
Performance Issues of Task Routing and Task Scheduling with Resequencing in
Homogeneous Distributed Systems

Anthony Karageorgos and Helen Karatza, Ph.D.
Dept. of Informatics
Aristotle University

54006 Thessaloniki, Greece
fkarageor, karatzag@csd.auth.gr

Abstract

An important part of a distributed system design is the
workload sharing among the processors. This includes par-
titioning the arriving jobs into tasks that can be executed in
parallel, assigning the tasks to processors and scheduling
the task execution on each processor. In many system con-
texts jobs must depart in the order of their arrival, hence the
resequence problem is involved.

In this paper we examine the efficiency of two task routing
strategies — one static and one adaptive — and three non-
preemptive task scheduling policies in conjunction with job
resequencing before departure.

It is shown that the adaptive task routing strategy outper-
forms the static one and that when adaptive task routing is
applied, the scheduling strategy affects marginally system
performance. The minimum resequence delay is achieved
with probabilistic task routing and FCFS task scheduling.

1. Introduction

Enhancements in microprocessor performance and high-
speed networking have led to increased interest in the use of
distributed computing systems for parallel computing.

Distributed computing systems are composed of several
loosely-coupled workstations communicating over a net-
work. Networked workstations can offer parallel processing
at relatively low cost [1], since they rely solely on commod-
ity hardware and software.

One of the biggest issues in such systems is the develop-
ment of effective techniques for the distribution of the pro-
cesses of a parallel program on multiple processor nodes.
A better exploitation of such organizations is achieved by
partitioning each job into several tasks that can be run in
parallel. A major problem is how to distribute the tasks
among processing elements to achieve some performance

goals such as minimizing job execution time, minimizing
communication and other overhead and/or maximizing re-
source utilization.

[5] defines task routing as the method that tasks are as-
signed to processors and task scheduling as how tasks are
scheduled on the assigned processor. Task routing strategies
that only use information about the average behavior of the
system, ignoring the current state, are called static policies
[5]. Static policies may be either deterministic or probab-
ilistic. Probabilistic policies base the routing decision on a
probability distribution. In deterministic policies once the
set of currently ready tasks has been specified, the rout-
ing discipline is applied. Policies that react to system state
are called adaptive policies [5]. Adaptive policies are more
complex but produce significantly better performance res-
ults than static policies.

Ready tasks can be arranged in a single global queue or
each processor can maintain its own local queue. [5] refers
to each one of these cases as centralized and distributed or-
ganization respectively.

The efficiency of the distributed task queue organization
depends on various factors. In this paper we examine the im-
pact of the job resequencing on the performance of different
task routing and task scheduling strategies.

We consider an open queuing network model with
N=128 homogeneous processor nodes each serving its
own local task queue. Resequencing of jobs (programs)
after processing ensures that jobs leave the system on a
first-in-first-out basis.

Upon arrival each job is partitioned into independent
tasks that can be run in parallel. The number of tasks de-
pends on the degree of parallelism that is inherent in the job
(program) and on the partitioning mechanism applied by an
external task generator and scheduler.

We consider that a parallel program has a simple fork-
join structure. An arriving job forks into independent tasks.
Each task is attached to a processor queue according to the



task routing strategy and the task scheduling strategy is ap-
plied to schedule its execution. No preemption or jockeying
between task queues can occur. Executed tasks are gathered
at the join point waiting for their siblings to join. Con-
sequently, synchronization between tasks must take place.

A job is able to leave the system when all its tasks have
been executed and joined. In this study we do not examine
the partitioning/joining mechanism. Resequencing of jobs
after service maintains the arrival order, ensuring thus that
jobs leave the system on a first-in-first-out basis.

The resequencing problem is met in many system con-
texts including industrial production systems, computer
communication systems and distributed computer systems.
In such systems customers who enter the system must de-
part in the same order as their arrival. Hence, after service
completion, disordered customers wait in a special buffer
to rearrange their sequences, i.e. until the preceding cus-
tomer leaves the system. The special buffer is termed usu-
ally resequencing buffer and the delay due to resequencing
is called resequence delay.

Several authors have studied the resequencing delay in
multiserver queues [7, 11, 15, 20, 22]. All these studies have
considered open queuing network models and exponential
task service times.

Multitaskingand resequencing in a homogeneous distrib-
uted system with two processors is studied in [9]. That work
studies closed queuing network models where half of the the
total number of jobs consist of two independent tasks which
can be processed in parallel.

Substantial literature exists on task routing and task
scheduling strategies. [12] compared the performance of
four task ready queue organizations. A study of the per-
formance of the distributed task queue organization has been
done by [2].

An extensive and thorough study on task routing and task
scheduling for multiprocessor systems has been conducted
by [4, 5]. These works examine many cases in detail. An
open queuing network model of a multiprocessor system
that consists ofN=64 processors is considered and the num-
ber of tasks per job is exponentially distributed.

Analytical models for shared memory multiprocessors
that execute fork-join parallel programs were developed by
[21]. They show that the fork-join job structure can suffi-
ciently model a large number of parallel applications.

[14] developed algorithms for distributed scheduling of
tasks with deadlines and resource requirements. A distrib-
uted drafting algorithm for load balancing was suggested
by [13]. In [18] three adaptive, decentralized controlled,
job scheduling algorithms were proposed. All these studies
considered random routing only and focused on scheduling
methods to balance the system load. In addition, in all these
works there is not any partitioning of jobs into tasks.

In this paper we consider an open queuing network model

of a homogeneous distributed system consisting of N=128
processor nodes. The number of tasks per job is exponen-
tially distributed with mean 128 or uniformly distributed
between 1 and 128. We aim to compare the performance
of two task routing and three task scheduling techniques, in
conjunction with subsequent job resequencing, for various
coefficients of variation of the processor service times (ex-
ponential and hyperexponential distributions) and for two
cases of number of tasks per job (exponential and uniform
number of tasks per job).

The structure of the paper is as follows. In the next sec-
tion we describe our system model and in Sec. 2.2 the task
routing and task scheduling strategies to be examined via
simulation. In Sec. 2.3 we specify the metrics employed in
assessing the performance of the various strategies. Further-
more, we describe the model input parameters and some im-
plementation issues in Sec. 3.1 and 3.2. Finally, the results
of the simulation experiments are presented and analyzed in
Sec. 3.3 and conclusions are drawn in Sec. 4.

2. Model and Methodology

���� Model Description

An open queuing network model of a homogeneous dis-
tributed system is considered (Figure 1). It consists of
N=128 independent processor nodes. Due to the decreasing
cost of computer hardware the number of nodes in distrib-
uted computer systems increases. Therefore we conducted
the simulation experiments usingN=128.

The existence of an external central task generator and
scheduler, not included in the queuing network, is assumed.
This front-end subsystem is responsible for receiving arriv-
ing jobs, splitting them into tasks, and inserting the tasks
into an appropriate task queue in system memory. Since
our interest is in the performance of the task routing and
task scheduling with job resequencing we assume that any
communication delay due to the front-end operation is neg-
ligible.

The job structure is considered to be of simple fork-join
type. In this context a fork-join job is composed of a set of
independent tasks that are executed on the system concur-
rently.

After arriving at the system, jobs are partitioned into in-
dependent tasks that can be run in parallel. The number of
tasks depends on the degree of parallelism that is inherent
in the job (program) and on the partitioning mechanism ap-
plied by the central scheduler. We model this by associating
a probability distribution with the number of tasks a job is
partitioned into. In this study we consider uniform as well
as exponential number of tasks per job with mean T . The
aim is to compare the system behavior in the cases that the



number of tasks per job is uniform and exponential respect-
ively.

Each processor is attached a private task queue. Tasks are
assigned to a processor queue according to the task routing
policy and are executed accordingly to the scheduling dis-
cipline. Tasks withina processor queue do not communicate
with each other. No jockeying or preemption is permitted.

Tasks corresponding to the same job are joined before
leaving the system.

A job completes execution when all its component tasks
are completed. Therefore, each task that completes its ser-
vice waits at the join point for the rest of the job compon-
ent tasks to finish execution. The increased parallelism in
fine-grain jobs results in the synchronization delay that oc-
curs when tasks wait for their siblings to finish execution. In
this work we do not examine the partitioning/joining mech-
anism.

Due to the resequencing problem requirements, jobs
must leave the system in the order of their arrivals. There-
fore, each job after execution is placed in the resequencing
buffer. If all preceding jobs in the arrival order have already
departed, the job leaves the system instantaneously. Oth-
erwise it remains in the resequencing buffer until the de-
parture of all jobs that have arrived before it. Apart from
the resequence delay we consider that any other overhead
caused by resequencing is negligible.

Figure 1. The queueing network model

Job interarrival times are (IID) exponential random vari-
ables (with arrival rate �). Two cases of task service time
distributions are examined:

1. Task service times are independent and identically
distributed (IID) exponential random variables with
mean m at each processor (C = 1).

2. Task service times are (IID) and hyperexponentially
distributed. The coefficient of variation is C, where
C � 1 and the mean is m at each processor.

All notations used in this paper are included in Table 1.

Table 1. Notations

N Number of processor nodes
� Job arrival rate
m Processor mean service time
C Coefficient of variation of processor service time
T Mean number of tasks per job
p Maximum number of rejections for the first

element in a task queue
� System utilization
RT Job response time
RD Job resequence delay
TS Job time in system
MRT Mean job response time
MRD Mean job resequence delay
MTS Mean job time in system
UTL Mean processor utilization
THR System throughput rate

���� Task Routing and Task Scheduling
Strategies

We study two different task routing strategies, one static
and one adaptive. Static strategies use only statistical sys-
tem information in making task routing decisions, and their
principal advantage is their simplicity in mathematical ana-
lysis and implementation. However, they do not adapt to
workload fluctuations. Adaptive policies are based on in-
formation about the system state and attempt to dynamically
optimize the workload routing.

The following task routing strategies are examined:

� Probabilistic (P): Arriving tasks are assigned ran-
domly to one of the 128 processor queues with equal
probability (static policy).

� Shortest Queue (SQ): This policy assigns each ready
task to the currently shortest processor queue (adapt-
ive policy).

A considerable communication and decision making
overhead is involved in the shortest queue case. This over-
head is due to queue length information that must be updated
before a routing decision is made. The problem deteriorates
with increasing number of processor nodes. We do not ex-
plicitly model this overhead in this study. However it is sug-
gested that information from only a subset of the processors
could efficiently be used. [4] shows that when the number of
processors probed for queue length information is reduced
from N to 3, the average performance decrease is within
10% of that achieved when all processors are used.



The order in which tasks in a processor queue are
executed depends on the task scheduling policy applied.
Task scheduling policies can be either preemptive or non-
preemptive. Preemptive policies involve suspending the ex-
ecution of a task on a processor node and transferring it
to another position in the task queue, i.e. at the end of the
queue. In non-preemptive policies tasks, once have started
execution, are not interrupted until service completion.

We examine three non-preemptive task scheduling
policies:

� First-Come-First-Served, FCFS: This strategy sched-
ules tasks in the same order as their arrival at the task
queue.

� Smallest Number of Tasks First, SNTF: This policy
uses the number of tasks into which a job is parti-
tioned as an indicator of the job granularity. Coarse-
grain jobs are given higher priority. Therefore tasks
belonging to a job with the currently smallest number
of tasks are assigned the highest priority. Upon pri-
ority assignment tasks are inserted at the appropriate
position in the task queue. In case two tasks have the
same priority they are scheduled on a FCFS basis.

� Maximum Number of Tasks First, MNTF: This policy
also considers the number of tasks per job as an indic-
ator of the job granularity. However, it assigns higher
priority to fine-grain jobs. Hence, the highest prior-
ity is given to each task that belongs to a job with the
currently maximum number of tasks. Tasks with the
same priority are scheduled in a FCFS discipline.

The last two task scheduling strategies are vulnerable in
the extreme cases where the number of tasks per job is either
too big or too small respectively. Since queues at the pro-
cessors are rearranged each time a new task is inserted to
them, it is possible for some jobs to never be scheduled. As
resequencing requires the departure of all previously arrived
jobs before a job leaves the system, the resequence buffer
can become the system bottleneck.

This problem is eliminated by limiting the number of
times p that a specific task can be rejected from the first
queue position when a higher priority task has just been in-
serted. Any further attempts to reject this particular element
from the first queue position due to priority rules are de-
ferred. This constraint is applied to every queue element
when it is transferred to the first queue position.

���� Performance Metrics

In examining the system behavior we use the following
performance criteria:

� Response Time, RT: The response time of a random
job is the time taken from the job arrival to the system
to the job service completion.

� Resequence Delay, RD: The resequence delay of a
random job is the time between the job service com-
pletion and the job departure from the system.

� Time in System, TS: The time in system of a random
job is the time measured from the job arrival to the job
departure from the system.

In addition we consider system throughput rate �THR�.
The system behavior without taking into account job

resequencing is shown by the mean response time, MRT .
The impact of the resequencing operation on system per-
formance is indicated by the mean resequence delay,MRD.
The overall performance of the system is determined from
the system throughput rate, THR, and from the mean time
in system, MTS.

3. Results and Discussion

���� Workload and input parameters

We obtained the results using simulation. Our model was
realized by building over the Sim++ software toolkit as de-
scribed in Sec. 3.2.

The simulation was performed according to the method
of independent replications [10]. We calculated 95% confid-
ence intervals for every mean value we used. All confidence
intervals were less than 5% of the mean values.

The number of processor nodes was N = 128.
Two task service time distributions were employed, ex-

ponential and hyperexponential, both having the same mean
m = 1. The system was examined for C = 1 (exponential
distribution)andC = 2, 4, 6 (hyperexponential distribution)
coefficients of variability. We have not studied cases for
C � 6 because in real systems job service times tend to have
low variations.

Two cases for the number of tasks per job were studied.
In the first case the number of tasks per job was exponen-
tially distributed with mean T = N = 128, and in the second
one the number of tasks per job was uniformly distributed in
the range [1..N ]. In each case the aim was to study a system
with a utilization � around 0.8. System utilization is given
from the following formula:

� �
� � T

N �
�

m

(1)

where � is the arrival rate, T denotes the mean number of
tasks per job, N denotes the number of processors and m
denotes the mean task service time.



In our studym = 1, N = 128, and T values were 128 and
64.5 in the exponential and the uniform number of tasks per
job cases respectively. For these cases from the above for-
mula we obtain � = 0.8 and � = 1.59 respectively.

The maximum number of rejections of the first element
in a task queue was taken as p = 2.

���� Model implementation

A modified version of Sim++ version 1.01 — a Simpack
descendant — was used to develop the model. Simpack, [3],
is a software toolkit suitable for the development of event
scheduling and queuing model simulations. It consists of a
set of software library components oriented to a variety of
potential simulation applications. The major Simpack com-
ponents are intended for constraint models, functional mod-
els, spatial models, multimodels and other autonomous tools
for modeling and visualization. Simpack is implemented in
the C programming language.

Sim++ is the object oriented version of Simpack. It is
developed according to the object oriented paradigm and it
is implemented in C++. Sim++ comprises two API’s (Ap-
plication Programmer Interfaces) for both procedural and
object-oriented programming. In both versions the aim is
to free the simulation programmer from repetitive tasks and
unnecessary detail. The Sim++ user is expected to build
his own model within the existing framework and to extend
the Sim++ capabilities by writing his own code. Therefore
Sim++ includes routines — either in procedural or object
oriented form — to handle most of the common operations
of a discrete event model, i.e. event list manipulation, event
handling, random number generation, statistics gathering,
report generation. In particular three event handling mech-
anisms are available — manual, semi-automatic and auto-
matic — that are based on the same discrete event modeling
principles.

Apart from exploiting the Sim++ offered potential, and
building upon the existing framework, we also had to pro-
ceed to some modifications in the Sim++ internal structure
to be able to realize all the details of our model. The ma-
jor changes involve extending the Sim++ queue storing cap-
abilities — in Sim++ queues can be stored as dynamic data
structures, i.e. objects — to handle the specific requirements
of our queuing problem. The main point was to limit the
times that the first element in a queue can be rejected. Fur-
thermore, statistics calculation had to be seriously enhanced
to correspond to all the metrics required to debug and con-
duct this study. Finally, model execution was facilitated by
extending Sim++ to interact with multiple input parameter
files and to produce customized, problem specific reports.

���� Performance Analysis

Figure 2 shows the performance �MRT � of the three task
scheduling policies we considered as a function of coeffi-
cient of variation C of task service time. This is done for
both probabilistic and shortest queue task routing strategies.
These results are obtained considering exponential number
of tasks per job. Figure 3 presents MRT versus C for the
same cases but with uniform number of tasks per job.

1 2 4 6
0

200

400

600

800

1000

1200
������

������

������

�����	

�����	

�����	

MRT

C

Figure 2. MRT versus C. Exponential number
of tasks per job.

1 2 4 6
0

200

400

600

800

1000
������

������

������

�����	

�����	

�����	

MRT

C

Figure 3. MRT versus C. Uniform number of
tasks per job.

Similarly, in Figures 4-9, the other performance para-
meters are plotted versus C for both exponential and uni-
form number of tasks per job. The simulation results reveal
a substantial performance advantage of the shortest queue
strategy over the probabilistic one. Generally, system per-
formance deteriorates with increasing coefficient of vari-
ationC of task service demand.



When SQ task routing is considered, all three task
scheduling policies affect marginally MRT for both cases
of number of tasks per job (Figures 2, 3). Furthermore, SQ
task routing results in lower MRT values than the probab-
ilistic one for all cases examined in this study. When task
routing is probabilistic, there is a significant effect of the
scheduling policy. The worst strategy is clearly theMNTF

in this case. In the cases of probabilisticand SQ task routing
and FCFS and SNTF task scheduling, [4] presents sim-
ilar results concerning MRT based on a system that con-
sists ofN = 64 processors. The difference in performance of
the scheduling methods increases with increasingC values.
This is because a high variability in task service demand im-
plies that there is proportionally a high number of tasks in
the system with small service demand and a comparatively
low number of tasks with very large service demand. Hence,
when “large” tasks are served by some processors, they oc-
cupy them for a long time and introduce inordinate queuing
delays to the other tasks that wait in their queues. There-
fore, there are more opportunities at highC for the different
scheduling policies to present their different capabilities.

1 2 4 6
0

400

800

1200

1600

2000

2400
������

������

������

�����	

�����	

�����	

MRD

C

Figure 4. MRD versus C. Exponential number
of tasks per job.

The performance superiority of the SQ task routing
method over the probabilistic one increases with increasing
C. This is due to the large variability of task sizes at high
C values, which results in unbalanced processor queues and
consequently in better exploitation of the advantages of the
shortest queue policy.

The least resequence delay (Figures 4, 5) from all cases
examined is observed when probabilistic task routing with
FCFS task scheduling is used. It appears that the arrival
order is mostly preserved in this case, requiring thus less
job resequencing after service. When STNF or MTNF

task scheduling is employed, SQ task routing yields lower
resequencing delay than the probabilistic one. Both num-

1 2 4 6
0

400

800

1200

1600

2000

2400
������

������

������

�����	

�����	

�����	

MRD

C

Figure 5. MRD versus C. Uniform number of
tasks per job.

ber of tasks per job cases produce similar results regarding
MRD.

The resequencing delay increases with increasing C val-
ues. This is because at highC values more service times are
produced that are much shorter than m and fewer ones that
are much longer than m. Therefore, when a task with high
service time is processed in a processor, other subsequent
jobs with smaller tasks eventually finish execution at other
processors and wait in the resequencing buffer. The uniform
number of tasks per job case results in higher resequencing
delay for all policies.

Although probabilistic task routing with FCFS task
scheduling produce the least resequencing delay, SQ task
routing results in lower job mean time in system and higher
system throughput for all three task scheduling methods and
for both cases of number of tasks per job. Figures 6-9 show
that the best combination to obtain the best overall perform-
ance (MTS and THR) is adaptive task routing and either
task scheduling policy. Obviously the worst combination is
probabilistic task routing and MNJF scheduling.

For both cases of number of tasks per job system through-
put deteriorates with increasing task service timeC (Figures
8, 9). This is due to the fact that increased C values res-
ult in increased MRT and MRD values and consequently
in higher MTS. Probabilistic task routing results in lower
system throughput than the shortest queue for all three task
scheduling methods. The worst case is when probabilistic
routing and MNJF is used.

Considering the overall system efficiency it can be seen
from the above that the best results are achieved by using
SQ task routing. Furthermore with SQ task routing the
choice of a task scheduling strategy is not important. There-
fore the FCFS policy is preferred since it is the simplest to
implement, produces less overhead and provides more fair
scheduling than the other two task scheduling methods.



4. Conclusions

In this work we used simulation to compare the perform-
ance of two task routing and three task scheduling policies
in conjunction with resequencing in a homogeneous distrib-
uted system model. We considered two cases of number of
tasks per job based on exponential and uniform distribution
respectively.

1 2 4 6
0

500

1000

1500

2000

2500

3000

3500
������

������

������

�����	

�����	

�����	

MTS

C

Figure 6. MTS versus C. Exponential number
of tasks per job.

1 2 4 6
0

500

1000

1500

2000

2500

3000

3500
������

������

������

�����	

�����	

�����	

MTS

C

Figure 7. MTS versus C. Uniform number of
tasks per job.

Our analysis shows that in all cases examined the least
resequence delay is observed when probabilistic task rout-
ing and FCFS task scheduling are employed. When
STNF or MNTF task scheduling is used, the SQ task
routing policy reduces the resequence delay for both distri-
butions of number of tasks per job. In all cases the resequen-
cing delay increases with increasingC values. Since MRT

also increases with increasing C, this results in overall per-
formance degradation.

The results show that task scheduling policies affect sig-
nificantly the overall system performance �MTS� THR�
when probabilistic routing is used. In this case the best task
scheduling strategy regarding the overall system perform-
ance is FCFS. The difference in performance among task
scheduling policies increases with increasing coefficient of
variationC of task service time distribution.

Our results also indicate that when the SQ task routing
policy is applied, the task scheduling policy has only a mar-
ginal effect on overall system performance �MTS� THR�.
In this case the FCFS task scheduling strategy is therefore
preferable since it is easier to implement and produces less
overhead.

Our conclusion is that the use of the shortest queue task
routing strategy produces the best overall system perform-
ance in all cases examined. Generally, system performance
deteriorates with increasing coefficient of variationC of task
service demand. The performance superiorityof the shortest
queue policy over the probabilistic one increases with in-
creasing C values.

Priorities of our future research directions include the ex-
tension of the current model to take into account the system
state overhead, and also to include cases where task routing
and scheduling is applied to groups of tasks, instead of indi-
vidual tasks only.

1 2 4 6
0,60

0,65

0,70

0,75

0,80

������

������

������

�����	

�����	

�����	

THR

C

Figure 8. THR versus C. Exponential number
of tasks per job.

References

[1] C. Amza, A. L. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Ra-
jamony, W. Yu, and W. Zwaenepoel. Treadmarks: Shared
memory computing on networks of workstations. IEEE
Computer, 29(2):18–28, February 1996.

[2] T. Anderson, E. D. Lazowska, and H. M. Levy. The per-
formance implications of thread management alternatives



1 2 4 6
1,0

1,1

1,2

1,3

1,4

1,5

1,6

������

������

������

�����	

�����	

�����	

THR

C

Figure 9. THR versus C. Uniform number of
tasks per job.

for shared memory multiprocessors. IEEE Transactions on
Computers, C-38(12):1631–1644, December 1989.

[3] R. M. Cubert and P. A. Fishwick. Sim++: Version 1.0. post-
script file, available from WWW: http://www.cis.ufl.edu,
December 1995.

[4] S. P. Dandamudi. A comparison of task scheduling strategies
for multiprocessor systems. In Proceedings of IEEE Sym-
posium on Parallel and Distributed Processing, pages 423–
426, Dallas, TX, December 1991.

[5] S. P. Dandamudi. Performance implications of task rout-
ing and task scheduling strategies for multiprocessor sys-
tems. In Proceedings of the IEEE Euromicro Conference on
Massively Parallel Computing Systems, pages 348–353, Is-
chia, Italy, May 1994.

[6] P. A. Fishwick. Simulation Model Design & Execution:
Building Digital Worlds. Prentice Hall, New York, January
1995.

[7] I. Iliadis and Y. Lien. Resequencing delay distribution
for a queuing system with two heterogeneous servers under
threshold-type scheduling. Data Communication Systems
and Their Performance, pages 359–373, 1989. Elsevier Sci-
ence Publishers B.V., IFIP.

[8] A. Jean Marie. Load balancing in a system of two queues
with resequencing. In P. J. Courtois and G. Latouche, editors,
Performance 87, pages 75–88, 1988.

[9] H. D. Karatza. Simulation study of multitasking and
resequencing in a homogeneous distributed system. In Pro-
ceedings of the Eurosim Congress 95, pages 541–546, Vi-
enna, Austria, September 1988.

[10] A. M. Law and W. D. Kelton. Simulation Modeling and Ana-
lysis. McGraw-Hill, Inc, New York, second edition, 1991.

[11] Y. C. Lien. Evaluation of the resequencingdelay in a queuing
system with two heterogeneousservers. Computer Network-
ing and Performance Evaluation, pages 189–197, 1986. El-
sevier Science Publishers B.V., IFIP.

[12] R. Nelson, D. Towsley, and A. N. Tantawi. Performance ana-
lysis of parallel processing systems. IEEE Transactions on
Software Engineering, SE-14(4):532–540, April 1988.

[13] L. M. Ni, C.-W. Xu, and T. B. Gendreau. A distributed draft-
ing algorithm for load balancing. IEEE Transactionson Soft-
ware Engineering, SE-11(10):1153–1161, October 1985.

[14] K. Ramamritham, J. A. Stankovic, and W. Zhao. Distrib-
uted scheduling of tasks with deadlines and resource require-
ments. IEEE Transactions on Computers, 38(8):1110–1123,
August 1989.

[15] I. Sasase and S. Mori. Resequencingdelay for a queuing sys-
tem with multiple servers under Threshold-type scheduling.
In Proceedings of the Tenth Annual Joint Conference of the
IEEE Computer and Communications Societies, volume 1,
pages 391–399, December 1991.

[16] C. H. Sauer and K. Chandy. Computer Systems Performance
Modeling. Prentice-Hall, Englewood Cliffs, N.J., 1981.

[17] N. G. Shivaratri, P. Krueger, and M. Singhal. Load dis-
tributing for locally distributed systems. IEEE Computer,
25(12):33–44, December 1992.

[18] J. A. Stankovic. Simulations on three adaptive, decentralized
controlled, job scheduling algorithms. Computer Networks,
(8):199–217, 1984.

[19] B. Stroustrup. The C++ programming language. Addison-
Wesley, Reading, MA, second edition, 1991.

[20] T. Takine and T. Hasegawa. Resequencingdelay in preempt-
ive priority m/m/2 queues. In Performance 90, pages 109–
121, 1990.

[21] D. Towsley, C. G. Rommel, and J. A. Stankovic. Analysis of
fork-join program response times on multiprocessors. IEEE
Transactionson Parallel and Distributed Systems, 1(3):286–
303, July 1990.

[22] S. Varma. Optimal allocation of customers in a two server
queue with resequencing. IEEE Transactions on Automatic
Control, 36(11):1288–1293, November 1991.


