineering to refer to a process where a
software system changes its internal organisation to adapt to changes in its goals
and the environment without any explicit external directing (command and control)
mechanism. Therefore:

SFor example, in societies of termites the queen selects a location and deposits pheromones sym-
metrically at equal distances resulting in nest arches being equally distanced from the queen loca-
tion [10].
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self-organisation is the process enabling a software system to dynamically alter its inter-
nal organisation (structure and functionality) during its execution time without any explicit
external directing mechanism.

Furthermore, due to the wide range of self-organising software systems, it is nec-
essary to further distinguish them into those involving no explicit centralised control
(either external or internal) and those based on some internal centralised coordina-
tion and planning point. By consequence the following definitions are given:

Strong self-organising systems are systems where self-organisation process decisions are
distributed locally among the system components without involving any centralised point
of control (either internal or external).

Weak self-organising systems are those systems where, from an internal point of view, self-
organisation is internally administered by a centralised point of planning and control.

It is important to emphasise that the central point of control in a weak self-
organising system is not visible from an external observer located outside the sys-
tem itself. For example, the users of a cluster-based e-commerce web site that self-
organises to balance the incoming user load will not notice any difference regardless
whether load is balanced in a centralised or a distributed manner within the system.

Typical examples of strong self-organising systems are those implementing ant
algorithms. In such systems there is no internal point of central control since they
are built with the aim to mimic the behaviour of ant colonies when foraging. Repre-
sentative examples of weak self-organising systems are those based on architectures
involving centralised control such as general mediator systems, client-based systems
and systems based on star and hierarchical architecture topologies.

Self-organisation can often result in emergent software behavioural patterns that
can be either desirable or undesirable. Due to the dynamism and openness of con-
temporary software environments and the ever increasing distribution, complexity
and dynamic changes in application requirements, understanding the mechanisms
that can be used to model, assess and engineer self-organising behaviour in soft-
ware is an issue of major interest.

3.2.3 Properties of Self-organising Systems

Self-organising systems are distinguished from traditional mechanical systems stud-
ied in Physics and Engineering by a number of mandatory and optional properties,
which can be considered as part of what defines them.

3.2.3.1 Mandatory Properties of Self-organising Systems

Self-organising systems are characterised by the following fundamental properties:

e Global Organisation. The process of self-organisation brings the system into
some ordered and relatively stable state, in which it can fulfil its function and
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purpose given the constraints imposed from its environment. For example, if we
consider a system consisting of a light bulb and having the purpose of providing
light to a warehouse, then satisfactory organised states for the system would be
one where the light bulb would be switched off during the day and one where it
would be switched on during in dark hours. The resulting system organisation can
be static, where the organisational positions of the system components are fixed,
as is the case in the light bulb example, or stationary. In the latter case, system
components continuously change their organisational positions, but this is done
in some ordered fashion and according to some stable organisational pattern, such
as the Benard cells pattern (see Sect. 3.3.2.1). The Benard cells pattern refers to
the formation of hexagonal cells which appear when a liquid is evenly heated
from below and cooled on its surface [43]. In Benard cells there is an upward
flow of liquid on one side and a downward flow on the other. Despite the contin-
uous movement, the Benard cell pattern remains stable as long as the heating and
cooling of the liquid are not altered.

e Dynamic Adaptation. Self-organising systems are capable of changing their or-
ganisation dynamically to adapt to changes in their intended function and the con-
ditions of their environment. For example, insect populations behave differently
when mating than when collecting food [10], and their behaviour further varies
according to environmental conditions, such as ground and weather conditions,
and time of day.

A common question then is what behaviour can be considered as part of the
dynamic reorganisation process that realises system’s adaptation to the current en-
vironmental conditions, and what is considered as normal, possibly dynamic, ap-
plication behaviour that realises the system’s intended function. This question be-
comes hard to answer since reorganisation and application behaviours are largely
interweaved, and the former commonly affects the latter, namely application be-
haviour is often modified as a result of reorganisation.

In simple systems, dynamic reorganisation can be perceived and modelled as
normal application behaviour, although this is not generally a good practice since
it increases model complexity. For example, let us consider a sensor attached
to a light bulb capable of emitting light linearly and in inverse proportion to the
amount of natural light sensed. The emitted light will gradually increase when the
amount of light in the surrounding space decreases, for instance if natural light
is reduced due to cloudy weather. One could intuitively view the increase in light
emittance level as system reorganisation, considering the level of emitted light
as an organised system state and the actual light emittance as the functionality
delivered by the system. One other could argue that the proportionally adjusted
light emittance is simply predesigned application behaviour and that changes in
natural light availability are simply external input and not changes in the system’s
environment. In such simple cases, where the possible reorganisation results and
the stimuli that triggers reorganisation can be perceived or calculated in advance,
reorganisation and application behaviour can indeed be a matter of definition and
modelling perspective. For instance, in the above example the light emittance can
be exactly calculated as a linear function of the absence of natural light, and hence
it can be easily perceived as application behaviour.
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In general, however, it is not always possible to exactly determine the system

configuration that would result from the reorganisation process in advance. For
example, it is difficult to predetermine the exact path that will be formed by for-
aging ants since the number of possibilities is too high. In these cases, dynamic
reorganisation is considerably harder to be modelled as application functional-
ity, since the adapted organisation that will realise application functionality is not
known in advance. Therefore, it is a good practice to follow intuition and model
reorganisation separately whenever possible because that increases modularity,
ease of understanding and separation of concerns. For example, in an ant-based
system it is easier to model the behaviour of searching for food and the behaviours
of carrying and processing food separately.
Lack of External Control. The dynamic reorganisation taking place in self-
organising systems is executed without any external control, and the order pro-
duced is endogenous. For example, if we have some external operator switching
the light bulb on and off, then the light bulb system would not be self-organising.
On the other hand, if the system comprises both the light bulb and a sensor device
capable of switching it on and off according to the light conditions, then that is a
clear self-organising system example.

Consequently, it is very important to define the system boundaries before char-
acterising a system as self-organising or not. To clarify this with an additional ex-
ample, if we consider a central light sensor connected to a computer that remotely
operates light bulbs in different rooms, then each individual light bulb alone is not
a self-organising system. However, if we considered a larger system comprising
all light bulbs and the operating computer, then we would have a clear case of a
weakly self-organising system.

3.2.3.2 Optional Characteristics of Self-organising Systems

In
is

addition to the above mandatory properties that allow us to determine if a system
actually self-organising, there are several characteristics that can appear in self-

organising systems, either natural or artificial, in various combinations.

Nonlinearity and Complex Interactions. Systems showing instability are charac-
terised mainly by nonlinear dynamics (small fluctuations when near some critical
point can provide significant modifications of the system), by sensibility to ini-
tial conditions and parameter sensibility (small changes on a parameter produce
different patterns). Thus the overall properties cannot be understood simply by
examining separately the components.

Self-organising systems commonly exhibit complex, nonlinear behaviour
which enables them to adapt to a larger range of environmental conditions. There-
fore, the more complex the overall system behaviour, the higher the adaptation
capability of the system.

Nonlinear system behaviour can trivially be the additive result of nonlinear be-
haviours of individual system components. For example, let us assume a number
of pipes flowing water into an irrigation basin, and that the flow of each pipe is
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controlled by an intelligent sensor device. The device regularly senses a number
of environmental parameters and controls the water flow according to some non-
linear irrigation model by operating a valve attached on the pipe. Depending on
the environment parameter values, the flow of water through each pipe will vary,
and the overall water flow will be the sum of flows of all water pipes.

More complex collective system behaviours can be achieved when the number
of system components increases. For example, let us assume that we have dozens
of light bulbs distributed in some area. Each bulb is associated with a sensor and
it is able to emit different amounts of light according to the level of natural light
perceived by its sensor. Assuming that the levels of natural light are not the same
in all locations within the designated area, that system will be emitting only the
necessary light in each location, saving thus in energy as compared to a system
having only one central strong light bulb. It is intuitively obvious that by increas-
ing the number of light bulbs in the area we can achieve higher light emittance
granularity and detail, and hence better energy savings. This is generally the case:
the more individual components are included in the self-organising system, the
more sophisticated overall collective behaviour can be achieved.

The complexity of the overall system behaviour increases even further when
there are interactions between system components which affect their individual
behaviours. For example, instead of having each pipe controlled by a sensor exe-
cuting some independent irrigation model, sensors could interact with each other;
for instance, they could be connected nodes in a neural network that would be
exchanging data and influencing each other. That would result in more complex
overall behaviour, such as implementation of a more complex irrigation model,
since there would be interrelations between individual behaviours.

e Decentralised Control. Organised systems are commonly associated with some
hierarchy of internal or external controllers which guide and direct them. The con-
troller hierarchy is a physically distinct subsystem that exerts its influence over the
rest of the system. In these cases the control is characterised as centralised. For
example, most business organisations have leaders, boards of directors and unit
managers that develop policies and coordinate business operations. An additional
example is the human body whose actions are largely planned and controlled by
the brain.

In weak self-organising systems control is centralised. In strong self-organising
systems however, control is distributed over the whole system. All system compo-
nents contribute evenly to the resulting arrangement. For example, in spin mag-
netisation all spins influence each other to maintain the overall spin direction
which has been reached and no spin or group of spins can deviate from it. An-
other example is the human brain which is organised over a network of interacting
neurons. Different brain regions are specialised for different tasks, but no neuron
or group of neurons has overall control. This is demonstrated in the cases where
some brain parts get damaged, for example due to some accident, and the whole
brain functioning continues unaffected.

Centralised control offers advantages, such as more autonomy and stronger
specialisation for the controller [43]. Furthermore, in decentralised control, units
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are prone to opposing actions, their behaviour may induce needless redundan-
cies, and it is not guaranteed that the globally optimal solution will be found [25].
However, for systems that are complex and operate dynamic environments, the
use of decentralised control offers significant advantages such as increased scala-
bility and robustness and reduced communication and unit processing costs [13].
Simple Behaviours and Local Interactions. In addition to acting autonomously in
a decentralised manner, system components commonly have simple behaviours
with limited perception abilities, and hence they do not have a global view of the
system. For example, ants in an ant foraging colony can perceive the existence of
pheromone or food only at a short radius. Spins in a piece of magnetised material
exert non-negligible influence on their near neighbours. In the Benard example,
liquid molecules influence only a few molecules that they collide with. Yet, most
ants eventually move along an emerging path, the piece of material becomes mag-
netic as a whole, with a single North pole and South pole, and the liquid as a whole
starts cycling through a sequence of rolls. In other words, despite the locality of
interactions, the system reaches a global organised state where all components
are significantly correlated.

The locality of interactions implies that neighbouring configurations are
strongly correlated, and this correlation diminishes as the distance between con-
figurations increases. Furthermore, for an external influence to transfer from one
region of the system to another, it must pass through all intermediate regions, and
it will be affected by all fluctuations and activity that is taking place in them. For
example, if we randomly place an obstacle on the foraging ants path, ants will
progressively form a different path to avoid the obstacle, and this will eventually
affect the majority of foraging ants. Ants closer to the point where the obstacle
was placed will be affected more significantly, and the effects will be less as we
move away from the obstacle.

Simple interacting behaviours can still lead to quite complex patterns. Fur-

thermore, they have the advantage that the information stored in the description
of each behaviour is less than the information needed to describe the pattern: it is
only needed to store information about how to produce the pattern, not the pattern
itself.
Robustness, Resilience. Self-organising systems consisting of large number of
interacting components can be particularly robust, namely they can be relatively
insensitive to errors or perturbations from the environment. For example, if we
remove some bees from a bee swarm or an ant colony, the harvesting result will
be the same. In another example, if some nodes or links of a neural network
are removed, the task the network was trained to perform will be largely still
carried out. A reason for robustness is the redundancy inherent in such distributed
organisation systems, and the remaining components can cover for the removed
ones.

Furthermore, such systems are commonly resilient, namely they have a strong
capacity to restore themselves. For example, an ecosystem that has been damaged
from a fire will in general recover in a short time. In a magnetic material, if part
of the spins are diverted from their alignment, the magnetic field produced by the
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rest of the spins will put them back. Apart from redundancy, another reason for
resilience is the random fluctuations, or “noise”. For example, foraging ants can
move to some random direction with some small probability. This randomness
allow them to initially discover the food source and repair the emergent path in
case it gets damaged. Finally, a third reason for resilience is the stabilising effect
of feedback loops which will be described below.

e Feedback Loops. In complex, nonlinear systems the relation between cause and
effect is not straightforward, and small causes can have large effects and vice
versa. For example, let us assume that a magnetised piece of iron is subjected
to an external magnetic field with a direction different from its own field. In the
beginning, a large increase in the external field has practically no effect until a
threshold is crossed. After that, any small further increase suddenly reverses the
polarisation of the whole system.

This is due to the feedback relation which commonly holds between compo-
nents of self-organising systems. Each component, for example a spin in a mag-
net, affects the other components, but these components in turn affect the first
component. This cause and effect is circular. Any change in the first components
is fed back via its effects to the other components to the first component itself.

Feedback can be either positive or negative. In positive feedback the recurrent
influence reinforces or amplifies the initial change. In other words, if a change
takes place in a particular direction, the reaction being fed back takes place in
that same direction. In negative feedback the reaction is opposite to the initial
action, namely the original fluctuation is suppressed or counteracted, rather than
reinforced.

Positive feedback makes deviations grow in a runaway, explosive manner. It
leads to accelerating development resulting in a radically different organisation.
Negative feedback, on the other hand, stabilises the system by bringing deviations
back to their original state.

e Emergent Properties. The resulting organisation can give rise to particular organ-
1sational constructs, such as structures, patterns or other system properties that
cannot be reduced to the properties of its elements. The emergent outcomes exist
and can be perceived only after self-organisation has taken place. For example,
Benard cells are created after self-organisation of the liquid, and they are charac-
terised by the direction of the molecules rotation, which is an emergent property.
For an independent molecule, such rotation is not defined.

A higher-level emergent property typically constrains the behaviour of the
lower-level components. For example, the overall rotation characterising a Be-
nard roll will force the liquid molecules to move in particular directions instead
of others. This is called downward causation. Downward causation refers to a
higher organisation level exerting influence downwards to a lower organisation
level, causing in the Benard rolls example the molecules to move in a particular
way.

Random perturbations are crucial for emergence, since they enable discovery
of new solutions, and fluctuations can act as seeds from which structures nucleate
and grow. For example, foraging ants may get lost by following trails with some
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level of error, and this phenomenon may lead them in finding new, inexplored
food sources and recruit nestmates to these food sources. In the general case, self-
organisation can be witnessed without emergence [27]. For example, in the light
bulb system there is no property that occurs only after system self-organisation.
Further discussion on the emergence concept is provided in Sect. 3.3.

Symmetry Breaking. Non-organised systems are originally in a disordered con-
figuration meaning that possible states for the individual components have the
same probability. Therefore, despite differences in component behaviours on the
global, macroscopic level, the system is considered homogeneous and symmetric
since every behaviour is represented at the same degree, and hence it will look
“the same” from whatever direction it is observed.

After self-organisation, however, the global organisation configuration domi-

nates all others, and therefore, the symmetry in probability is lost. For example,
the probability of spin direction in a magnet will be either one or zero. This is
referred to as “symmetry breaking”.
Bifurcations. The evolution from disordered to ordered configuration is normally
triggered by a change in the external situation, the boundary conditions of the
system. That evolution can take place through different possible sequences of or-
ganisational states, the system may be settling in during self-organisation, which
can be conceived as evolution paths.

We can have system variables whose values are associated with the states the
system would settle in. These variables are called order parameters. It is possible
that when order parameters reach a particular value, any further increase in their
value would result in system evolution along different paths that have been arbi-
trarily chosen when the particular value was reached. If we represent the possible
system states vs the values of an order parameter in a diagram, we can notice one
or more clear branchings or bifurcations.

For example, the speed of molecules in a Benard cell can be increasing with
increasing temperature to a direction arbitrarily chosen when temperature had
reached a particular threshold (see also Fig. 3.1 taken from [51]).
Far-from-Equilibrium Dynamics. In the absence of external perturbation, the sys-
tem is expected to stabilise in some states in which emergent properties can be
observed. This implies a kind of dissipation of some “energy”’, otherwise the sys-
tem would be continuously changing.

Self-organising systems can reach a static global organisation, or equilibrium,
or stationary involving ongoing activity. Equilibrium is characterised by the ab-
sence or entropy production or, equivalently, by the fact that all excessive energy
has been dissipated to the environment.

When a constant input of energy is provided in the system, as for example in
the Benard cell case, the system cannot reach equilibrium, and it constantly dis-
sipates energy to its environment. Such systems are termed Far-from-equilibrium
systems. A far-from-equilibrium system is in principle capable of producing a
much greater variety of regulating actions leading to multiple stable configura-
tions. However, due to the dependency on an external source of energy, such sys-
tems are more fragile and sensitive to changes in the environment and also more
dynamic and capable to react.
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Fig. 3.1 Feigenbaum
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Complex self-organising systems tend to reside on the “edge of chaos”. The
“edge-of-chaos” is the narrow domain between equilibrium and turbulent, chaotic
activity. The mechanism by which complex self-organising systems tend to main-
tain on this critical edge has been called “self-organised criticality”.

The system behaviour on the edge of chaos is typically governed by a “power
law” [43] which states that large adjustments are possible but they are much less
probable than small adjustments.

e Adaptability. The problem of adaptability is to maintain a particular organisation
in spite of environmental changes, and the question involved is which action to
use in which circumstances. It can be modelled as a problem of regulation or
control to achieve “self-regulation as to operate the same in a changing environ-
ment” [43]. Not all self-organising systems are adaptable. For example, magnets
and Benard cells are adaptive but not adaptable since they do not maintain the
same function for changing environments.

In various disciplines such as organisational management and ecology, adapt-
ability is described as the ability to cope with unexpected disturbances in the en-
vironment while maintaining a particular organisation. For example, the immune
systems are adaptable systems since they maintain the organisation (health) of the
living organism despite any perturbations organisms receive from their environ-
ment through contact with viruses.

To find the right type of antibodies, immune systems simply produce a vast
variety of different antibody shapes. However, only the ones that “fit” the in-
vaders are selected and reproduced in large quantities. The aim is to minimise
deviations from a goal configuration by counteracting perturbations before they
become large enough to endanger the essential organisation.

This means that:

1. The system must produce a sufficient variety of actions to cope with each of
the possible perturbations.
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2. The system must select the most suitable counteraction for a given perturba-
tion.

Variety can be fostered by keeping the system sufficiently far from equilibrium
so that it has plenty of stationary states to choose from. Selectivity requires that
these configurations are in sufficiently small numbers and sufficiently stable to
allow an appropriate one to be selected without risk of modifying the overall
organisation.

Another typical example of simple variation and selective reproduction of fit
components underlies economic and ecological adaptation mechanisms.
Organisational Closure and Hierarchy. Self-organising systems at some point
settle into a negative feedback regime or into an attractor state. Subsequently, they
become relatively impervious to external disturbances and largely independent
from their environment. Therefore, they can be considered that they are “closed”
against relatively small influences from the outside.

For the outside observer, closure determines a clear distinction between inside
(components that participate in the closure) and outside (those that do not). In
other words, closure defines a boundary separating the organisational structure
from the environment, This boundary can encompass all components of the orig-
inal system, for example in case of a magnet, or only part of them as in a Benard
cell.

A self-organising system may settle into a number of relatively autonomous,
organisationally closed subsystems. These subsystems will continue to interact
in a more indirect way, determining subsystems at a higher hierarchical level,
which contain the original subsystems as components. For example, a cell is an
organisationally closed system encompassing a complex network of interacting
chemical cycles within a membrane that protects them from external disturbances.
Cells are themselves organised in circuits and tissues that form a multicellular
organism. Organisms are further connected in cyclical food webs, collectively
forming ecosystems.

3.3 Emergence

Our aim is to analyse the emergence concept from two perspectives: One concerning
the properties that when observed are sufficient to identify emergence, and another
focusing on those system characteristics that when all present the system has the ca-
pability to produce emergence. Subsequently, we attempt to provide an operational
definition of emergence.

3.3.1 History

Emergent properties were first studied in the Greek antiquity in the context of
philosophical treatises [24, 36]. For example, while referring to the significance
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of “wholes” in the natural world, Aristotle wrote: ... the totality is not, as it were,
a mere heap, but the whole is something besides the parts ...”,° which is inter-
preted as “the whole is something before, over and above its parts, and not just
the sum of them all.” [24] or simply “...the whole is more than the sum of its
parts ...” [27, 30].

The expression “whole before its parts” refers to the ontological distinction be-
tween parts and wholes and in particular to the explanatory precedence of a whole
entity over the parts of which the whole is made up. This is exemplified in the re-
sponse given by Aristotle to a famous paradox introduced by Zeno. As [36] details,
Zeno argued that a distance of any length could be divided into an infinite number of
shorter segments. Hence, covering the distance would require traversing an infinite
number of shorter segments, which, as a result, would take an infinite amount of
time. That was obviously paradoxical since we do cross distances in finite lengths
of time. Aristotle’s response was that a length was first and foremost a whole. That
whole might indeed be divided into an infinite number of parts; however, the whole
was fundamentally irreducible to those parts, and in fact it was only due to the pre-
existence of the whole that it could be traversed.

The pre-existence of a coherent whole that cannot be described merely as a sum
of its constituent parts was later endorsed in the concept of Gestalt, which orig-
inated from theories of Johann Wolfgang von Goethe, Immanuel Kant and Ernst
Mach [9, 30, 36] and refers to whole forms or global configurations. Initially, the
term ‘Gestalt’ referred to secondary qualities that emerged from the parts constitut-
ing a whole. For example, Goethe considered a Gestalt to be “a natural unity that
was the endpoint of an entelechetic development out of primordial chaos” (see [36]
referring to [42]). This had some similarities with current notions of emergence, for
example with the one adopted in complex systems where it is considered that order
emerges from chaos [46, 53].

After various ramifications, the term Gestalt was accepted as a perceptually pri-
mary concept, defining the parts of which the whole is composed. For example,
the founder of modern Gestalt psychology Christian von Ehrenfels illustratively re-
marked that perception takes place through recognising whole patterns: “the whole
is greater than the sum of the parts” (see [36] referring to [42]). In modern Psy-
chology the Gestalt effect refers to the form-forming capability of our senses, par-
ticularly with respect to the visual recognition of figures and whole forms instead of
just a collection of simple lines and curves. A typical example given to demonstrate
the Gestalt effect is that of a picture of a dog, which can be perceived as a whole
at once, and it is not recognised by identifying its parts first (such as feet, ears, and
nose), and only then inferring the dog from those component parts [74].

Neither Gestalt nor the Aristotelian view of emergence explain how the emergent
outcome is produced. Furthermore, they both assume the existence of a pre-given
whole, and therefore they capture emergence only in a static sense. The dynamic
aspect of emergence is considered in the technical definition of the term which was

® Aristotle, Metaphysics, Book H 8.6.1045a:8-10.
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given by the English philosopher G.H. Lewes in 1875. Lewes was based on an ear-
lier philosophical work of J.S. Mill concerning differentiation of types of causation,
and he classified chemical compounds resulting from chemical reactions as either
resulting or emergent (see [36] referring to [57]):

although each effect is the resultant of its components, we cannot always trace the steps of
the process, so as to see in the product the mode of operation of each factor. In the latter
case, I propose to call the effect an emergent. It arises out of the combined agencies, but in
a form which does not display the agents in action ... Every resultant is either a sum or a
difference of the co-operant forces ... [and] is clearly traceable in its components ... the
emergent is unlike its components insofar as these are incommensurable ... and it cannot
be reduced either to their sum or their difference.

The newly defined concept was widely adopted in late 19th century, and it was
placed in the core of a loosely joint movement covering social sciences, philosophy
and theology which was originally termed emergent evolutionism (see [9] for history
and review) and later known as proto-emergentism [27, 30, 36].

Despite that several proto-emergentists employed the term ‘Gestalt’ for describ-
ing emergent phenomena, the proto-emergentist view is radically different. The
emergent process is viewed as a black box (see Fig. 3.2). A number of interme-
diate system organisation levels is considered, but only the inputs and outputs at the
lowest and highest levels respectively can be realised, and the emergent outcome
is formed dynamically without any knowledge of how the entries are transformed
to outputs. Many well-known researchers including G.H. Lewes, C.L. Morgan, J.S.
Mill, S. Alexander, D. Broad, W. Wheeler and A.N. Whitehead participated in that
movement trying to explicit the characteristics of emergent phenomena. However,
the lack of adequate explanations regarding the causes of emergence resulted in the
deterioration of the movement in early 20th century.

After 1930 a different perspective started gaining ground, realised by a movement
termed neo-emergentism [27, 30, 36]. Neo-emergentism had its roots in approaches
followed to study phenomena and dynamics of systems in positive and computer
sciences. In contrast to proto-emergentism, this movement aimed at understanding
and reproducing the processes which lead to emergent phenomena. The view is that
the unique features of emergence can be better apprehended by sketching out its sci-
entific and mathematical sources, as is done in complexity theory for instance. Rep-
resentative examples of neo-emergentist approaches include the works of H. Haken,
J. Holland, S. Kauffman, C. Langton and I. Prigogine. Their efforts concentrated
on developing theories, tools and methodologies which aimed at enabling the ex-
pression of emergent processes as less dense using more primitive models and con-
sequently as less miraculous (see Fig. 3.3). The neo-emergentism movement is still
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actively developing having so far shown important advances in modelling, engineer-
ing and controlling emergence [29, 32, 54, 79].

In the early neo-emergentist approaches developed in cybernetics, information
theory and general systems theory, emergent phenomena were not the explicit focus
of research per se. The reason is that these earlier approaches investigated systems
which were simple, linear and equilibrium seeking [36]. In time the interest grad-
ually shifted to complex, nonlinear and nonequilibrium systems, for example such
as those targeted by complexity theory [45]. The basic idea in neo-emergentism is
that the dynamical characteristics of emergence can be better understood by con-
sidering its association with the arising of attractor states during system operation
which are not pre-given in the sense of a Gestalt. Attractors technically pre-exist
of course; however, they are not possible to be known or accurately predicted in
advance due to system complexity,” and they reveal themselves when a dynamical
system bifurcates. The convergence to an attractor state signifies both a quantitative
and a qualitative metamorphosis of the system. Upon their appearance, these “new”
attractor states dominate the system and hence enable the emergence of something
radically novel in respect to what existed before [46, 53, 64, 65].

An important strand in neo-emergentism is connectionism [70]. Connectionism
is a set of approaches originated in the 1980s in the fields of artificial intelligence,
cognitive psychology, cognitive science, neuroscience and philosophy of mind that
models mental or behavioural phenomena as the emergent processes of intercon-
nected networks of simple units. There are many forms of connectionism, but the
most common forms use neural network models (see for example [48]). Although
the basic idea of connectionism has received fierce criticism from the proponents
of the symbolic Al school, connectionist models are believed to be a step in the
direction toward capturing the intrinsic properties of the biological substrate of in-
telligence, since they have been inspired by biological neural networks and seem to
be closer in form to biological processes. Furthermore, such models are capable of
handling incomplete, approximate, and inconsistent information, as well as gener-
alisation. Their main weakness however is the difficulty in development, which is
still an open research issue [14, 27, 32, 79].

TComplexity can be simplistically perceived as the minimum amount of information necessary for
system description. Various definitions of complexity exist; for example see [4].
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3.3.2 Definitions

3.3.2.1 Examples of Emergent Phenomena

Phenomena that can be characterised as emergent include organisational structures
and frameworks, behavioural processes, particular system states, and even outcomes
corresponding to functions® not explicitly implemented in the system.

The foraging ant path and Benard cells are representative examples of emerging
organisational structures. As already mentioned in Sect. 3.2.3.1, Benard cells are
convection cells that appear spontaneously in a liquid layer when heat is applied
from below (see Fig. 3.4 taken from [2]). The setup includes a layer of liquid, for
example water, between two parallel planes. Initially, the temperature of the bottom
plane is the same as the top plane. The liquid then tends towards an equilibrium,
where its temperature is the same as that of the surrounding environment. Once
there, the liquid is perfectly uniform, and it appears the same from every direction.
When the temperature at the bottom increases up to a critical point, then hexagonal
convection cells appear (see Fig. 3.5). The microscopic random movement of the
liquid molecules spontaneously becomes ordered on a macroscopic level, with a
characteristic correlation length. The rotation of the cells is stable and will alternate
from clock-wise to counter-clockwise as we move horizontally along the liquid. If
the warmth increases, this phenomenon disappears.

Typical examples of emergent behavioural processes and system states can be
found in the well-known Game of Life, which is a cellular automaton devised by the
British mathematician J.H. Conway in 1970.” The game consists of a collection of
cells which are placed on a board with a connexity of 8. Cells can have the status
of ‘dead’ or ‘alive’, and at each game round they can change their status and affect
the status of their neighbouring cells according to a few simple mathematical rules.
Alive cells are coloured, and depending on the initial conditions, they can form

8The term function here refers to a process or operation and not to some direct input—output mech-
anism such as a mathematical function. For example, an foraging ant-colony can find the shortest
path between food source and nest without it being an explicit function of the system.

http://www.bitstorm.org/gameoflife/
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Fig. 3.5 Benard cells
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various patterns throughout the course of the game. Experimentation with the game
involves creating an initial cell configuration and observing how it evolves during
game execution. Based on different initial configurations, several types of emergent
states, patterns and behavioural processes can be observed [5, 7, 46].

A representative emergent pattern in Game of Life is a glider which appears to
be moving across the board (see Fig. 3.6) diagonally at a speed of 1/4 of cell at each
round. The glider pattern is often produced from randomly generated starting con-
figurations [7]. Gliders are important to the Game of Life because they are easily
produced, they can be collided with each other to form more complicated objects,
and they can be used to transmit information over long distances. Other character-
istic emergent patterns appearing in the game of life include “still lives”, oscillators
and patterns that translate themselves across the board (“spaceships™) [5, 7].

A typical process that can emerge during the game of life is Glider Gun which
produces gliders repeatedly (see Fig. 3.7). A glider gun is a pattern consisting of
a main part that repeats periodically like an oscillator and emits gliders at regu-
lar time intervals. The discovery of the glider gun process eventually led to the
proof that Conway’s Game of Life could function as a Turing machine. An exam-
ple of emergent state in the Game of Life is the R-predomino pattern (see Fig. 3.8).
R-predomino acts as a glider gun producing exactly six gliders in 1103 game rounds.
The pattern subsequently settles down to a stable state, and any movements it makes
on the board are restricted into a 51-by-109 cell region. This is a representative ex-
ample of an emergent phenomenon that consists of an emergent state. There are nu-
merous examples of function outcomes obtained indirectly through emergence, such
as emergent construction of course timetables [67] and development of manufactur-
ing schedules [64]. In these cases the system is modelled as several components
which interact locally, for example along the lines of an ant colony. The outcome of
interest, such as timetable, manufacturing plan, assembly movement sequence and
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machine configuration, corresponds to a global property which obtains the desired
value as a result of the emergence process that takes place based on component
interactions.

3.3.2.2 Overview of Emergence Definitions

Definitions of emergence can be broadly classified in two categories based on their
view of emergent properties [50]. In the first category any system properties are
considered as emergent when they cannot be analysed (or “reduced”) through func-
tional decomposition. In these cases it is said that, ... the system is more than the
sum of its component parts ...” [5, 36, 44]. On the other hand, definitions belong-
ing to the second category accept that ... any unexpected properties are emergent
... [18, 19, 50, 73].

A representative example of the first category is the view of emergence in-
troduced by proto-emergentists (also termed British emergentists). The proto-
emergentist view was inspired by properties of living systems where “... no mere
summing up of the separate actions of system ingredients will ever amount to the
action of the living body itself ...” (see discussion about proto-emergentist view of
emergence in [50]). According to proto-emergentists, emergent properties are pro-
duced as heteropathic system effects. Such effects appear in complex biological and
chemical systems where the conjoint actions of system components cannot be char-
acterised as the sum of any individual causes. For example, the addition of sodium
hydroxide to hydrochloric acid produces sodium chloride and water. However, it is
unclear how such a reaction could be characterised as the sum of individual chem-
ical compounds. In contrast, any properties occurring as homeopathic effects are
not considered as emergent. Homeopathic effects arise when system causes acting
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together are identical to the sum of the effects of those causes acting in isolation.
For example, forces acting on an object can have the same effect when applied in
combination or separately.

Proto-emergentists proposed a layered view of complexity in which the world
is divided into different strata. At the bottom there are the fundamental physical
laws. On this foundation we can observe chemical, biological, psychological and
social interactions at ever increasing levels of organisational complexity. In upper
levels, we can identify properties that cannot be understood in terms of the indi-
vidual observations of underlying physical phenomena. These emergent properties
can be influenced by behaviours at lower levels in this layered approach. Research
in physical sciences, therefore, investigates fundamental properties and laws that
are broadly applicable. The remaining “special sciences” focus on properties that
emerge from complex systems.

Despite having irreducibility as the common basis, proto-emergentist definitions
of emergence have considerable differences as to how irreducibility can be mod-
elled. For example, Alexander argues that emergent properties are novel qualities
and associated, high-level, causal patterns which cannot be directly expressed in
terms of more fundamental system entities and principles (see Johnson in [50] for
a discussion). A common example of such a property is consciousness which is in-
trinsically a system level property and quite distinct from the underlying physiology
of lower-level system components [26]. Along this line, it makes little sense to talk
of human cognition in terms of individual neurons. However, this clear separation
of emergent properties and their causal processes contrasts other proto-emergentist
definitions. For example, Mill accepts that strong emergent properties, although ir-
reducible to physical laws of causal composition, can still be described in terms of
other laws or patterns of behaviour. Therefore, we can still talk about causes of pat-
terns of cognitive behaviour despite that we cannot explain in detail how cognitive
behaviours relate to underlying electrochemical changes in the brain. In this view,
some relation between the emergent phenomena and the underlying system lay-
ers can be accrued by experimental analysis, for instance using simulations and/or
statistics. For example, this approach has been extensively followed by 19th cen-
tury bridge builders who used to develop experimental models of bridge behaviour
when they did not have a sufficient theory to describe why some bridges failed while
others did not.

Proto-emergentists do not consider interactions of the system with its environ-
ment, and they do not provide any suggestions about design methods or develop-
ment techniques [50]. However, the latter view of emergence provides some hope
for ‘controlling’ or at least anticipating emergent properties by aiming to understand
the source of any non-determinism and the resulting emergent phenomena, for ex-
ample by studying the underlying properties of lower-level components within a sys-
tem. In this respect, functional decomposition can still be considered as a possible
tool for engineering emergence. For example, one could attempt to develop multi-
variate statistical models linking the electrochemical brain changes with different
of cognitive behaviours and then aim to achieve particular behaviours by applying
specific electrochemical brain variations.
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The definition of emergence has been largely a philosophical issue not only in
early and proto-emergentist approaches but also in recent times as well. For ex-
ample Bedau proposes three types of emergence, nominal, weak and strong [5, 6].
Nominal emergence refers to systemic properties that the system parts cannot in-
dividually have. In this approach, a system comprising points that are equidistant
from a fixed point of origin is considered to have the nominally emergent property
of “circle”. The reason is that being a circle is a property which none of the indi-
vidual points can have. Furthermore, strong emergence refers to nominally emer-
gent properties which are supervenient to the properties of the individual system
components. In addition, strong emergent properties exhibit irreducible causal pow-
ers affecting component behaviour, something which Bedau refers to by the term
downward causation. Typical examples of strongly emergent properties are phe-
nomenal qualities, such as qualia and consciousness. Bedau further claims that the
irreducibility of strongly emergent properties to properties of system components
renders strong emergence scientifically irrelevant. Finally, a nominally emergent
property is considered as weakly emergent if it can be derived but only by simu-
lation “... a nominally emergent property P possessed by some locally reducible
system S is weakly emergent if and only if P is derivable from all of S’s micro-facts
but only by simulation ...”. In other words, weak emergence is generally reducible,
although only with considerable difficulty. Therefore, Bedau argues that weak emer-
gence can be quite useful for scientific study of numerous real-world phenomena.

In the majority of neo-emergentist approaches, emergence refers to the process
that gives rise to phenomena which are novel and unpredictable. For example, Gold-
stein in [36] defines emergence as the “... arising of novel and coherent struc-
tures, patterns and properties during the process of self-organisation in complex
systems ...”. Goldstein considers emergent phenomena to be conceptualised at a
systemic, macro-level in contrast to the micro-level components and processes out of
which they arise. Along the same line, Johnson in [50] defines emergent properties
as “... unexpected behaviours that stem from interaction between the components of
an application and the environment ...”. Johnson emphasises that emergent prop-
erties can be beneficial, for example, if users adapt products to support tasks that
designers never intended. However, they can also be harmful, for instance if they
undermine important safety requirements. According to this view, unpredictability
of emergent phenomena is caused by system non-determinism, which can largely
result from system underspecification, for example when designers fail to correctly
specify the behaviour of non-deterministic application processes. However, non-
determinism can also be introduced by other factors, such as environmental condi-
tions. In a layered system view, for example along the lines of stratified system view
suggested by proto-emergentists, non-determinism can also stem from interactions
between adjacent layers.

Some definitions cover both irreducibility and unpredictability of emergent phe-
nomena by considering different emergence types. For example, Chalmers argues
for the existence of three types of emergence, termed strong, weak and intermedi-
ate [18, 19]. In this view, high-level phenomena are characterised as strongly emer-
gent with respect to a low-level domain if they are not deducible, even in principle,
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from truths in that low-level domain. However, although strongly emergent phe-
nomena are not deducible from truths from lower-level domain, they are still cor-
related to them. Regarding irreducibility, this notion of strong emergence is similar
to that introduced by proto-emergentists; however, Chalmers further argues that the
only emergent phenomenon that is truly strong is consciousness. To provide an ex-
ample of consciousness as a strongly emergent phenomenon, Chalmers assumes a
colour-blind scientist that is given complete physical knowledge about brains. He
then emphasises that the scientist would nevertheless not be able to deduce and ob-
tain a conscious experience of the red colour. Weakly emergent phenomena are also
defined similarly to the neo-emergentist approaches, since they are considered as un-
expected given the principles governing the low-level domain. Chalmers describes
formations in cellular automata as representative examples of weakly emergent phe-
nomena. Finally, intermediately emergent phenomena are not deducible from low-
level laws and initial conditions, but they would be only from low-level facts. This
type of emergence involves downward causation, meaning that higher-level phe-
nomena are not only irreducible, but they also exert a causal efficacy to the low-level
components. Typical examples of such phenomena are the otherwise inexplicable
complex chemical compounds, which, once created, further constrain the behaviour
of the participating chemical elements.

The majority of emergence definitions pays emphasis to axiomatically defining
the physical nature of emergent phenomena. For example, Stefan in [73] argues
that weakly emergent phenomena must have three fundamental properties: (a) they
must be instantiated by systems consisting exclusively of physical entities (physi-
cal monism), (b) they must be global, namely they should not occur in individual
system parts (systemic properties), and (c) they should depend nomologically on the
microstructure of the system (synchronic determination), namely changes in the sta-
tus of emergent phenomena should necessarily result from changes in the properties
of the system parts or their environment. Stephan further defines diachronic emer-
gence as having the additional properties of genuine novelty in system evolution and
structure unpredictability, and synchronic emergence which further has the property
of irreducibility. These three types of emergence are analogous to the previously
described nominal, weak and strong emergence types introduced by Bedau.

There are also cases where the emergent phenomenon is not necessarily global.
For example, Haan [38] argues that certain local properties can emerge in parallel
with global systemic ones, a phenomenon which he terms conjugate. More specifi-
cally, Haan considers three types of emergence:

e Discovery Emergence. In this case the emergent phenomenon is observed only
by an external observer and no conjugate occurs.

e Mechanistic Emergence. Here the global emergent phenomenon is again identi-
fied by an external observer, but there is also local emergence (conjugate). Fur-
thermore, the dynamics producing the local emergence actually depends on the
global emergent pattern, due to downward causal powers (downward causation).

e Reflective Emergence. In this case no external observer is required. The system
objects have some reflective capacity, which enables them to observe the emer-
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gent phenomena, both global and local, they produce. This case also involves both
conjugate and downward causation.

Furthermore, there are definitions of emergent phenomena which have been
given specifically for artificial systems. For example, Forrest [33] defines an emer-
gent computation phenomenon as having three fundamental properties: (a) System
behaviour should be determined from a micro-level dynamic process resulting from
interactions of a collection of individual agents, (b) an epiphenomenon, such as a
particular system state, should be produced by the aforementioned process at the
macro level, and (c) the phenomenon should be a natural interpretation of the pro-
duced epiphenomenon either as computation process or computation results.

Similarly, Muller [64] considers a phenomenon as emergent iff:

1. It occurs in a system of entities in interaction whose expression of the states and
dynamics is made in an ontology or theory D.

2. The system dynamics produce a epiphenomenon, such as a process, a stable state,
or an invariant, which is necessarily global regarding the system of entities.

3. The emergent phenomenon itself is identified by interpretation of the aforemen-
tioned global epiphenomenon, either by an external observer or by the entities
themselves, via an inscription mechanism in another ontology or theory D’.

Muller claims that the nonlinearity of component interactions guarantees the irre-
ducibility of D’ to D, and he considers two types of emergence: (a) strong Emer-
gence that is observed by an internal observer, for example a social structure in so-
cial systems and (b) weak Emergence that is observed only by an external observer,
for example the path formed by foraging ants.

Finally, computational emergent phenomena have been operationally defined in
IRIT [17] as having two fundamental properties: (a) they must be realisations of
specific system goals, such as solving specific problems or providing a particular,
possibly evolving over time, functionality that must be confirmed by relevant sys-
tem users, and (b) the details of the phenomenon, such as the solution given or the
functionality produced, should not have been exactly pre-engineered in advance by
system designers, but they should have been adaptively produced as a result of sys-
tem dynamics.

3.3.2.3 The Essence of Emergent Phenomena

To be able to engineer emergence to achieve intended results, several issues need
to be clearly understood. One such important issue is the scope of emergent phe-
nomena. The consensus is that emergent phenomena are global and they concern
the system as whole despite being dependent on the individual system compo-
nents [5, 18, 36, 44, 64]. This is aligned with the common view that systems pro-
ducing emergent phenomena can be perceived as involving two levels (see [44, 73]
for instance). The system component (micro) level, where the mechanisms produc-
ing the emergent phenomenon are executed, and the systemic (macro) level, where
the emergent phenomenon is perceived. For example, in a foraging ant colony, the
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individual ant movements belong to the micro level, while the path that is formed
emergently between nest and food source is considered to reside at the macro level.

The question then is who can perceive the emergent phenomenon. Considering
their global scope, emergent phenomena can generally be identified by some ob-
server located outside the system that produces them [36, 38]. For example, the ant
path can only be identified by those examining the foraging ant colony from some
distance. Ants cannot perceive the whole path since they can only perceive their
surrounding environment. However there are cases where emergent phenomena are
identifiable from system components as well [18, 36, 64]. Examples of such cases
are phenomena that emerge in social systems such as emergent leadership and emer-
gent work ethics. In both cases the emergent phenomenon is identified by all society
members.

Upon arising the emergent, phenomena subsequently affect the behaviour of sys-
tem components. In most definitions the view is that component behaviour is af-
fected by downward causal powers appearing due to the emergent phenomenon.
This downward influence is commonly referred to as downward causation [6, 36,
44]. In other cases it is suggested that emergence can also take place at the micro
level giving rise to emergent component properties which evolve in parallel with the
global emergent phenomenon. An example of such dual emergence is the conjugate
proposed by Haan [38].

Depending on whether the emergent phenomenon is visible by the system com-
ponents or not, its downwards effects are direct or indirect respectively. For example,
once an ant path or a flock of birds has been shaped, then movements of individual
ants or birds are aligned to follow the path or to not collide with each other in the
flock respectively. This is done indirectly since neither the birds not the ants are
aware of the existence of the whole flock or path respectively. In contrast, once a
leader has emerged in a society, as is the case of a leader emerging in music quar-
tets for instance (see Goldstein [36] for more details), all society members become
aware of the leader and receive direct influence.

The predictability of emergent phenomena is another issue of concern. In fact, in
many definitions of emergence any unpredictable/unexpected phenomena are con-
sidered to be emergent [18, 36, 44, 50, 73]. In a first glance this seems to contradict
the view that emergence could possibly be harnessed and used in artificial systems
for specific purposes. The obvious question arising would be that if some outcome is
indeed unpredictable, then how can we be certain that it will happen at all. Following
this line of thought, we would conclude that we cannot hope to engineer emergence
as the solution to a given problem. However, this problem is mitigated by the clarifi-
cation that unpredictability of emergent phenomena actually means unpredictability
in practice. In other words, emergent phenomena can be considered as completely
unpredictable only the first time ever they are perceived since they could not be pre-
dicted in advance. After initial discovery of emergent phenomena however, models
of cause and effect (both statistical and simulation ones) can be established between
component behaviour and emergent outcomes, and hence emergent phenomena can
become predictable in principle. In fact many emergent phenomena are discovered
by simulations, and that approach is also widely applied to confirm that certain ini-
tial conditions, environmental dynamics and selected component behaviours will
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lead to specific emergent outcomes [5, 8, 28]. However, only probabilistic estima-
tions of the type and time of occurrence of emergent phenomena can generally be
made, and in cases where the environment has stochastic behaviour an emergent
phenomenon cannot be exactly calculated in advance not even by simulation.

In particular, some authors consider emergent phenomena as radically novel (see
for example [36, 73]); however, this cannot generally be the case. Emergent phe-
nomena are in most cases only practically novel since, given the system dynamics,
it is not easy to accurately predict them in advance. For example, it is not easy to
exactly predict a hurricane and its characteristics before it is shaped. However, the
occurrence of a hurricane is not something radically novel, it is simply practically
impossible to exactly determine in advance the detailed characteristics of the partic-
ular hurricane that finally occurred. As Chalmers in [18] argues, a Laplace machine
fed with all necessary data would in principle be able to accurately predict any phe-
nomenon except consciousness. '

Another issue of concern is the in principle derivability or reducibility of emer-
gent phenomena. In many definitions, irreducibility characterises strong forms of
emergence, while unpredictability is sufficient to justify weak ones [5, 18, 50]. How-
ever, irreducibility in principle has been strongly criticised. For example, in many
cases irreducibility is considered as lack of knowledge, which an appropriate theory
explaining how the currently irreducible emergent phenomenon is produced would
cover [36, 50, 73]. In particular, apart from offering a means to conceptually link
cause and effects in emergent phenomena that otherwise would have no concrete
explanation, irreducibility does not assist in our understanding of emergence. For
example, Bedau considers strong emergence as being scientifically irrelevant for
the study of natural phenomena [5, 6], while, as mentioned above, Chalmers ac-
cepts only one case of strong emergent phenomenon, that of consciousness [19].

Another important issue in understanding emergence is how emergent phenom-
ena occur. In many cases emergent phenomena are considered to pre-exist, for ex-
ample as in the Aristotelian view of emergence. In other cases there is no explicit
reference to the emergence process, for example as is done in proto-emergentist
definitions where the production process is seen as a black box (for example, see
Johnson in [50] referencing Alexander). Similarly, there is no reference to the mech-
anisms producing the emergent phenomena in definitions where emergent phenom-
ena are considered as in principle irreducible to the properties and behaviour of the
system components (for example, see [19, 73]).

In the majority of cases, however, the emergent phenomenon is considered to be
produced by some process which is executed at the component level. That process
is necessarily dynamic [5, 36, 38, 44, 46]. As Goldstein emphasises, ... emergent
phenomena are not pre-given wholes but arise as a complex system evolves over
time. As a dynamical construct, emergence is associated with the arising of new at-
tractors in dynamical systems ...”. The dynamism of the micro-level processes is

19Chalmers argues that the only irreducible emergent phenomenon is consciousness and any other
phenomenon can be in principle derived given initial conditions and computing power. See [18, 19]
for more details.
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mandatory for two main reasons: Firstly, our reasoning is done on the basis of phys-
ical monism,'! according to which the scientifically relevant emergent phenomena
under examination are created only by physical powers and lows. Secondly, we
require that emergent phenomena be practically (for example analytically) unpre-
dictable in advance.

The mechanisms that produce the emergent phenomenon are often considered
to be based on interactions of individual components. The reason is that auton-
omy of interactions and a large number of components result in nonlinear system
behaviour, which cannot be accurately predicted in advance. Therefore, several au-
thors agree that component interactions in complex systems operating at the edge
of chaos (namely exhibiting far from equilibrium dynamics) can lead to emergent
outcomes [36, 44, 53]. In fact, this nonlinearity requirement has led many authors
to propose that decentralised control, large number of components, and autonomous
interactions are mandatory system properties in order to exhibit emergent phenom-
ena [27, 31, 36, 44].

Nonlinearity is not caused only by local interactions among distributed compo-
nents however. For example, in dynamical systems we can have behaviours based on
iterated functions,'> which can lead to nonlinear behaviour and in particular to inter-
esting emerging results [63]. The behaviour of such systems is largely unpredictable
since it 1s governed by deterministic chaos. Among other characteristics, such sys-
tems can exhibit the butterfly effect [43, 45], namely their trajectory through state
space is sensitively dependent on the initial conditions, and hence unobservably
small causes can produce large effects. This fact also relaxes the requirement for
the system to necessarily have a large number of components, and it actually can al-
low having emergent phenomena in systems with just one component. Stephan [73]
provides a good relevant example of nonlinear behaviour produced by logistic func-
tions. The example involves an iterated function defined on the logistic function
y =mx (1l — x). Stephan demonstrates that for different values of m, there is dif-
ferent behaviour of the logistic function, for example, for m = 1, 5, the function
converges to a constant value depending on initial value of x.

Some authors have linked the appearance of emergent phenomena with self-
organisation [31, 36, 43]. In particular, in many cases emergence is thought to occur
only in self-organising complex systems operating in far-from-equilibrium dynam-
ics and being in the edge of chaos [52]. In complex systems, the research very often
centers on the emergent global dynamics of a whole system. It is usual in this ap-
proach to view the global properties of the system as emerging from the actions of its
parts, rather than seeing the actions of the parts as being imposed from a dominant
central source [45, 46]. Properly defined, however, there may be instances of self-
organisation without emergence and emergence without self-organisation, and it is
clear from the literature that the phenomena are not the same (see [27] for instance).
For example, crystallisation or the creation of sand dunes do not require any form

ISee Stephan in [73] for more details on physical monism.

2The values of iterated functions are calculated sequentially in a manner such that the output of
each calculation is the input to the next one.
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of self-organisation. Both phenomena result from a dynamic process which eventu-
ally stabilises giving rise to the emergent outcome. Furthermore, dynamic behaviour
does not occur only in complex systems. For example, the Game of Life cannot be
characterised as a complex system, and yet it exhibits emergent phenomena. There-
fore, the link between emergence and self-organisation generally remains an active
research question [27, 31].

Further to the characterisation of emergent phenomena, there is a common view
that they need to exhibit a level of adaptability and presistence, which implies that
the system will have reached an organisational regime having some degree of sta-
bility and resistance to perturbations [20]. In fact, it is this very resistance to pertur-
bations that for some authors differentiates true emergent phenomena from episte-
mological artefacts appearing due to pure chance. For example, Goldstein [36] dis-
cusses the case of some hill in USA which, when viewed from a certain angle and at
a certain time of day, resembles the profile of the American president J.F. Kennedy.
Obviously that is an epistemological artefact which does not really exist. Such epis-
temological artefacts, for instance shapes formed from play of light on leaves in
a breeze, are considered to include serendipitous novelty and are clearly separated
from authentically emergent phenomena (see Holland [46] for a discussion). The
stable organisational regime linked with occurrence of emergent phenomena can
be an equilibrium or an organisationally closed set of states, which, as mentioned in
Sect. 3.3.1, are commonly referred to with the term attractor [46, 53]. In this respect,
self-organisation is quite relevant since it can cause a system to reach an attractor
regime and hence create the conditions for emergent phenomena to be created.

3.3.3 Operational Definition of Emergence in Computer Science

Considering the definitions discussed above, the term emergence can be used in
software engineering to refer to a dynamic process producing a global phenomenon
that is practically unpredictable in advance. Such an emergent phenomenon will be
dependent on system component functionality, and its unpredictability will be due
to nonlinear system behaviour. This view of emergence includes both reducible and
irreducible types of emergence described in the existing definitions, since opera-
tionally all cases of emergence in software systems are reducible in this respect.
Therefore, we provide the following definition:

Emergence is the process that causes a software system to produce an emergent phe-
nomenon.

The emergence process can most commonly, but not necessarily, be a process of
self-organisation. The emergent phenomenon can be anything perceived from the
system’s stakeholders based on the system organisational status, which was not ex-
actly predicted in advance. For example, an emergent phenomenon can be a par-
ticular system response, a piece of information that can consist of a solution to a
given problem, a particular system state, or a particular process that the system may
become capable of executing. An emergent phenomenon is generated and becomes
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identifiable when the system reaches some organisational regime, for example an
attractor, namely a particular state or a set of states the system convergently settles
to or iterates within.'> Therefore, an emergent result can be understood as an in-
terpretation of a particular attractor the system has converged into. Hence, we can
define an emergent result as follows:

An emergent phenomenon produced by a software system is an interpretation of an attractor
the system has converged into, which is practically unpredictable given the functionality of
system components.

An attractor represents for a process a model of causal closure built with sys-
tem states [44, 46]. When reaching the attractor, the process “closes in” and can
not reach out except when significant perturbations are applied to the system. At-
tractors can have many different shapes, sizes and dimensions. The simplest one is
a zero-dimensional point attractor which consists of a single state. This describes
the situation where a system reaches an equilibrium. Furthermore, a quite com-
mon attractor is an one-dimensional limit cycle, where all states of the attractor are
revisited at regular intervals. This describes certain far-from-equilibrium configura-
tions where the system exhibits periodical behaviour, such as the Benard rolls. Other
types of attractors, which are termed “strange”, are characterised by a non-integer,
fractal dimension. This is a representative characteristic of certain types of chaotic
processes [44].

An emergent result is generally perceived and identified as such by some ob-
server who is external to the system producing it. There are cases, however, where
the system components can also perceive the emergent result as a whole once it
occurs. As mentioned previously, the emergent result always affects component be-
haviour and hence depends on whether system components can also perceive the
emergent result that influence, termed downward causation (see Sect. 3.3.3), can
be characterised as direct and indirect respectively. In the first case, system compo-
nents will be directly informed of and affected by the emergent outcome, for exam-
ple as is the case of a multi-agent system where an agent emerges as coordinator at
some point and subsequently all other agents start contacting it to receive coordi-
nation commands. In the second case the behaviour of the system components will
be affected without them being aware of the global emergent outcome, similarly to
foraging ants moving along an emergent path without being aware of its existence.

Hence we can define two types of emergent phenomena:

Weak emergent phenomena are those that are identified only by an external observer and
have an indirect influence on system component behaviour.

Strong emergent phenomena are those that are identified both by an external observer and
system components and have a direct influence on system components behaviour.

Although not exactly predictable in advance, emergent phenomena are in gen-
eral not completely unexpected; if they were, they would not be particularly use-
ful in software engineering. Totally unexpected emergent results are usually linked

I3Heylighen [43] uses the term organisational closure to refer to the convergence of a system to a
set of particular states as a result of a dynamic self-organisation process.



66 G. Di Marzo Serugendo et al.

with undesired system behaviour, one that was not intended when the system was
designed but occurred indirectly during dynamic system operation. Therefore, in
artificial systems emergent results should generally be expected with some prob-
ability. In fact, in the extreme case that the system components do not function
stochastically, emergent results should be able to be completely regenerated given
the same initial conditions and system operation rules. For example, in a software
system simulating a foraging ant colony where ants have deterministic behaviour,
the same ant path will re-emerge if we re-execute the system with the same initial
conditions. Therefore, the challenge for software engineers is to build appropriate
functionality into system components, so that, given appropriate initial conditions
and environmental input, desired emergent results will be produced.

3.3.4 Properties of Emergent Phenomena

In the various definitions of emergence, several properties have been attributed to
emergent phenomena. Considering the definition given in the previous section, an
emergent phenomenon is characterised by the following properties:

e Global coherence. The phenomenon must have global scope, and it be must co-
herent and dependent on the functionality of the system components while at the
same time being clearly separated from the properties of the constituent parts of
the system. Furthermore, it should be understood as being perceived at a macro
level while the underlying processes will be executed at a micro level. Therefore,
there is a strong dependency between the dynamics observed at both macro and
micro levels.

e Novelty. Novelty refers to the fact that although the resulting phenomenon is de-
rived by interpretation of some particular system organisation, reached by a pro-
cess involving micro-level system parts, it is radically different from the individ-
ual properties of these parts, and it cannot be directly estimated from them. In
particular, to identify the emergent phenomenon, different concepts and theories
from those used to describe the micro-level activities are generally required. For
example, in a foraging ant system the ant movements are described in terms of
pheromones, while the emergent ant path is described in terms of concentration
of ants to particular locations.!* Therefore, emergent phenomena are viewed as
interpretations of particular system organisational arrangements.

e Unpredictability. The emergent phenomenon is not practically predictable be-
fore its occurrence. Although emergent results appearing in software systems are
derivable in principle, for example if resource and time consuming procedures
such as simulations are applied, in practice it is not obvious when they will occur.
Therefore in practice emergent phenomena can be anticipated only probabilis-
tically. In fact, given that the exact phenomenon is not known in advance, the

14See [33, 64] for a discussion on how emergent phenomena are interpretations of epiphenomena
produced from dynamic system operations.
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user can actually anticipate a class of emergent phenomena, a particular instan-
tiation of which will occur with a given probability based on initial conditions,
micro-level processes and environmental factors. Therefore from a requirements
fulfilment perspective, such as problem solving, the system designer should at-
tempt to engineer a generic class of phenomena that will potentially provide the
problem solution or fulfil the particular requirements and then probabilistically
expect, given past experience, that a member of this class will instantiate and pro-
vide the desired result. However, the exact occurrence of this particular instance
is not known in advance because it depends on many factors ranging from the
inherent system dynamism to stochastic environmental dynamics. For example,
a system designer modelling a problem solving process as ant colony optimisation
can anticipate that a solution will eventually emerge given the initial parameters
and environmental dynamics based on the known behaviour of ant colony opti-
misation algorithms. However, she will not be able to predict the exact solution in
advance; if that was the case, then the problem would be have been solved in the
first place. It is similar to anticipating, based on previous knowledge, that some
ant path will be formed between a food source and the ant nest. However, we will
not be able to directly estimate the exact path in advance.

e Dynamic (nonlinear) system behaviour. The emergent phenomenon is an inter-
pretation of an attractor the system has converged to. Hence, the system where an
emergent phenomenon is identified needs to exhibit dynamic nonlinear behaviour.
A chain of linear activities enables explainability and predictability of a collective
phenomenon. On the opposite, an emergent phenomenon originates from nonlin-
ear activities at the micro-level, and is realised and becomes identifiable when the
system reaches an attractor organisational regime.

3.3.5 Engineering Nonlinearity

To be able to engineer software systems capable of producing emergent phenomena
that fulfil particular requirements, we need to identify what necessary characteristics
such systems must have. The source of emergent phenomena is nonlinearity, and
hence it needs to be inherent in the behaviour of such systems. Subsequently, system
designers need to engineer appropriate behaviours into system’s components, whose
interaction will eventually produce some instance of a class of desired emergent
phenomena with a given probability. Such component behaviours would be typically
known from existing cause and effect models to generate particular overall system
behaviours and produce emergent phenomena.

There are different ways to engineer nonlinearity in artificial systems. As men-
tioned in Sect. 3.3.2.3, nonlinearity can be mathematically modelled in the be-
haviour of certain system components, for instance by using iterated functions or
centralised rule-bases that result in deterministic chaos. However, this approach is
not particularly strong in addressing the requirements of contemporary software.
For example, centralised solutions suffer from the well-known bottleneck problem.



68 G. Di Marzo Serugendo et al.

Furthermore, they are more cumbersome as far as it concerns adapting to changing
environmental conditions.

Distributed nonlinear systems, on the other hand, are flexible and can adapt to the
changing environment while approaching the solution to the problem. For example,
an ant colony will converge to a path linking food source and nest despite any en-
vironmental perturbations, such as stones thrown on the forming ant path during
foraging. Therefore the most beneficial sources of nonlinearity in this respect are
complex interactions in distributed systems, such as the complex adaptive systems.
Such systems are based on distributed components acting autonomously in a decen-
tralised manner aiming to achieve own goals. Interactions are local and normally
simplistic, but overall they result to global nonlinear system behaviour which can
give rise to emergent phenomena.

The resulting dynamic behaviour of such systems is typically self-organising.
Furthermore, the mechanisms dealing with component interactions can be classified
in two types: external and internal. The external mechanisms enable modification of
the system’s behaviour to be initiated by its environment, for example by imposing
constraints, enforcing rules and delegating artifacts. The internal mechanisms are
ways to change the interaction dimensions that are unfolded by processes within
the system. Interaction is essential to this framework because the events of novelty
and innovation within a system arise from the interactions of these agents with each
other and with the environment.

The challenge for system designers therefore is how to specify local component
behaviours so that they will overall form a complex adaptive system and particularly
that they will produce a desired emergent outcome. More details about methodolo-
gies for engineering self-organisation and emergence are provided in Chap. 12.

3.4 Summary

The concept of emergence has been studied since the Ancient Greece times, and it
appeared in various domains such as philosophy, mathematics, physics, thermody-
namics, systemics and complex systems. Its description has often been resumed to
the phrase “a whole that is more than its parts”, but a lot of different definitions
of emergence currently exist. For artificial systems, a sufficient definition considers
emergent phenomena as interpretations of a particular system organisational regime,
which are not practically predictable in advance.

Emergence refers to the occurrence of some outcome which, despite not explic-
itly represented at a lower organisation level, appears at a higher level and can-
not be understood by simply observing individual component behaviours. Emergent
properties are intimately linked with dynamic self-organising systems having de-
centralised control and local interactions. Their source is commonly, although not
necessarily, the nonlinearity arising from the locality of component interactions.

Hence we accept that self-organising systems have the capability to alter their
organisation (which results to changing the functionality they deliver) to adapt to
external influences. What is organisation and what is functionality can be a matter
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of definition (since in the end they both change to react to external stimuli). How-
ever, in complex self-organising systems, where the possible organisations are too
many to be exactly calculated or observed, and often stochastically determined, self-
organising systems are still capable of producing them and function as to fulfil their
purpose.

Instead of attempting to eliminate emergent phenomena, it could be interesting
to explore how this might be deliberately achieved and harnessed. That is, elaborate
on how to engineer artificial systems with desirable emergent properties.

Key Points

e Most self-organising software systems currently mimic natural systems to
implement self-organising behaviour.

3.5 Problems-Exercises

3.1 Provide examples of cases where we need strong and weak self-organisation:

(a) 1in the physical world;
(b) in software systems.

3.2 Discuss the definition and principles of self-organisation as these were intro-
duced for dynamic systems. Are the effects of self-organisation permanent?

3.3 Describe the requirements and implement a proof of concept demonstrator of
a software system that exhibits the mandatory self-organising system properties in-
troduced in Sect. 4.3.2.1.

3.4 Justify whether it is possible to have self-organisation without emergence and
provide examples.

3.5 Describe the main emergentist schools and discuss the advantages and disad-
vantages of each approach.

3.6 Provide a definition of the term emergence, suitable for software systems, to-
gether with examples. Is it always necessary to have a decentralised system consist-
ing of interacting components for emergent phenomena to appear?

3.7 Provide a definition and examples of the term “downward causation”.

3.8 Provide a definition together with examples and discuss the main properties of
emergent phenomena.
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3.9 Describe an example and implement a proof of concept demonstrator of a soft-
ware system capable of exhibiting emergent behaviour.

3.6 Further Reading

The Vision of Autonomic Computing. A foundational introduction to Autonomic
Computing. (J.O. Kephart and D.M. Chess, 2003, IEEE Computer, 36(1):41-50.)
Advances in Applied Self-organizing Systems. A collection of papers describing
software applications using self-organisation and emergence. (M. Prokopenko,
(ed.), Advanced Information and Knowledge Processing series, 2008, Springer,
London.)
Self-organization. An instructive review article on history and present status of
self-organisation mainly in physical and biological systems. (H. Haken, Scholar-
pedia, 2008, 8(1), http://www.scholarpedia.org/article/Self-organization.)
Special issue on Self-organization in Distributed Systems Engineering. A spe-
cial issue comprising papers on self-organising mechanisms and applications.
(F. Zambonelli and O.F. Rana (eds.), 2005, IEEE Transactions on Systems, Man
and Cybernetics, Part A: Systems and Humans, 35(3).)
The Science of Self-organization and Adaptivity. A foundational review of the
self-organisation and emergence concepts and models as they appear in various
scientific areas. (F. Heylighen, 2001, Knowledge Management, Organizational
Intelligence and Learning, and Complexity, in: The Encyclopedia of Life Support
Systems, EOLSS, L.D. Kiel (ed.) 2001, Eolss Publishers, Oxford, pp. 253-280.)
Swarm Intelligence: From Natural to Artificial Systems. A comprehensive
book on self-organising algorithms drawn from natural systems. (E. Bonabeau,
M. Dorigo and G. Theraulaz, 1999, Oxford University Press.)
Self-organization in Biological Systems. A detailed presentation of self-organisa-
tion mechanisms in biological systems. (S. Camazine, J.-L. Deneubourg, N.R.
Franks, J. Sneyd, G. Theraulaz and E. Bonabeau 2001, Princeton University
Press.)
The many Facets of Natural Computing. An up-to-date review article on recent
advances in natural computing. (L. Kari and G. Rosenberg, 2008, Communica-
tions of the ACM, 51(10):72-83.)
Self-managed Systems and Services. An overview of the uses of self-organisation
in implemented systems and services. (J.P. Martin-Flatin, J. Sventek and K. Geihs,
2006, Guest Editorial of special issue, Communications of the ACM, 49(3):36—
39.)

That special issue includes additional relevant papers as well.
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