
* 0-7803-8566-7/04/$20.00  2004 IEEE.

A Role-Based Infrastructure for
Customised Agent System Development in Supply

Networks

Alexander Hämmerle 1, Anthony Karageorgos 2, Michael Pirker 1, Alois Reitbauer 1, Georg Weichhart 1

1 Profactor Produktionsforschungs GmbH

Im Stadtgut A2, 4407 Steyr, Austria
alexander.haemmerle@profactor.at

2 University of Thessaly, Dept. of Computer &
Communication Engineering
37 Glavani - 28th October Str

382 21 Volos - Greece
karageorgos@computer.org

Abstract – This paper presents a methodology for generic
role identification and role reuse together with an
infrastructure enabling rapid development of role-based
multi-agent system (MAS) applications. The infrastructure
includes a FIPA compliant runtime environment for role
execution as well as a library of generic roles and
interaction protocols (IPs) capturing generic agent
behaviours and communication abilities. The library has
been generated by applying the methodology for generic
role identification to a set of real-world scenarios from
three different industrial domains, encompassing different
aspects of collaboration in supply networks. Developers
build their applications for the runtime environment by
reusing and extending roles and IPs from this library.

Keywords: Next generation infrastructures, collaborative
intelligent systems, systems modelling and control.

1 Introduction
 As pointed out by [1, 16, 18], MAS will provide the
enabling technology for next generation eBusiness
solutions. Application perspectives range from business-
to-consumer domains like travel agencies and retailing to
full integration of supply networks for virtual and trans-
national enterprises.

 In the context of MAS analysis and design the role
concept has been extensively used. To this aim a number
of role catalogues have been suggested [12, 21] and the
reuse of existing roles is common in many role-based
MAS engineering approaches [15, 8]. However, there are
still some open questions in generic role identification and
use both at methodological and at technical infrastructure
level. This paper aims to contribute towards this direction
by proposing a systematic method for generic role
identification and customised reuse and a flexible

infrastructure for rapid role-based MAS application
development.

 The remainder of the paper is structured as follows.
In section 2 we will outline the industrial grounding of our
work. Section 3 will introduce the notion of roles and
tasks, followed by the description of a systematic method
for generic role selection and reuse. An exemplary
description of the results of applying the systematic
method to the scenarios from section 2 is given in section
4. The runtime infrastructure for roles is described in
section 5, whereas section 6 deals with related work. In
section 7 we present our conclusions and an outlook on
future research activities.

2 Industrial use cases
 The development of the role-based infrastructure is
based on real-world scenarios from three different
industrial domains, encompassing different aspects of
collaboration in supply networks. In the following we
outline the different scenarios, highlighting their key
requirements.

1st tier supplier - automotive domain

 For a 1st tier supplier to survive in the automotive
domain it is of paramount importance to keep (or even set)
the pace of innovation cycles with the OEMs. Due to the
complexity of the product (a car) the 1st tier supplier is not
able to provide its module in isolation, but is itself just a
node in a complex supply network, where companies
provide specific components for the module of the 1st tier
supplier. That is to say if we talk about the innovative
character of the supplier, we actually mean the innovative
character of a whole supply network. The discovery of
innovative suppliers is thus the key requirement in the
automotive domain scenario.

Service provider / broker - logistics domain

 The scenarios in the logistics domain give rise to a
series of requirements. Request handling supports the
human user in the processing of customer requests for
logistics services. If an offer is accepted by the customer
an order is created and dispatched, resulting in the
requirements for order tracking and forecasting delays. If
a service broker is confronted with a customer request, he
has to select an appropriate service (provider), based on
the customer requirements. Hence service selection is the
main requirement in the service broker scenario.

Distributed enterprise - manufacturing domain

 The key requirement in the manufacturing domain
scenario is resource coordination (including process
planning and resource allocation) across geographically
distributed plants. The coordination of internal
manufacturing resources and external logistics providers
(for transport between plants) facilitates efficient
production plans for the distributed enterprise.

3 A systematic method for generic
role selection and reuse

 We propose a role-based approach for MAS
application development, which gives particular emphasis
on the reuse of existing roles and protocols. The approach
is supported by an agent-based middleware infrastructure,
which allows role selection and use both on design and on
run-time. The approach includes a method for generic role
identification for a given application domain coupled with
a method for rapid MAS application development based
on reuse and customisation of the generic role components
previously identified. These methods are described in turn
after providing some background definitions.

3.1 Modelling agent behaviour using roles and tasks

 Roles are basic building blocks for a number of
modelling approaches. For example, roles are used in
organisational theory [23] to represent positions and
responsibilities in human organisations and in object-
oriented software engineering to represent the
functionality of software objects [2]. Furthermore, roles
are considered particularly suitable for modelling the
behaviour of software agents due to their ability to
represent generalised behaviour in organisational context
[13]. Roles in multi-agent systems are mainly defined in a
manner similar to that of organisational roles referring to a
position and a set of associated responsibilities (for
example privileges and obligations) in an organisation [9].
Some additional characteristics are also attributed to agent
roles, such as capabilities to conduct planning, co-
ordination and negotiation [13].

 Multi-agent system engineering methodologies
increasingly use roles as basic behavioural abstractions.
These methodologies acknowledge the need to identify
and reuse generic role-based components [13, 2], but they
do not provide any systematic methods and supporting
infrastructures for this purpose.

 In this work, we pay particular attention to the notion
of task as a fundamental representation of atomic
behaviour used to compose the role behaviour. We
consider roles as task carriers that execute tasks aiming to
fulfil their goals. There is a strong relation between roles
and tasks and each task is associated with one role. Based
on similar notations used for listing class characteristics in
object-oriented software construction [11], we can use a
table similar to Table 1 to list the characteristics of roles.
Role characteristics are described in more detail below:

o Context: Context refers to the application context
where the behaviour the role represents belongs. For
example, the “AGV_Vehicle_Operator” role can
refer to different behaviours in the contexts of
harbour or military operations respectively.

o Goals/Responsibilities. This is what the role aims to
achieve, for example a goal of the
“AGV_Vehicle_Operator” role can be: “To park the
AGV at an appropriate place in the service yard
when needed”.

o Tasks. Tasks are units of behaviour that have a
purpose and a specific outcome. For example,
“Driving an AGV to the unloading track”. There is a
strong relation between goals and tasks as each task
is associated with a goal. However, this is not a one-
to-one relation as more than one task can correspond
to a single goal. For example, “to operate an AGV”
is a goal that can include a number of tasks such as
“starting the AGV”, “stopping the AGV” and
“loading/unloading the AGV”. The exact

Role characteristics Description
Context Describes the application

context in which the role is
applicable.

Goals/Responsibilities Refer to what the role aims
to achieve within a particular
context

Tasks Represent specific tasks the
role can carry out.

Capabilities/Privileges Properties that enable/
facilitate role behaviour.

Table 1: Role characteristics

correspondence between tasks and goals is a
modelling decision and it depends on the role
designer and the application requirements.

Tasks can invoke other tasks during their execution
and this gives rise to a task hierarchy. An example of a
composite task hierarchy is given in Fig 1. For the
composite task “Register to conference” to be executed,
tasks “Register to conference sessions” and “Register to
conference accommodation” need to be executed at some
point and each one of them in turn needs to invoke the task
“pay using credit card” to pay for the respective fee. The
latter is also an example of task parameterisation showing
that the exact task execution can be depended on a number
of constraints and parameters, which are checked and/or
initialised upon task invocation.

Figure 1: Composite task hierarchy

3.2 Generic role identification

 To identify generic roles and interaction patterns in
an application domain, we combine techniques from role-
based modelling in MAS [13, 8] and role engineering [17]
augmented with ideas used in identifying generic patterns
of interacting components in software engineering [24,
19]. Our view is to base the generic role identification on
the identification of generic tasks, which we can derive
from use cases. In particular, for a given application
domain we propose the following steps:

1. Describe the application requirements with use
cases: This is done in a similar manner as in the analysis
phase of many other software engineering methodologies.
Requirements are described by use cases (both in
diagrammatic and textual form) that are obtained either
through common requirements elicitation typical of the
object-oriented methods [11]or through the application of
a scenario-based method such as GBRAM [3].
Subsequently, use case diagrams are restructured so that
any repeated use case functionality will be separated.

2. Identify tasks and their characteristics: This is done
using scenarios. For each use case a number of
representative scenarios which cover the functionality (the
alternative flow paths) described in the use case is
selected. Particular attention must be paid to points where
tasks invoke other tasks. Normally, this will have been
already indicated in the use case model by associating the
use case including the tasks under consideration with the
appropriate use cases via “uses” or “extends”
relationships. At this point, any necessary task hierarchy
graphs can be drawn as needed. Furthermore, the
interactions and steps relevant with the execution of each
task are described in a high-level manner such as by a
textual description. For example, for the “Pay using credit
card” task mentioned in Section 3.1 all steps that need to
be taken, such as amount specification, payment
authorisation, card details validation, and actual payment,
will be described.

3. Identify suitable roles and associate them with tasks:
Tasks are executed by appropriate roles. Furthermore, any
interactions related with tasks take place between a
number interacting parties. In our view, task executors and
protocol interacting parties are represented by roles.
Therefore, a natural starting point for candidate role
identification is to list the actors associated with the use
cases. However, actor names are not sufficient for
describing all roles possibly involved in execution and
interactions related with a particular task, Therefore,
further candidate roles are identified by applying known
methods for identifying objects in object oriented
programming [11]. For example, we enumerate all nouns
in the use case and we further check words with –er, -ist or
–or suffix in the requirement specification. In the latter
step particular attention should be paid to any candidate
roles representing organisational positions or describing
organisational relationships in the domain of the
application as it is important for the information system to
mirror the organisational structure of the business system
it supports [12]. For example, in a MAS supporting
execution of a business process we most probably need to
have the role of “Business_Manager” assigned to an
agent that oversees the operations carried out by a number
of other agents with closely related goals.

4. Create goal tree and task groups: We construct the
goal tree based on the use case diagrams. Using the goal
tree makes is easier to see which goals are related with
each other. Based on the related goals we group the
respective tasks to task groups. Tasks belonging to the
same task group will be assigned to the same role while
repeated goals will give rise to generic tasks and roles.

5. Identify higher-level roles and role relations:
Introduce appropriate higher-level roles and associate
them with task (and hence goal) groups. To identify
higher-level roles we apply the techniques referred in step

3 and we further try to synthesise appropriate role names
from the names of the roles corresponding to tasks
belonging to task groups. This will give rise to
generalisation and aggregation relationships between roles
which need to be noted. However, further relations
between roles may exist, for example two roles cannot be
played simultaneously.

6. Identify generic roles: In this step we examine which
roles appear more than once (both low and high level), we
characterise them as generic and we store them together
with their respective sub-roles and related task hierarchies
in the library.

 The above process (and particularly steps 4-6) will
be repeated as many times as needed to refine the
identified set of generic roles and tasks.

3.3 Reuse-based method for rapid MAS
development

 Considering that the above steps have been applied
and a library of generic roles and tasks has been generated,
it is straightforward to reuse them for rapid application
development. The following steps are proposed:

1. Describe the application domain requirements: This
is done in a similar manner as in the generic role
identification process described above. Again, the use case
diagrams will be refined so that “extended” or “used” use
cases will be clearly distinguishable.

2. Create use case goal tree: Starting from the refined
use case diagram we construct the goal tree. In this tree,
related goals are grouped together to form goal groups.

3. Select and customise generic roles: Select any roles
from the role library that have similar goals or goal
groups. Subsequently, customise the characteristics of the
selected generic roles to fit exactly with the application
requirements. This will involve adding, deleting or
overriding generic role tasks.

4. Identify further application tasks and roles: Starting
from the refined goal tree, we cross out the goals that have
been corresponded to generic roles from the role library
and for the remaining goals we introduce appropriate
application specific tasks to fulfil them. This is done with
the help of scenarios drawn from the use cases as was
described in Step 2 of the method for generic role
identification described in Section 3.2 above.
Subsequently, for the application specific tasks identified
in the previous step we introduce suitable application roles
similarly to the procedure described in Step 3 in Section
3.2.

5. Bind roles to agents: Roles are assigned to agents
following heuristic rules such as trying to maintain low
coupling and high cohesion between agent components.
We can consider that for each role, the appropriate agent
may exist (if we have determined an agent structure) or
not. Inexistent agents are related with roles and thus can
be generated from roles.

4 Generic roles and protocols
 When applying the systematic method described in
3.2 to the industrial scenarios from chapter 2 we realised
that the resulting roles are applicable not just to the
considered domains. Due to their generic nature the roles
are suitable for a broad range of business applications,
ranging from the operative level (like order tracking) to
the strategic level (like the discovery of innovative
suppliers). In the following we provide an exemplary
description of generic roles, illustrating their level of
abstraction and their importance for application
development. We avoid a lengthy enumeration of role
specifications, which is outside the scope of this paper.

4.1 Roles

 In our exemplary description we regard three generic
roles. The first role is called Seeker. A seeker has only one
task which is to seek for an object fulfilling a certain
condition. The second role is a Decision Taker. Decision
Takers can be either asked to agree on a proposed decision
or to select from a set of proposals those which are
feasible. For coordination purposes we will use a
Controller able to execute a plan, which is generated
outside the Controller.

 To illustrate the importance of the above roles for
application development we refer to two simple scenarios
from chapter 2. The first scenario deals with process
planning and is a subset of resource coordination in the
manufacturing domain. When a manufacturing order is
received by an employee, he takes the product
requirements and searches for possible process plans in a
database with historic process planning data. If several
process plans are feasible, a decision has to be made about
the most preferable one.

 The second scenario is the search for innovative
suppliers in the automotive domain. In order to find a
novel supplier an employee defines a set of keywords
which is to be used for a web query. Then pages matching
the query are returned. These pages are checked for their
relevance with respect to the automotive domain (which
involves a decision process) and forwarded to the
employee.

 At a first glance these two scenarios do not have
much in common. However, the above roles allow a
generic description. A Controller first contacts a Seeker to
retrieve information (process plans or web pages,

respectively). The Controller forwards the collected
information to a Decision Taker, which decides upon the
most preferable process plan or the relevance of web
pages, respectively.

 The simple example demonstrates the broad range of
applications for the developed generic roles. For a
concrete application the generic roles have to be
customised for specific implementation requirements (cf.
5.1). Referring to our example a generic Seeker would
become a Process Plan Searcher in the first scenario and a
Web Searcher in the second one.

4.2 Protocols

 In the course of generic role identification we also
aimed at the identification of generic interaction patterns
between roles. The design goal was a set of simple
protocols, necessary and sufficient to cover all interaction
patterns in the considered scenarios (cf. section 2). On the
basis of FIPA [10] following protocols have been
identified:

• FIPA Request Protocol
• FIPA Query Protocol
• FIPA Subscribe Protocol
• FIPA Propose Protocol

For the Request protocol a modified version was
developed, in which the requestee is not allowed to refuse
the requested action. Additionally one protocol consisting
of an Inform communicative act and another one including
a confirmation by the receiver have been introduced.

5 Runtime infrastructure
 On the basis of the FIPA compliant agent platform
JADE [4] we designed a framework supporting the
concepts presented in the previous sections. Each agent
has a built in framework, called the Agent Hull,
facilitating the execution of the different roles the agent
can play. In detail the Agent Hull manages the:

• Life-cycle of the whole agent (e.g. boot up, shutdown,
persistence).

• Configuration of the whole agent.
• Life-cycle of all agent-related roles.
• Proper handling of incoming ACL messages (that may

contain new concepts).

 This way the Agent Hull acts as a “runtime
environment” for all the implemented roles.

5.1 Roles, tasks and interaction Protocols

 Roles designed for the Agent Hull only form logical
clusters of one or more tasks. Therefore tasks are the place
where an agent’s business logic is implemented. From this
point of view the functionality of an agent is defined by
the entirety of its tasks, each of which is assigned to a

certain role. Figure 2 summarizes the role and task model
supported by the Agent Hull. It illustrates the fact that
tasks may invoke other tasks, giving rise to task
hierarchies (cf. 3.1).

Figure 2: The Agent Hull’s role and task model

 As tasks implement the business logic, interaction
protocols (IPs) are driven by tasks. This means that tasks
initiate IPs to perform their work and handle incoming
agent communication language (ACL) messages.

 Implementing an agent on the basis of the Agent Hull
is reduced to the task implementations of all roles the
agent can play. Tasks are implemented as JADE
behaviours. The implementation of roles and their tasks is
supported by pre-defined, generic roles and IPs (as
described in section 4). The generic roles are source-code
templates in the form of Java abstract classes and
interfaces that must be completed by the application
developer.

5.2 The Agent Hull

 Based on requirements belonging to the role and task
centered architecture (as explained throughout this paper),
the handling of dynamic ontologies (unknown concepts
may appear at any time in incoming ACL messages and
must be processed properly by an agent) and the
knowledge base centered approach (agent central
management of all kinds of agent related information), the
Agent Hull architecture shown in Figure 3: The Agent
Hull architecture was derived.

 In order to increase the scalability (very huge number
of agents or constrained devices) of the whole MAS based
on the Agent Hull runtime infrastructure we had to change
the JADE threading model. In the new model an agent no
longer posses a thread of its own, but receives only some
processing time within a thread assigned to the agent by an
agent platform feature called the agent resource manager.
Because an agent owns no single thread the agent (in more
detail: the agent’s task manager) is called periodically
from the JADE agent container in a non-preemptive
multitasking way.

 The task manager provides two main functionalities
in the form of a built-in scheduler (accessible for the agent
platform via an external interface) and a built-in message
dispatcher (a task manager internal functionality). The task
manager reimplements the simple JADE scheduler. It
maintains the currently active tasks and allocates
execution time in a round robin like way to each of them.
Each time the task manager is called (by the agent

resource manager) it selects and runs the next task.
Additionally the task manager also forwards an incoming
ACL message (i.e. a message the agent received) to the
appropriate task. First, the task manager actively gets a
message from the JADE message queue and processes it
by means of a reimplementation of the JADE content
manager. Second, the task manager identifies by means of
the rule engine an appropriate task that should receive this
message.

 The content manager is a reimplementation of
jade.content.ContentManager extended with ACL message
scanning capabilities to deal with unknown concepts,
partly by means of an ontology agent [5]. The task
manager calls the content manager for each received ACL
message to get the corresponding message object, which
contains both all useful slots and the parsed message
content of the original ACL message.

 The rule engine uses rules of the form “if <left side>
then <right side>” to identify the target task for an
incoming ACL message. Agent state information and the
parsed content contained within the message object are
combined to find a rule with a matching <left side>. The
<right side> of such a matching rule then references the

target task. To avoid ambiguities, rules are ordered within
the rule engine according to their priorities.

The agent life cycle manager is responsible for the
whole agent life cycle and is accessible for the JADE
agent container. It initializes and shuts down all other
agent hull components (in the following order: knowledge
base, rule engine, content manager, role class publisher,
task manager, agent administration). It also loads at startup
or during runtime agent roles. Loading a role implies
loading the rules belonging to the role (to be processed by
the rule engine) and eventually registering the role and
(some of) its tasks with the DF. At agent shutdown the
agent life cycle manager deregisters the roles and tasks.
Additionally it controls the persistence functionality of all
agent hull components.

 The knowledge base stores any information
belonging to the agent, like agent-global runtime
information, role specific data and conversation status of
interaction protocols.

 The role class publisher (de)registers roles and
tasks with an agent platform’s directory facilitator.

Figure 3: The Agent Hull architecture

The agent administrator provides user access to the
agent like for example via GUIs.

6 Related work
 The concept of reusing generic roles appears in many
modelling methodologies in software engineering [20] and
particularly in MAS development [13, 8]. However, there
are two major differences between these works and the
work described here: A systematic method for generic role
identification and reuse and an infrastructure supporting
storing retrieving and reuse of generic roles and protocols.

 With respect to methodological issues most role-
based MAS development methodologies do not provide
steps for role identification at all [25]. In others, roles are
broadly considered as originating from use cases [6] in an
ad-hoc manner and reusing them is not explicitly
considered as an option. Furthermore there is a problem
with specifying the semantics of roles [14] and this
impedes developing appropriate tools for generic role
management and reuse.

 Considering the infrastructural support the situation
is even worst. Although there have been efforts to store
and reuse roles in relevant areas such as Role-Based
Access Control [22], to our knowledge there is currently
no existing infrastructure for reusing and customising roles
in MAS development except agentTool [7]. However, the
MaBE middleware and agentTool have a number of
important differences: agentTool focuses purely on a
software engineering view of roles, for example it does not
support modelling of organisational relations using roles.
Furthermore, the approach presented in this paper supports
a consistent way of designing, implementing and
executing role based MAS applications. In contrast to
agentTool we have not only concentrated on the analysis
and design phase by providing a CASE tool supporting the
development of MAS applications. We also provide a
runtime infrastructure for MAS applications that have
been implemented with (customized) generic roles of the
given role library. Additionally our approach strictly
complies with FIPA standards by realizing the runtime
infrastructure on top of the wide-spread JADE agent
platform and by adhering to FIPA defined interaction
protocols and communicative acts.

7 Conclusion and outlook
 In the course of applying the methodologies
described in section 3 to the scenarios from section 2 we
realised that our role-based design approach is very
intuitive and easy to handle even for people with little
background in agent-oriented design. Another lesson
learned is the fact that a limited set of simple protocols is
sufficient to model interaction patterns occuring in a rich
set of business scenarios situated in different domains.
However, a major extension of the role-based

infrastructure will be a GUI enhanced toolkit, providing a
user-friendly environment for rapid construction of role-
based agents. This toolkit, together with the ongoing
implementation of the Agent Hull, is our R&D focus for
the near future.

Acknowledgement
 Parts of this work have been conducted in the course
of the R&D project MaBE (Multiagent Business
Environment, http://www.mabe-project.com), funded by
the European Commission under the GROWTH program.

References
[1] E. Adams, “Where are Agents Going in eMarkets?”,
Technical Report, Lante Corporation, July 2000.

[2] E. P. Andersen, “Conceptual Modelling of Objects:
A Role Modelling Approach”, in Dept of Computer
Science. 1997, University of Oslo: Oslo, Norway. p. 333.

[3] A. I. Antón, Goal Identification and Refinement in
the Specification of Software-Based Information Systems.
1997, Georgia Institute of Technology. p. 261.

[4] F. Bellifemine, A. Poggi, and G. Rimassa.
“Developing multiagent systems with JADE”, Proc.
Intelligent Agents VII: 7th International Workshop on
Agent Theories, Architectures, and Languages (ATAL),
number 1986 in Lecture Notes in Computer Science, pp
89-103, Springer, Heidelberg, 2001.

[5] M. Carpenter, A. Gledson, and N. Mehandjiev,
“Implementing Dynamic Ontologies in Agent-Based
Business Support Systems”, AAMAS Workshop on
Agent-Oriented Information Systems, 2004.

[6] M. Cossentino and C. Potts, “PASSI: a Process for
Specifying and Implementing Multi-Agent Systems Using
UML”.

[7] S. A. DeLoach, “Analysis and Design using MaSE
and agentTool”. 12th Midwest AI and Cognitive Science
Conference (MAICS 2001), Oxford, Ohio, March 31 -
April 1, 2001.

[8] S. A. DeLoach, M.F. Wood, and C.H. Sparkman,
“Multi-Agent Systems Engineering”. International Journal
of Software Engineering and Knowledge Engineering,
2001. 11(3): p. 231-258.

[9] J. Ferber and O. Gutknecht, “A meta-model for the
analysis and design of organisations of Multi-Agent
systems”. in Proceedings of the International Conference
in Multi-Agent Systems (ICMAS 98). 1998. Paris, France:
IEEE Computer Society Press.

[10] Foundation for Intelligent Physical Agents, ”FIPA
Agent Management Specification”, December 2002.
http://www.fipa.org/specs/fipa00023.

[11] I. Jacobson, “Object-Oriented Software Engineering:
A Use Case Driven Approach”. 1992: Addison-Wesley
Professional. 552.

[12] N. R. Jennings, “On Agent-based Software
Engineering”. Artificial Intelligence, 2000. 117: p. 277-
296.

[13] E. A. Kendall, “Role models - patterns of agent
system analysis and design”. BT Technology Journal,
1999. 17(4): p. 46-57.

[14] E. A. Kendall, “Agent Analysis and Design with
Role Models”, in Volume 1: Overview. 1999, BT Exact
Technologies: Martlesham Heath, UK. p. 89.

[15] E. A. Kendall, “Agent Software Engineering with
Role Modelling”. Agent-Oriented Software Engineering I,
First International Workshop (AOSE 2000), Limerick,
Ireland, ed. P. Ciancarini and M.J. Wooldridge. Vol.
1957. 2001, Berlin: Springer Verlag. 163-169.

[16] M. Luck, P. McBurney and C. Priest, “Agent
Technology: Enabling Next Generation Computing - A
Roadmap for Agent Based Computing”, AgentLink II,
2003.

[17] G. Neumann and M. Strembeck, “A Scenario-driven
Role Engineering Process for Functional RBAC Roles”, in
Proc. of the 7th ACM Symposium on Access Control
Models and Technologies (SACMAT’02). 2002. p. 33-42.

[18] S. Osborn, “The role of agents in business to
business (B2B) electronic commerce”, AgentLink
Newsletter 6, January 2001, pp. 6-8.

[19] I. Philippow, D. Streitferdt, and M. Riebisch,
“Design Pattern Recovery in Architectures for Supporting
Product Line Development and Application, in Modelling
Variability for Object-Oriented Product Lines”, M.
Riebisch, J.O. Coplien, and D. Streitferdt, Editors. 2003,
BookOnDemand Publ. Co: Norderstedt. p. 42-57.

[20] T. Reenskaug, P. Wold, and O.A. Lehne, “Working
with Objects”, The OOram Software Engineering Method.
1996, Greenwich: Manning Publications. 420.

[21] D. Richle, "A Role-Based Design Pattern Catalog of
Atomic and Composite Patterns Structured by Pattern
Purpose". 1997, Ubilab, Union Bank of Switzerland:
Zurich. p. 48.

[22] R. S. Sandhu et al., "Role-Based Access Control
Models", IEEE Computer, Volume 29, No. 2, pp. 38-47,
1996.

[23] W. R. Scott, "Organisations: Rational, Natural and
Open Systems". 2003, New York, NY: Prentice Hall
International. 430.

[24] F. Shull et al., "An inductive method for discovering
design patterns from object-oriented software systems."
1996, University of Maryland.

[25] M. Wooldridge, N.R. Jennings, and D. Kinny, "The
Gaia methodology for agent-oriented analysis and design".
International Journal of Autonomous Agents and Multi-
Agent Systems, 2000. 3(3): p. 285-312.

