
International Journal of Electronic Commerce / Fall 2002, Vol. 7, No. 1, pp. 59–90.
Copyright © 2002 M.E. Sharpe, Inc. All rights reserved.

1086-4415/2002 $9.50 + 0.00.

Agent-Based System Design for B2B Electronic
Commerce

Anthony Karageorgos, Simon Thompson, and Nikolay Mehandjiev

ABSTRACT: Agent-based systems are increasingly used to support business-to-business
(B2B) electronic commerce and other Internet-based transactions. The design complexity
resulting from the multiple interconnected systems in these domains has to be managed in
order to reduce costs and time to market.

This paper introduces the Role-Algebraic Multi-Agent System Design (RAMASD) approach.
RAMASD utilizes role models as reusable system-building blocks and a role algebra to
capture the basic relations of roles. A two-sorted algebra is used to define the role algebra’s
semantics. RAMASD reduces the complexity of designing agent-based B2B e-commerce
systems by enabling designers to work at a high level of abstraction and by automatically
allocating roles to agents according to applicable role models and design constraints.

A case study concerning a B2B electronic market for the automotive industry demon-
strates the applicability of RAMASD. The advantages and disadvantages of the proposed
approach are discussed, and comparisons with relevant work are made.

KEY WORDS AND PHRASES: Agent-oriented software engineering, agent organiza-
tions, agent-based e-business.

Agent technology has come to the forefront in the software industry because
of the advantages that agents have in complex, distributed environments. It is
increasingly used in Internet-based transactions, including electronic commerce
and cross-organizational workflow management [7, 24].

Designing an agent-based B2B electronic commerce system is a complex
process in which it is necessary to define both the structural relationships be-
tween agents and individual agent behavior. Many authors view agent-based
systems as organized societies of individual computational entities and thus
see designing an agent-based system as designing an agent organization (e.g.,
[14, 38, 43]).1 Since the criteria affecting agent organization design decisions
are numerous and highly dependent on factors that may change dynamically,
there is no standard best organization for all situations [34, 38]. Furthermore,
to reduce cost and time to market, agent system design decisions should be
reusable while both functional and nonfunctional aspects are considered [6].

Existing approaches to agent-based system design fail to address design
complexity in that they require the designer to make most of the decisions
without the assistance of a software tool [29, 39, 43]. This can be a serious
drawback when designing large and complex agent-based B2B e-commerce
systems for the real world. Therefore, many authors argue that collective be-
havior as well as social and organizational abstractions should be considered
as first-class design constructs, enabling the agent system designer to reason
at a high level of abstraction (e.g., [22, 28]).

This paper proposes an approach that provides semiautomatic support for
the high-level design of agent-based B2B electronic commerce systems. It uses
role models as basic building blocks, and formalizes the rules and constraints

60 KARAGEORGOS, THOMPSON, AND MEHANDJIEV

governing their combinations. This enables semiautomatic tool support for
the agent organization designer. The approach has been incorporated in an
experimental version of the Zeus agent-building toolkit [27].

Designing Agent-Based Systems

Early research prototypes of agent-based systems were built in an ad hoc
manner. The need to engineer agent systems solving real-world problems,
however, has given rise to a number of systematic methodologies for agent-
oriented analysis and design, such as MESSAGE, Gaia, and SODA [9, 28, 43].
All of these methodologies involve analytic and design submodels that em-
phasize particular aspects of analysis and design. Organizational settings are
either specified explicitly in an organizational model (e.g., [9]) or are defined
implicitly from the functionality that agents are assigned (e.g., [22]). Non-
functional requirements are not explicitly considered in existing agent-based
system engineering methodologies, the only exception being TROPOS, where
specific steps in the agent system engineering methodology take nonfunc-
tional requirements into account [8].

Weaknesses of Agent System Design Methodologies

The existing approaches to agent-based system design could be further im-
proved by:

� Introducing a practical way to construct agent system design
models from analysis models.

The existing approaches to agent-based system engineering typically
involve a considerable number of analysis and design models. There
are five analysis models and three design models in MESSAGE [9],
three analysis models and four design models in SODA [34], and two
analysis models and three design models in Gaia [46]. The main draw-
back of these approaches is that after a certain point the design deci-
sions are left solely to the creativity and intuition of the designer. The
steps involved in transforming analysis models to design models are
not specified in a way that would enable an adequate degree of auto-
mation by a software tool.

� Explicitly considering nonfunctional requirements on design time.

The existing agent-based system engineering approaches do not ex-
plicitly model nonfunctional aspects on design time, and when they
consider them, they do so by adjusting the agent behavior on runtime.
As a result, nonfunctional design decisions cannot be reused and
runtime reorganization may result in significant resource consump-
tion and system instability. The aim should be to achieve the best pos-
sible agent organization at design time. To achieve this, it is necessary
to explicitly model and consider nonfunctional aspects before actu-
ally deploying a multi-agent system. This idea follows the spirit of

INTERNATIONAL JOURNAL OF ELECTRONIC COMMERCE 61

similar works that model and study the behavior of a multi-agent
system before actual system deployment [30, 34].

 � Reusing functional, nonfunctional, and organizational settings.

The reuse of functional knowledge has long been an issue in software
engineering, and it is mandatory in order to reduce cost and time to
market of Internet-based B2B e-commerce systems [6]. The view regard-
ing reuse of organizational settings was inspired by the concepts intro-
duced by Zambonelli, Jennings, and Wooldridge [46]. Their work can
be extended by classifying known organizational patterns and provid-
ing rigorous means for selecting them in a particular design context. If
organizational patterns are to be of practical use in implementing large-
scale, real-world agent applications, a way of easily integrating organi-
zational with functional and nonfunctional design decisions is needed.

Background Concepts

Many modeling approaches use roles as basic building blocks. For example,
organizational theory uses roles to represent positions and responsibilities in
human organizations [34]. Roles are also used in software engineering [1]. They
are particularly suitable for modeling the behavior of software agents (e.g., [22]).
Agent roles are defined in a manner similar to organizational roles by referring
to a position and a set of responsibilities in an organization [14]. To better
represent agent concepts, the agent role definition includes additional charac-
teristics like planning, co-ordination, and negotiation capabilities [22].

Existing role-based approaches to multi-agent system design stress the need
to identify and characterize relations between roles [1, 22]. However, only a
few approaches attempt to investigate the consequences of role relations for
the design of multi-agent systems (e.g., [22]). This is partly because of the lack
of formal foundations in role relationships. In this work, role relations that
affect multi-agent system design are identified and formalized in an algebraic
specification model. Role identification is based on organizational principles
and, in particular, on role theory [4].

The essence of role theory is that persons are appointed to roles in an orga-
nization that are representations of concrete behavior. This behavior is char-
acterized by authorities describing things that can be done and responsibilities
describing things that must be done. For example, the job descriptions of di-
rectors, help-desk staff, developers, and test engineers all specify their respon-
sibilities in the organization. Their rights and duties in their respective
departments, projects, or groups are further determined by organizational
goals, policies, and procedures.

Role theory emphasizes that relations between roles may differ. For ex-
ample, since an examiner cannot be a candidate at the same time, assigning
these two roles to one person at the same time would result in an inconsis-
tency. Role relations can be complex. A university staff member who is also a
private consultant, for example, may have conflicting interests. Assigning these
roles to the same person is possible but would require appropriate mecha-
nisms to resolve the conflicting behavior.

62 KARAGEORGOS, THOMPSON, AND MEHANDJIEV

Main Ideas Behind the Proposed Approach

This paper describes part of a work that attempts to extract role relations from
human organizations with an eye to using them to specify agent behavior.
The reason for searching for role relations in the human organizations domain
was that agent research has traditionally aimed to develop agents that mimic
human behavior and can be organized in a manner similar to humans. As
roles have been extensively used in human organizations (e.g., [45]), it was
natural to examine human organizations to identify role relations. The deci-
sion to use abstractions from human organizations to model software agent
behavior is in line with the latest trend in software engineering, where there is
a move from languages and representation formalisms whose conceptual ba-
sis is determined by the underlying machine architecture to languages whose
key abstractions are rooted in the problem domain [18]. For this reason, the
agent-system design approach proposed in this paper is well suited for de-
signing multi-agent systems to support human activity systems, such as B2B
electronic commerce systems.

An issue of major concern in the design of agent-based B2B e-commerce
systems is the modeling and consideration of nonfunctional requirements [6].
Treatments of nonfunctional requirements can be classified as product-ori-
ented or process-oriented [10]. Process-oriented approaches develop techniques
for justifying decisions during the software development process, whereas
product-oriented approaches deal with nonfunctional issues from the evalua-
tion point of view. Software products may be examined to check whether they
fall within their constraints of nonfunctionality. This paper combines elements
from both approaches. Nonfunctional aspects can be modeled by appropriate
role models and taken into account throughout the design process. In addi-
tion, they can be quantitatively modeled as constraints on the characteristics
of functional role models and can subsequently be used to drive the allocation
of roles to agents.

Modeling with Roles

Roles can be used as building blocks for an approach to agent-based system
design addressing the weaknesses described above. This is achieved by ex-
tending existing role definitions to allow for the modeling of nonfunctional
requirements and by introducing a systematic role-model transformation tech-
nique enabling semiautomation of the design process.

Role Characteristics

Following Kendall, a role is defined as a position and a set of characteristics
[22]. Each characteristic includes a set of attributes. Countable attributes may
further take a range of values. More specifically, a role is considered capable
of carrying out certain tasks and can aim to achieve various responsibilities or
goals. Roles normally need to interact with other roles, which are their collabo-
rators. Interaction takes place by exchanging messages according to interaction

INTERNATIONAL JOURNAL OF ELECTRONIC COMMERCE 63

protocols. When an entity realizes the behavior represented by a role, it is said
to play that role.

Roles can be extended to create specialized roles by a process called role
specialization or refinement [1, 22]. Specialized roles represent additional be-
havior on top of the original role behavior, and thus resemble inheritance in
object-oriented systems.

Role Composition

The task of merging several roles into a single composite role is called role
composition. Role composition occurs when roles are allocated to agents. In
role composition, roles may semantically constrain one other. For example,
two roles may constrain each other in such a way that a single agent cannot
play both roles at the same time. The way that role characteristics and their
attributes are merged may be bound to constraints of various kinds. For ex-
ample, the resource capacity required by the composite role resulting from the
merging of two roles may be less than the sum of the capacities required by the
two individual roles. In this paper, the constraints arising from relations among
roles are referred to as compositional constraints. A formal model of the basic
relations among roles, the role algebra, will be described further on.

A collection of roles and their interactions constitutes a role model (see Figure
1). A role model represents the collective behavior required to carry out some
activity in the system.2 An agent application normally consists of more than
one activity and thus will involve more than one role model. Role models that
occur frequently in some application domain are called role-interaction pat-
terns. Role models can be used to represent reoccurring complex behavior
based on multiple points of interaction and, therefore, are first-class design
constructs—that is to say, they are entities that can be instantiated and given
identity. Role models can be used to describe both functional and nonfunc-
tional aspects as well as organizational settings. An agent system designer
should be able to reuse role-interaction patterns and specify new role models
as required. Therefore, the problem of designing an agent-based system refers
to selecting and instantiating suitable role models.

Role Model Types

Role models can be used to describe various types of organizational, func-
tional, and nonfunctional behavior. By using compositional constraints, one

Figure 1. Schematic Representation of a Role Model

specialization

collaboration

Role DRole BRole ARole Characteristics

Goals/Responsibilities
Tasks
Capabilities
Collaborators
Performance variables

Role C

64 KARAGEORGOS, THOMPSON, AND MEHANDJIEV

can specify how different types of behavior will be merged and allocated to
agents.

The following types of role models can be identified:

� Functional role models describe behavior specific to the application
domain. For example, the collective behavior that carries out
negotiation in a B2B e-commerce context can be described by a
functional role model.

� Nonfunctional role models model behavior that implements nonfunc-
tional aspects of the application. For example, to increase the
security of business-to-business transactions only registered part-
ners should be able to access the pricing information, and any
transactions should be carried out using a secure communications
protocol. This could be modeled by representing that “nonfunc-
tional” behavior by two roles: Registered_Partner and Secure_Protocol
_Trader, and by requiring that agents play those roles in order to
interact with other agents in the agent-based system.

� Organizational role models specify organizational patterns (i.e.,
reusable organizational settings one would like to impose on the
agent system) and agent behavior. For example, an agent requiring
assistance in some task may ask its peer agents (i.e., agents at the
same level in the organizational hierarchy [27]) if they are able to
provide it. Organizational role models can also be used to impose
organizational rules and to introduce social relations among agents
in a multi-agent system [28, 46].

Modeling Nonfunctional Requirements

In order to represent realistic behavior in an application domain, roles need to
model issues relevant to nonfunctional requirements in that domain. In the
approach proposed in this paper, this can be done by using appropriate role
models to explicitly represent nonfunctional aspects (i.e., a process-oriented
approach) and by modeling nonfunctional requirements as constraints on role
characteristics (i.e., a product-oriented approach).

Representing nonfunctional aspects by explicit modeling constructs is an
approach followed by many business systems engineering methodologies (e.g.,
[5, 8]). The underlying principle is the separation of concerns [22, 28]. Role mod-
els can be used to represent nonfunctional aspects. For example, the security
of an agent-based B2B e-commerce system can be ensured by requiring that
the agents carrying out the important financial transactions (e.g., payments)
play the SecurityCompliant role, where SecurityCompliant is a role representing
the necessary behavior to achieve security compliance.

Using explicit role models to represent nonfunctional aspects is not always
the best solution, however. This is obvious when the designer would like to
take quantitative nonfunctional constraints into account. For example, if the
response time of a transaction should be less than 1 second, it is neither intui-
tive nor practical to represent this fact by a separate role to be played by the

INTERNATIONAL JOURNAL OF ELECTRONIC COMMERCE 65

agent responsible for the transactions. Therefore, the role definition given above
is extended to include performance variables—parameters whose value defines
the runtime behavior represented by a role. For example, if the behavior of a
role requires using some resource like memory, the resource capacity can be
modeled by a performance variable. Performance variables can also be defined
at an agent level. In that case, their value is a function of the values of the re-
spective performance variables of all the roles the agent is capable of playing.
This makes it possible to apply design heuristics by imposing constraints on the
values of the agent performance variables that must be observed when allo-
cating roles to agents, as illustrated in the case study below.

A Role Algebra for Multi-Agent System Design

Based on role theory and on case studies of human activity systems, six basic
role relations have been identified [4, 20]. They will now be formally defined
in a model referred to as role algebra. Using relations from the role algebra, we
can specify the constraints driving the assignment of roles to agents, and in
consequence the agent organization design process can be partially automated.

The aim in designing the role algebra was to keep it as simple as possible so
that it could be used pragmatically in real-world agent applications. This sec-
tion will formally define the role relations and then use intuitive examples to
informally describe their meaning. Subsequently, a two-sorted algebra is used
to give a formal description of the semantics of the role relations.

Relations in the Role Algebra

Let R be a set of roles. For any r1
, r2

 Î R, the following binary relationships
may hold:

1. Equals (eq). This means that r1
 and r2

 describe exactly the same
behavior. For example, the terms Advisor and Supervisor can be used
to refer to people supervising Ph.D. students. When two roles are
equal, an agent playing the first role also plays the second at the same
time. The relation Equals Í R ́R is an equivalence relation, since it is
reflexive, symmetric, and transitive:

" r : R (r eq r)

" (r1
, r2

) : R´R (r1
 eq r2

 Þ r2
 eq r1

)

" (r1, r2, r3
) : R´R´R ((r1

 eq r2
) Ù (r2

 eq r3
) Þ (r1

 eq r3
))

2. Excludes (not). This means that r1
 and r2

 cannot be assigned to the
same agent simultaneously. For example, in a conference-reviewing
agent system, an agent should not be playing the roles of paper author
and paper reviewer at the same time. Furthermore, a role cannot
exclude itself, for if it could, then no agent would ever play it.
Therefore, the relation Excludes Í R ́R is antireflexive and symmetric:

66 KARAGEORGOS, THOMPSON, AND MEHANDJIEV

" r : R (Ø(r not r))

" (r1
, r2

) : R ́R (r1
 not r2

 Þ r2
 not r1

)

3. Contains (in). This means that a role is a subcase/specialization of
another role. Therefore, the behavior represented by the first role
completely includes the behavior of the second role. For example, a
role representing Manager behavior completely contains the behavior
of the Employee role. When two roles such that the first contains the
second are composed, the resulting role is the first role. Therefore, the
relation Contains Í R ́R is reflexive and transitive:

" r : R (r in r)

" (r1, r2, r3
) : R ́R ́R ((r1

 in r2
) Ù (r2

 in r3
) Þ (r1

 in r3
))

4. Requires (and). The Requires relation can be used to show that when
an agent is assigned a particular role, then it must also be assigned
some other specific role as well. This is especially applicable in cases
where agents need to conform to general rules or play
organizational roles. For example, in a university application
context, in order for an agent to be a Library_Borrower, it must be a
University_Member as well. Although the behavior of a
Library_Borrower could be modeled as part of the behavior of a
University_Member, this would not be convenient, since this behavior
could not be reused in other application domains where being a
Library_Borrower is possible for everyone. Furthermore, each role
requires itself. Intuitively, the roles that some role r requires are also
required by all other roles that require r. Therefore, the relation
Requires Í R ́R is reflexive and transitive:

" r : R (r and r)

" (r1
, r2

, r3
) : R ́R ́R ((r1

 and r2
) Ù (r2

 and r3
) Þ (r1

 and r3
))

5. Addswith (add). The Addswith relation can be used to express the
notion that the behaviors represented by two roles do not interfere in
any way. For example, since the Student and Football_Player roles
describe nonexcluding and nonoverlapping behaviors, they can be
assigned to the same agent without any problems. The relation
Addswith Í R ́R is reflexive and symmetric:

" r : R (Ø(r add r))

" (r1
, r2

) : R ́R ((r1
 add r2

) Þ (r2
 add r1

))

6. Mergeswith (merge). The Mergeswith relation can be used to express
the idea that the behaviors of two roles overlap to some extent or
that different behavior occurs when two roles are put together. For
example, a Student can also be a Staff_Member. This refers to cases

INTERNATIONAL JOURNAL OF ELECTRONIC COMMERCE 67

where Ph.D. students start teaching before they complete their Ph.D.
Although staff members, they cannot access certain information
(e.g., future exam papers) or have full staff privileges because of
their student status. Also, their salaries are different. In cases like
this, although the two roles can be assigned to the same agent, the
characteristics of the composed role are not exactly the
characteristics of the two individual roles put together. The relation
Mergeswith Í R ́R is symmetric:

" (r
1
, r

2
) : R ́R ((r

1
 merge r

2
) Þ (r

2
 merge r

1
))

Semantics of Role Relations

To describe the semantics of role relations, an agent organization is repre-
sented by a two-sorted algebra (see Figure 2). The algebra includes two sorts, A
representing agents and R representing roles.

Let Has: A ® R be a relation mapping agents to roles. The term “has” means
that a role has been allocated to an agent by some role-allocation procedure or
tool. It is possible for an agent to have roles that do not contribute to defining
the agent behavior (e.g., when roles merge with other roles). For each a Î A,
let a.has be the set of roles that the agent a maps to in the relation Has. In other
words, a.has denotes the relational image of the singleton {a} Í A in the relation
Has.

Let Plays: A ® R be a relation mapping agents to roles again. The term
“plays” means that the behavior a role represents is actively demonstrated by
the agent (e.g., the role does not merge with other roles that are also played by
the agent). For each a Î A, let a.plays denote the set of roles that the agent a

Figure 2. Semantics of Role Relations

has plays

A R

AGENT ORGANISATION

a1

a2

a3

r1

r2

r3
r4

r5

AGENT ORGANIZATION

68 KARAGEORGOS, THOMPSON, AND MEHANDJIEV

maps to in the relation Plays. In other words, a.plays denotes the relational
image of the singleton {a} Í A in the relation Plays.

By definition, all agents must have the roles they play:
" a : A, r : R × (r Î a.plays Þ r Î a.has)
The meaning of the relations between roles previously introduced can now

be described as follows:

� Equals. An agent has and plays equal roles at the same time.

" a : A, (r1
, r2

) : R ́R × (r1
 eq r2

 Û ((r1
 Î a.has Û r2

 Î a.has) Ù (r1
 Î a.plays

Û r2
 Î a.plays)))

� Excludes. Excluded roles cannot be assigned to the same agent.

" a : A, (r1
, r2

) : R ́R × (r1
 not r2

 Û Ø(r1
 Î a.has Ù r2

 Î a.has))

� Contains. Contained roles must be assigned and played by the
same agent as their containers.

" a : A, (r
1
, r

2
) : R ́R × (r

1
 in r

2
 Û ((r

2
 Î a.has Þ r

1
 Î a.has) Ù (r

2
 Î a.plays

Þ r
1
 Î a.plays)))

� Requires. Required roles must be played by the same agent as the
roles that require them.

" a : A, (r1
, r2

) : R ́R × (r1
 and r2

 Û (r1
 Î a.plays Þ r2

 Î a.plays))

� Addswith. There is no constraint in having or playing roles that
add together.

" a : A, (r1
, r2

) : R ́R × (r1
 add r2

 Û (r1
 Î a.has Þ ((r2

 Î a.has Ú r2
 Ï a.has) Ù

(r2
 Î a.plays Ú r2

 Ï a.plays))))

� Mergeswith. When two roles merge, only the unique role that
results from their merger is played by an agent.

" a : A, (r
1
, r

2
) : R ́R × (r

1
 merge r

2
 Û $1 r

3
: R × ((r

1
 Î a.has Ù r

2
 Î a.has) Þ

(r
1
 Ï a.plays Ù r

2
 Ï a.plays Ù r

3
 Î a.has)))

For example, let us assume that roles r
2
and r

3
 merge, resulting in role r

4
.

Based on the above semantic definition, if an agent has r
2
and r

3
 then it must

also have r
4
 and it must not play r

2
and r

3
 (the agent may or may not play r

4
depending on the relations of r

4
 with its other roles). The example of a

Mergeswith relation between roles r
2
, r

3
, and r

4
, assigned to agent a

2
, is depicted

in Figure 2. The fact that agent a
2
 has all three, r

2
, r

3
, and r

4
, is represented by a

dotted line corresponding to the relation Has. The fact that agent a
2
 can possi-

bly play r
4
 but definitely cannot play r

2
 and r

3
 is represented by a solid line

corresponding to the relation Plays.
Using the above semantic axioms, it is trivial to verify that the properties of

role relations introduced in the preceding section hold.
Finally, relations between more than two roles can be defined in a similar

INTERNATIONAL JOURNAL OF ELECTRONIC COMMERCE 69

manner. In that case, a predicate notation is more convenient for representing
role relations. For example, when three roles, r

1
, r

2
, and r

3
, merge to r

4
, this can

be noted by merge(r
1
, r

2
, r

3
, r

4
). In this paper, no formal definitions of relations

among roles with arity greater than 2 are provided.

Role-Algebraic Multi-Agent System Design (RAMASD)

Role relations, as defined in the above algebra, restrict the way in which roles
can be allocated to agents. Therefore, the agent organization design problem
is transformed to a constraint satisfaction problem that must be solved for
roles to be allocated to agents. The problem can be constrained further by
including constraints based on general design heuristics. These constraints
are expressed on the performance variables of the agents. For example, the
system designer should be able to define the maximum number of roles an
agent could play or an upper limit to the resource capacity an agent would
require. Role-allocation heuristics could also be specified. For example, roles
requiring access to similar resources could be assigned to the same agent.

The manual and automatic steps in the semiautomatic approach to role-
based agent-organization design are the following:

1. Select role models. There are many ways to carry out role-based
analysis. The most common approach is to start from use cases and
for each identify roles and their interactions [1]. Many role-interac-
tion patterns can be used directly from existing role-pattern libraries
like the one documented at BT [22]. Selection of role-interaction
patterns or definition of appropriate role models is a manual step
that must be carried out by humans.

2. Retrieve default role characteristics and compositional constraints. This is an
automatic step concerning only reused role models, since default role
characteristics and interrole relations are expected to be stored in a role
library from which the agent system designer will be selecting role
models. After the designer selects existing role models, role characteris-
tics and role compositional constraints are automatically retrieved.

3. Refine role models. The agent system designer is expected to manually
specify role characteristics and role relations for any newly defined
role models. These new role models should be stored in the role-
model library for later use. At this step, additional characteristics of
currently reused role models (e.g., additional performance variables)
should also be specified.

4. Specify general design constraints. This is also a manual step where
various requirements are modeled as constraints on the performance
variables of roles and agents. For example, in the case study dis-
cussed next, the fact that each agent should have access to at most
one information source is modeled by requiring that the value of the
agent performance variable database is at most 1.

5. Assign roles to agents. Solving the constraint-satisfaction problem and
allocating roles to agents can be done automatically. The solution to

70 KARAGEORGOS, THOMPSON, AND MEHANDJIEV

a constraint-satisfaction problem consists of agent types. The term
agent type refers to a collection of roles an agent can be assigned
according to a particular role-allocation solution. Agent types can
thus be considered as high-grain conceptual representations of
agent behavior. After an agent type has been defined, it can be
instantiated to create and deploy as many identical agents
components as required. For example, assuming that an agent type
is assigned only the role Customer, a customer agent component can
be created and deployed for each registered customer of the
business the agent-based system supports. A heuristic algorithm
will be presented below that returns the first-found role-allocation
solution, trying to allocate all available roles to as few agent types
as possible. The algorithm is demonstrated in the case study
example.

Example: An Automotive Industry B2B Exchange

For the purposes of this paper, an example extracted from a large case study
concerning an automotive industry B2B exchange is considered. The example
is based on a simple B2B electronic commerce model involving the three busi-
ness phases of quotation, negotiation, and order fulfillment. The use of
RAMASD to design a multi-agent system implementing the B2B exchange
services involved in the example is demonstrated.

Case Study Overview

Automotive industry B2B exchanges are electronic business service providers
offering a variety of services, including business directories, auctions, sup-
ply-chain management, and asset redeployment and disposal [26]. The idea
of such efforts is to bring companies from the automotive industry together
and enable them to carry out their business in a more cost-effective and con-
venient manner using Internet technology. Automotive industry manufactur-
ers are able to interact with their suppliers without having to interface different
information technology systems. Apart from effectively transacting with their
customers, suppliers are also able to conveniently consolidate their efforts,
thus maximizing their enterprise capability and the ability to pursue other
business opportunities. All parties benefit from the utility applications avail-
able to B2B exchange participants, such as corporate services and customer
relationship–management software [13].

A representative example of an automotive industry B2B exchange is
Covisint (COllaboration, VIsion, and INTegration), initiated by Daimler-
Chrysler, Ford, and General Motors to create an optimized digital supply chain
for the automotive industry [11]. Additional drivers for the creation of Covisint
were the expected cost savings and improved product lifecycle management
based on sophisticated software support. Currently, fourteen automotive in-
dustry key players have joined Covisint together with two technology part-
ners, Commerce-One and Oracle. Covisint supports supply-chain

INTERNATIONAL JOURNAL OF ELECTRONIC COMMERCE 71

management, collaboration among automotive market business parties, pro-
curement, quality control, and corporate financial processes. The functional-
ity it offers is the basis for the case study considered in this paper.

An important issue in business-to-business transactions is the underlying
electronic commerce model. Early attempts to characterize e-commerce trans-
actions were based on the standard consumer buying behavior (CBB) model
[15], which includes six stages: Need Identification, Product Brokering, Mer-
chant Brokering, Negotiation, Purchase and Delivery, and Product Service and
Evaluation. In the Need Identification phase, the customer conceptualizes the
need for a product or service. In the Product Brokering and Merchant Brokering
phases, the customer decides which product or service is needed and selects a
suitable supplier or service provider. In the Purchase and Delivery phase, the
product is delivered or the service is provided, and in the Product Service and
Evaluation phase the customer advises of its satisfaction with the process, prod-
ucts, or services provided.

More recent work on electronic commerce models produced models that
capture specific issues of e-commerce. One such model is the electronic ser-
vice marketplace model developed at HP labs [12]. The HP e-commerce model
includes five phases: Creation, Discovery, Negotiation and Contracting, Moni-
tor and Management, and Fulfillment and Settlement. In the Creation phase,
the electronic marketplace is established by appropriate bodies that will be
responsible for coordinating the market operation. The potential trading par-
ties discover one another and explore possibilities for trading in the Discovery
phase. The actual trading process results in service contracts and product or-
ders, and takes place in the Negotiation and Contracting phase. In the Monitor
and Management phase, the legitimate operation of the marketplace is moni-
tored and evaluated by some appropriate inspection body, and appropriate
actions are taken where required. Finally, in the Fulfillment and Settlement phase,
trading parties fulfill the terms of the agreements, and products are shipped
or service provision starts.

To better illustrate the approach discussed in this paper, here is a simple
B2B electronic commerce model abstracted from Durante et al. [12] and
Guttman et al. [15]. The model has three phases:

� Quotation Phase. Potential trading parties discover one other.
Quotations about automotive manufacturing industry parts and
supporting services are issued.

� Auction/Negotiation Phase. Potential buyers establish an auction.
Buyers and sellers negotiate and reach agreements regarding
supplying products and providing services. The agreements are
examined by an appropriate inspection body (e.g., the Federal
Trade Commission) in regard to legal, ethical, and social issues.
Appropriate action is taken where required.

� Fulfillment Phase. The contracts agreed to in the negotiation phase
are executed (e.g., the shipping orders of purchased products are
submitted to the appropriate departments and the provision of
hired services commences). This phase includes all communication

72 KARAGEORGOS, THOMPSON, AND MEHANDJIEV

events relevant to customer input about the quality of the products
received and the services provided.

Since the complete automotive industry case study is quite large, an ex-
ample is extracted to demonstrate the concepts and approach discussed in
this paper. The example assumes that it is necessary to design a multi-agent
system to support routine automotive manufacturing supply-chain manage-
ment tasks. In the example scenario, automotive industry manufacturers first
identify their needs for automotive manufacturing parts and services using
their proprietary, possibly legacy systems. Subsequently, they search product
catalogs and business directories for suitable potential suppliers and service
providers. For example, it is common for car manufacturers to reduce costs
and increase focus on their main tasks by outsourcing the manufacturing of
seats and exhausts and the redeployment or disposal of used assets to special-
ized companies. A potential buyer that identifies suitable potential suppliers
or service providers initiates an auction and invites them to participate. In-
vited trading partners conduct the auction, and the potential buyer may ac-
cept or reject the outcome based on whether its personal business goals are
satisfied. A representative of the inspection body checks the auction process
and outcome. If they are approved, the signed contracts are ready for execu-
tion. Finally, the suppliers and service providers fulfill their contracts by ship-
ping the relevant products and starting to provide the relevant services.

Role Identification

In order to model the above system in terms of roles, the first thing to do is to
identify the roles involved in the case study example. According to Kendall
and Zhao, a way to identify roles in an application domain is to identify use
cases that are each associated with a goal, then create a goal hierarchy from
the use-case hierarchy, and finally, coalesce semantically relevant goals to roles
[23]. For the purpose of the automotive industry example, let us consider three
use cases, each corresponding to a phase in the simple B2B e-commerce model
described before:

� Trading partner discovery and request for quotation (Quotation Phase).
This activity involves extensive information exchange among poten-
tial trading partners. Each side must sift through large amounts of
data for relevant information to make decisions, proposals, and
counterproposals. The outcome of this activity is a number of poten-
tial suppliers or service providers for each potential buyer.

� Auction Initiation, Negotiation, and Monitoring (Auction/Negotiation
Phase). This involves initiation and establishment of an auction from
each potential buyer, negotiation between the trading parties, and
monitoring of the auction process and results by some external
inspection body.

� Order Fulfillment (Fulfillment Phase). In this activity, all interactions
regarding execution of contracts, shipment of products, and provi-
sion of services take place.

INTERNATIONAL JOURNAL OF ELECTRONIC COMMERCE 73

Each use case has a number of high-level goals (see Figure 3). The behavior
leading to achieving these goals can be modeled by appropriate roles. Thus
the following roles can be identified (see Figure 4):

1. Potential_Buyer (goal Q1). This role describes the generic behavior of
automotive industry manufacturers interested in purchasing
manufacturing parts, outsourcing some of their business processes,
or selecting collaborators for co-design projects regarding
sophisticated automotive manufacturing parts. Potential buyers
communicate with potential suppliers or service providers and
request quotations and relevant information. Suppliers that have
submitted attractive quotations are invited to participate in an
auction.

2. Potential_Trader (goal Q2). Potential traders are suppliers or service
providers that communicate with potential buyers providing them
with quotations and further information. Potential traders also
communicate with one other in attempts to establish coalitions and
submit more attractive offers to potential buyers.

3. Auction_Operator (goal A1). This role describes the generic behavior of
members of auction operation support groups (e.g., accessing
common auction information including bidding history and trading
participants status).

4. Auction_Coordinator (goal A11). This role describes the behavior
required to coordinate the operation of an auction. This includes
informing the trading parties about the auction regulations,
providing participant profiles, and gathering statistical data on their
bidding histories. The performance of auction participants and the
efficiency of the auction mechanisms are monitored.

5. Auction_Inspector (goal A12). This role ensures the smooth operation of
the auctioning process. The Auction_Inspector accesses the auction
data gathered by the Auction_Coordinator and verifies that the process
followed is legitimate. This is achieved by comparing auction process
data with the auction rules and regulations obtained by
communicating with the Legislation_Interface, defined below.

6. Legislation_Interface (goal A2). This role maintains a database of rules
and legislation that govern the auction operations. Auction inspectors
interact with this role and submit queries regarding auction
procedures, receiving answers in various data formats.

7. Invited_Auction_Participant (goal A3). This is a utility role providing
access to auction operations to selected suppliers and service
providers. This involves authorization codes to participate in the
auction business and provides access to profiles of other participants
and to historical auction data.

8. Auction_Initiator (goal A4). This role is responsible for initiating and
running the auction. Its duties include selecting the auction type, the
bid limits, and the starting price. Subsequently, it participates in the

74 KARAGEORGOS, THOMPSON, AND MEHANDJIEV

Figure 3. Use Case Goals for an Automotive Industry B2B Exchange
Case Study

Figure 4. Role Models for the Automotive Industry B2B Exchange Case
Study

Quotation

Phase

Fulfillment

Phase

Auction

Phase

A
5
: To participate in the

auction and submit bids
according to a suitable
negotiation strategy

A1: To operate the e-marketplace

A11: To assist auction
initiators and auction
bidders in carrying out the
auction

A12: To administer and
monitor legal, financial, and
ethical aspects of the auction

Q
2
: To obtain information

about the demand of each
part and to express interest
in participating in auctions

A2: To store general auction
regulations and legislation
that are used to assess the
auction operations

A
4
: To create auctions and

invite participants based on
their status, reputation and
auction history

Q
1
: To obtain information

about automotive parts from
suppliers to be used to invite
participants in an auction

A3: To enable potential
suppliers to participate in
the auction by granting
access to auction operations

F
1
: To finalize and settle the

terms of the order and to
submit it to suppliers for
fulfillment

F
2
: To fulfill submitted

orders by acknowledging
them and arranging dispatch
of the relevant parts

INTERNATIONAL JOURNAL OF ELECTRONIC COMMERCE 75

negotiation with auction bidders by accepting bids and establishes a
product-purchasing or service-provision agreement.

9. Auction_Bidder (goal A5). This role participates in the auction and
submits bids aiming to achieve a business contract at a beneficial
price.

10. Auction_Buyer (goal F1). Auction_Buyers are active in the order
fulfillment phase and interact with suppliers and service providers to
finalize the details of product shipment and service provision start.
They also ensure receipt of products and smooth utilization of the
contracted services by interacting with inventory and proprietary
workflow-management software.

11. Auction_Trader (goal F2). This role is also active in the order-fulfillment
phase and interacts with buyers to confirm receipt of shipped parts
and prompt initiation of agreed services. Its responsibilities include
notifying the shipping departments to execute shipment orders,
informing the service departments to start provision of the contracted
services, and interacting with the logistics and accounting
departments to ensure that appropriate payment is received.

12. Auction_Participant. As noted by Andersen [1], it is a good practice in
role-modeling to extract any common behavior from a number of
roles and model it separately in a new role. From the roles identified
above, Auction_Initiator, Auction_Bidder, Potential_Buyer,
Potential_Trader, Auction_Buyer, and Auction_Trader have some
behavior in common. They all represent automotive industry parties
that interact in the B2B exchange environment. This common
behavior is modeled by a separate role that facilitates understanding
of the resulting role models and specifies necessary constraints
among roles.

Modeling Nonfunctional Aspects

In the case study example, two nonfunctional aspects are taken into account
in designing the multi-agent system: security and privacy. The security strat-
egy implemented in the designed multi-agent system distributes access to
different information sources to different software agents. Privacy is ensured
by intermediation of trading interactions.

Security Issues

Creating effective electronic business software security strategies and infra-
structures is one of the biggest challenges in the electronic business software
industry. IDC predicts that the U.S. information security services market will
grow from $2.8 billion in 1999 to more than $8.2 billion in 2004 [16].

Common B2B software security requirements include identification/au-
thentication of users to enter the system, authorization to enable them to ac-
cess the permitted software functionality, user accountability, administration,

76 KARAGEORGOS, THOMPSON, AND MEHANDJIEV

and, most important, asset protection. Security strategies typically balance
the degree of support for each requirement according to the general policies
of the business. For example, higher access privileges for users result in lower
software system security.

A security strategy initially requires high-level recognition of the business
security concerns, which can be described as simple statements. Examples of
high-level security concerns include monitoring user activity, forbidding ac-
cess to unneeded data, and promoting security awareness among employees.
Based on high-level descriptions of security concerns, more specific descrip-
tions of security policies are introduced. Security policies are meant to ad-
dress security issues when implementing business requirements. Examples of
security policies are using out-of-band communication when responding to
an incident alert, employing encrypted data exchange techniques, and main-
taining a central transaction log server. Security policies lead to specific secu-
rity actions, for example, disabling telnet and ftp in all externally accessible
computers, validating html form data on both the client and server side, and
adding an extra authorization level for very sensitive and important data.

There have been many approaches to classifying security strategies for
possible reuse. One common approach applies the limited view security strat-
egy discussed by Yoder and Baraclow [44]. According to the limited view strat-
egy, users see only what they are allowed to access. Another typical strategy
to strengthen the security of a distributed application is to provide a secure
access layer combining both application and low-level network security [32,
44].

Based on these two security strategies, agents should not only exchange
information using secure protocols and over a secure communication medium,
but should not have access to information resources relevant to the operation
of incompatible roles. The reason is that agents are highly flexible and
configurable software components that can alter their behavior on runtime.
For example, the goals of the Auction_Coordinator role could lead to attempts
to modify an auction legislation database if it had access to it. In the example
here, a very simple security policy for role-based access control will prohibit
the access of any agent to more than one database, where database refers to the
set of all data sources relevant to a single role.

Privacy Issues

Consumers and organizations that do business over the Internet want assur-
ance that their transactions will remain private and outside parties cannot
access sensitive personal data. This is especially true in the emerging automo-
tive industry B2B models that include vendors and external partners early in
the business process, from product design through delivery and support. Com-
petitors sometimes cooperate to complement one another’s capabilities. For
example, in the defense automotive sector, multiple manufacturers collabo-
rate on contracts because of size, complexity, and the need for specialized
services. Or a manufacturer may team up with a parts supplier that is also
collaborating with its competitors. For example, an automotive supplier pro-

INTERNATIONAL JOURNAL OF ELECTRONIC COMMERCE 77

ducing seats may be working with several competing auto manufacturers on
future designs. As an organization increases the size of its network, the vari-
ety of its markets, inputs, and outputs increases, and this too increases its
need for privacy [25].

Although the technology exists to ensure privacy in personal and business
communications and data, many companies that acquire private data from
customers do not apply the necessary privacy practices. Therefore, software
design solutions that ensure privacy among trading parties are required. It
has been suggested that to support privacy Internet-based software should
be based on a centralized data model, with nonpublic information
disseminated to interacting parties by a trusted third party [2]. Intermediation
has been successfully used in many application domains to enforce privacy,
including electronic stock markets, manufacturing, and mobile workforce
management [21, 35, 41].

Intermediation can be modeled by the mediator role interaction pattern.3

This pattern involves three roles (see Figure 5):

1. Initiator. This role is active in the order-fulfillment phase and interacts
with buyers to confirm receipt of shipped parts and prompt initiation
of agreed services. Its responsibilities include notifying shipping
departments to execute shipment orders, informing service depart-
ments to start provision of contracted services, and interacting with
logistics and accounting departments to ensure that appropriate
payment is received.

2. Intermediary. This role has access to all relevant information of both
interacting parties. However, it does not just filter and selectively
communicate information to initiators and responders. It can also
reduce the costs of many information-intensive tasks by integrating
customer-based functionality with privacy and security issues. For
example, the intermediary can maintain a database of previous
interactions among the same or relevant participants and can provide
aggregated results considering any privacy limitations.

Figure 5. The Mediator Pattern

Initiator

Intermediary

Responder

78 KARAGEORGOS, THOMPSON, AND MEHANDJIEV

3. Responder. This role is similar to the Initiator role except that the
Responder role responds and continues an interaction previously
started by the Initiator role.

Role Composition

Role composition takes place when the mediator role interacts with the roles
identified previously. The resulting role models include the mediator pattern.
The differences are depicted in Figure 6, which describes the resulting role
models. Some roles remain the same, and some are replaced with new roles
based on a Mergeswith relationship. The new roles are named by combining
the names of the roles that contributed to their creation. The role-pairs
Potential_Buyer—Potential_Trader, Auction_Initiator—Auction_Bidder, and
Auction_Trader—Auction_Buyer are replaced because the new roles do not in-
teract directly but only through intermediaries. The new roles can inform the

Figure 6. Updated Role Models Based on the Mediator Pattern

INTERNATIONAL JOURNAL OF ELECTRONIC COMMERCE 79

intermediaries about their privacy requirements and make use of the utility
services (e.g., statistical analyses) provided by the intermediaries. The Auc-
tion-Coordinator role is also replaced, and the new role acts both as an Interme-
diary and an Auction_Coordinator.

Two new roles are needed at this stage:

1. Quotation Handler. This role provides a means to enhance the commu-
nication between potential buyers and potential suppliers. Apart
from intermediation, Quotation_Handler offers various services to
both parties (e.g., electronic document management, analysis of data
gathered throughout similar automotive sourcing requests for
quotation). The role has access to a central repository of service
sourcing documentation and product price lists.

2. Broker. This role intermediates between buyers and suppliers or
service providers in the fulfillment phase. It provides the functional-
ity for many utility tasks (e.g., bills of materials, order management,
shipping management, returns and status tracking) and maintains a
database of order fulfillment critical information (e.g., inventory
levels, usage history and patterns, receipts) to help eliminate excess
inventory and premium transportation charges.

Specifying Design Constraints

After identifying roles in the application domain and modeling nonfunctional
aspects using well-known role interaction patterns, the next step is to model
the remaining functional and nonfunctional aspects using constraints on roles
and agent and role characteristics. This can be done with Role Constraint Lan-
guage (RCL), a simple declarative specification language introduced to repre-
sent design constraints on roles and agent and role characteristics. The RCL
syntax is simple and intuitive in order to facilitate the specification of con-
straints among roles. The underlying RCL semantic model is based on the
algebraic semantics of the role algebra presented earlier. The basic concepts of
RCL will be illustrated using the specification of the compositional constraints
for the roles identified above, part of which is presented in Figure 7. For clar-
ity, the role names in Figure 7 have been abbreviated when necessary.

An RCL specification contains sections corresponding to role definitions, role
constraints, and general constraints. The role definitions section specifies the
names of the roles that will be considered in the design of the multi-agent sys-
tem. More than one role name can be specified at the same specification state-
ment. Furthermore, role characteristics (e.g., role collaborators and
performance variables) can be associated with role names. This is illustrated
in Figure 7 by specifying that the roles Legislation_Interface, Auction_Coordinator,
Quotation_Handler, and Broker have associated the integer performance vari-
able database. Role characteristics are assigned values in the same section. The
syntax for referring to the characteristics of each role is similar to that of com-
mon programming languages, using a ‘.’ to link the role name and the role
characteristic name.

80 KARAGEORGOS, THOMPSON, AND MEHANDJIEV

In the role constraints section, any constraints between roles are specified
in prefix form. For example, in(a_coordinator, a_operator) specifies
that an a_coordinator contains the a_operator role. By using appropriate
constraints between roles, it is possible to specify how different roles should
be allocated to agent types. For example, the Excludes relation is used to specify
that an agent that is Auction_Coordinator cannot also be Auction_Inspector. The
Excludes relation is also used to specify that interacting roles in the request for
the quotation, auction negotiation, and order fulfilment processes should be
played by different agents.

In order for an agent to be an Auction_Bidder and participate in an auction,
it must have been previously invited by Auction_Initiator. This is modeled us-
ing the Requires relation to specify that the Auction_Bidder role must be played
together with the Invited_Auction_Participant role. Changes in the behavior of
roles when the mediator pattern is applied are modeled using the Mergeswith
relation. For example, an Auction_Coordinator merges with the Intermediary
role resulting in the Auction_Coordinator_Intermediary role, which combines
the behavior of the Auction_Coordinator and Intermediary roles.

For security reasons, neither Auction_Coordinator nor Auction_Participant
can coexist with the Legislation_Interface role. For the same reason, Auction
_Coordinator cannot coexist with Auction_Inspector, and Auction_Coordinator,

Figure 7. Compositional Constraints for the B2B Exchange Case Study

merge(a_coordinator, intermediary,

 a_coordinator_int);

merge(p_buyer, initiator, p_buyer_i);

merge(a_initiator, initiator,

 a_initiator_i);

merge(a_buyer, initiator, a_buyer_i);

merge(p_trader, responder, p_trader_r);

merge(a_bidder, responder, a_bidder_r);

merge(a_trader, responder, a_trader_r);

not(a_participant, a_operator);

not(l_interface, a_coordinator);

not(l_interface, a_participant);

not(a_coordinator, a_inspector);

not(a_coordinator, a_participant);

not(q_handler, a_participant);

not(q_handler, a_inspector);

not(broker, a_participant);

not(broker, a_inspector);

not(a_initiator, a_bidder);

not(p_buyer, p_trader);

not(a_buyer, a_trader);

/* GENERAL CONSTRAINTS */

Constraint Y {

 forall a:Agent {

 a.database <= 1

 }

}

/* ROLE DEFINITIONS */

Role a_operator, a_participant,

 a_inspector, a_coordinator,

 a_initiator, a_initiator_i,

 a_bidder, a_bidder_r,

 p_buyer, p_buyer_i,

 p_trader, p_trader_r,

 a_buyer, a_buyer_i,

 a_trader, a_trader_r,

 ia_participant, initiator,

 intermediary, responder;

Role l_interface, a_coordinator,

 q_handler, broker {

 int database;

}

 l_interface.database = 1;

 a_coordinator.database = 1;

 q_handler.database = 1;

 broker.database = 1;

/* ROLE CONSTRAINTS */

in(a_coordinator, a_operator);

in(a_inspector, a_operator);

in(a_initiator, a_participant);

in(a_bidder, a_participant);

in(p_buyer, a_participant);

in(p_trader, a_participant);

in(a_buyer, a_participant);

in(a_trader, a_participant);

and(a_bidder, ia_participant);

INTERNATIONAL JOURNAL OF ELECTRONIC COMMERCE 81

Quotation_Handler, and Broker cannot coexist with Auction_Participant. These
constraints are specified using the Excludes relation.

Constraints on agent and role characteristics are specified in the general
constraints section. For example, to increase security, one would like agents to
have access to not more than one information source. This is modeled by con-
straining the database performance variable to be at most 1 for all agent types.
The value of the database variable of an agent type is equal to the sum of the
values of the database variables of the roles the agent plays. This calculation
only considers roles that have the database variable defined. For example, an
agent that plays the Quotation_Handler, Auction_Coordinator, and Auction
_Operator roles is automatically associated with the performance variable da-
tabase, since at least one of the roles it plays is associated with this variable.
Furthermore, the value of the agent database variable would be 2, since the
values of the Auction_Coordinator and Quotation_Handler database variables are
1 each and the Auction_Operator role is not associated with a database variable.

Allocating Roles to Agent Types

The constraints on roles and on agent and role characteristics define a con-
straint satisfaction problem that must be solved to allocate roles to agent types.
Since search problems are hard to address optimally, suboptimal solutions are
widely adopted. This section gives an overview of a heuristic algorithm for
solving the role-allocation problem and discusses its application to allocate
roles to agent types in the case study example.

A Role-Allocation Algorithm

The algorithm aims to minimize the number of agent types produced. There-
fore, it tries to allocate as many roles to an agent type as possible before mov-
ing to the next one. Merging roles are processed first, and the algorithm moves
to the remaining roles only when all the roles involved in a Mergeswith con-
straint have been allocated to an agent type. Every role is allocated to an agent
type at least once. An overview of the algorithm is given in Figure 8.

The algorithm starts with an empty agent type and randomly allocates it to
a group of merging roles involved in a Mergeswith relation. Then it checks
whether the merging roles are involved in any other role constraints. If they
are, the additional roles involved in those role constraints are also allocated to
the agent type. Subsequently, the algorithm checks whether the agent type is
consistent, which involves examining whether all the constraints concerning
the roles so far allocated to the agent type are satisfied.

If these role constraints are satisfied, the next step is to check whether any
general constraints concerning role characteristics of this agent type are also
satisfied. If they are, the roles involved are considered part of this agent type
and the two steps given above are repeated for as long as there are still merg-
ing roles to allocate. If allocating any further merging roles to the agent type
results in constraints that are not satisfied, then a new agent type is created
and the process is repeated. If there are constraints that are not satisfied and

82 KARAGEORGOS, THOMPSON, AND MEHANDJIEV

the agent type was initially empty, the algorithm stops with an error message.
When all the merging roles are finished and there are still roles available,

the algorithm attempts to allocate the remaining roles to the current agent
type. In case of failure, a new agent type is created and the process continues
until all available roles have been allocated to agent types.

This simple and intuitive algorithm is currently being used as a baseline
for comparisons in ongoing research about role-allocation algorithms. The al-
gorithm works reasonably well for case study examples involving approxi-
mately 40 roles and having, on average, 10 merging role constraints, 20 other
role constraints, and two general constraints. However, the algorithm becomes
inefficient when the total number of roles increases, the number of merging
role constraints decreases, or the total number of constraints increases.

Role-Allocation Results

An application of the algorithm to the RCL specification will now be presented.
The results of the role allocation are summarized in Figure 9. The algorithm is
assumed to start randomly from the merge(a_coordinator, intermediary,
a_coordinator_int) constraint. These three roles are allocated to the first
agent type. Since a_coordinator contains a_operator , the a_operator
role is also allocated to this agent type. All the constraints so far involving the

1. Create a new agent type t.

2. While there are remaining unprocessed merging

relationships:

a. Create agent type t’ = t.

b. Allocate roles ri involved in a merging

relationship m to agent type t’.

c. If t’ is consistent for some allocation

combination of ri to t’:

i. Check any constraints on the performance

variables of agent type t’.

ii. If they are satisfied:

1. t = t’.

2. Goto step 2.

d. If agent type t is empty then error.

3. While there are remaining unallocated roles:

a. Create agent type t’ = t.

b. Allocate a role r to the agent type t’.

c. If t’ is consistent for some allocation

combination of r to t’:

i. Check any constraints on the performance

variables of agent type t’.

ii. If they are satisfied:

1. t = t’.

2. Goto step 3.

d. If agent type t is empty then error.
4. Terminate with success

Figure 8. A Simple Search Algorithm for Allocating Roles to Agent
Types

INTERNATIONAL JOURNAL OF ELECTRONIC COMMERCE 83

allocated roles are satisfied. Subsequently, a check of the general constraint
a.database <= 1 is done, and it is successful because a.database =
a_coordinator_int.database = 1.

The next step is to attempt to allocate roles from the merge(p_buyer,
initiator, p_buyer_i) constraint. Since the role p_buyer contains
a_participant, an attempt to also allocate a_participant is made.
However, a_coordinator excludes a_participant, and therefore this
allocation attempt fails. Subsequent attempts to allocate roles participating in
the remaining merging constraints fail for the same reason.

The algorithm then proceeds to create a second agent type. In the second
agent type, the roles involved in the next three merging constraints are
successfully allocated. Since p_buyer, a_initiator, and a_buyer contain
a_participant , the a_participant role is also allocated to this agent
type and the general constraint is satisfied. The series of successful allocation
steps is interrupted when the algorithm attempts to allocate roles from the
merge(p_trader, responder, p_trader_r) constraint. The reason is
that a p_buyer cannot be a p_trader in the auction type considered, which
is specified in Figure 8 using an Excludes relation.

The next step is to create a third agent type where the roles involved in the
remaining merging constraints are successfully allocated. Since p_trader,
a_bidder, and a_trader contain a_participant , the a_participant
role is also allocated to this agent type. The ia_participant role is also
allocated because a_bidder requires ia_participant . As there are no

Figure 9. Agent Types for the B2B Exchange Case Study

84 KARAGEORGOS, THOMPSON, AND MEHANDJIEV

merging constraints left, the algorithm attempts to allocate the remaining roles.
This attempt fails for this agent type because q_handler , broker ,
a_operator , and l_interface cannot coexist with a_participant , as
specified in Figure 7.

A fourth agent type is therefore created, and the q_handler role is randomly
allocated to it. The algorithm fails to allocate l_interface to this agent type
because, as explicitly specified in Figure 7, q_handler cannot coexist with
l_interface . The algorithm also fails to allocate a_inspector because in
that case it would also have to allocate a_operator , contained by
a_inspector , which is excluded by q_handler . Finally, broker cannot be
allocated, since in that case the agent database value would be 2 and the general
constraint would be violated.

This leads to the creation of a fifth agent type where the l_interface
and a_inspector roles are successfully allocated. Since a_inspector
contains a_operator , the a_operator role is also allocated to this agent
type. However, the broker role cannot be allocated, since it cannot coexist
with a_inspector, as specified in Figure 7.

Finally, a sixth agent type containing the remaining role broker is created,
and the algorithm ends with success.

Comparison with Relevant Work

The existing approaches to agent-based system engineering can be either dy-
namic, where the agent behavior is dynamically specified at runtime, or static
where the agent system is engineered statically at design time. Static ap-
proaches can be ad hoc, formal, or informal. RAMASD is a static, semiauto-
matic approach that formalizes some of the modeling primitives, the relations
among roles, thus enabling automatic tool support for designer and conve-
nient reuse of design knowledge. Furthermore, RAMASD explicitly models
nonfunctional requirements.

An increasing amount of work has been done on the use of software agents
for B2B electronic commerce (e.g., [3, 7, 24]) and B2B cross-organizational
workflow management (e.g., [19, 31, 36]). However, there have not been many
systematic approaches suited for engineering of agent-based B2B systems. A
notable exception is the Interaction-Oriented Programming (IOP) approach,
which emphasizes engineering agents to that achieve coherence throughout
cross-organizational processes [37]. In IOP, multienterprise workflows are flex-
ibly enacted by enabling agents to enter into and behave according to their
commitments to one another. Considering the commitments they have acquired
and the capabilities they possess, agents autonomously adopt and abandon
various roles until their commitments are fulfilled. However, with IOP the
agent system designer has to work at a low level of abstraction, and IOP does
not explicitly model nonfunctional requirements. Furthermore, the reorgani-
zation necessary for the agents to decide about the roles they need to play can
be resource-consuming and may result in unstable systems because reorgani-
zation messages may take a long time to propagate.

Every approach to agent system design that is based on massive reorgani-

INTERNATIONAL JOURNAL OF ELECTRONIC COMMERCE 85

zation during runtime suffers from similar weaknesses. For example, Tambe
describes a dynamic agent organization approach that assigns task plans to
agents that already play the necessary roles and have the appropriate capa-
bilities [40]. This approach assumes that suitable agents already exist in
cyberspace and can be allocated task plans as required. The task plan alloca-
tion method aims to utilize the capabilities of an agent to the maximum extent
before allocating task plans to a different agent. Although this straightfor-
ward practice facilitates design of the agent system, it does not explicitly con-
sider nonfunctional requirements (e.g., fully utilized agents could become a
system bottleneck, resulting in poor system performance). To mitigate such
problems, RAMASD aims to optimize the initial agent-system design so that
the need for dynamic reorganization on runtime is reduced.

Several other methodologies also focus on engineering the agent system
statically on design time. These methodologies originate in object-oriented
analysis and design (e.g., [22, 28, 43]), knowledge engineering (e.g., [9, 17]),
formal methods (e.g., [33]), and information systems engineering (e.g., [8]).
The notions of role and role-based modeling appear in most of the
aforementioned agent-based system engineering approaches. However, their
definitions of role are limited to a conceptual level, whereas the role definition
presented in this paper is extended to a pragmatic level in order to
quantitatively model nonfunctional requirements.

We believe no other agent system engineering methodology explicitly
considers nonfunctional requirements, apart from TROPOS, which at some
stage includes introducing actors and subactors that contribute positively to
nonfunctional requirements [8]. The same result can be achieved in RAMASD
by introducing appropriate nonfunctional models. Furthermore, the majority
of the aforementioned agent systems engineering methodologies are systematic
but informal, which means that they cannot be automated to any extent by a
software tool providing automatic support to the designer. In contrast, RAMASD
is semiautomatic, because the relations among roles are formally described in
the role algebra, and roles can be automatically allocated to agents. RAMASD
has been implemented in the Zeus agent-building toolkit [27].

Approaches based on formal methods can be fully automated but require
the agent system designer to work at a low level of abstraction [33]. In contrast,
RAMASD considers role models as first-class design constructs enabling
designers to work at a high level of abstraction and to conveniently reuse
functional, nonfunctional, and organizational settings.

Semiautomating agent system design is an approach also followed by the
Multiagent Software Engineering methodology (MaSE), which is also based
on role models [39, 42]. The MaSE methodology consists of seven analysis
and design stages and attempts to formally capture the relationships between
models. The design stages are incorporated in an agent system development
tool called AgentTool. Although MaSE aims at formally defining the steps
from analysis to design of agent systems, there is no notion of organizational
relationships between the agents, since agents are viewed as specializations
of objects. Nonfunctional aspects are not explicitly supported, and collective
behavior cannot be pragmatically reused, since modeling is done only at the
conceptual level. In contrast, RAMASD models behavior at a pragmatic level,

86 KARAGEORGOS, THOMPSON, AND MEHANDJIEV

including functional, nonfunctional, and organizational aspects, and formal-
izes relations among roles in a role algebra. This enables semiautomation of
the design process and allows the designer to work at a high level of abstrac-
tion. As a result, the complexity of the design process is reduced.

Conclusions and Further Work

Existing approaches to agent organization design do not pay enough atten-
tion to reducing the complexity of the design process and do not pragmati-
cally consider nonfunctional requirements on design time. The semiautomatic
approach described in this paper addresses these concerns by extending the
definition of role so that nonfunctional aspects can be pragmatically modeled
and by defining a simple role algebra that facilitates the automatic allocation
of roles to agents. This enables the practical reuse of functional, nonfunctional,
and organizational design patterns by representing them as role models that
can be manipulated in line with the proposed role algebra. Thus the complex-
ity of the design process is reduced.

However, there are issues that are not addressed in this paper. For example,
since agents can play different roles in different contexts, the possible contexts
should be considered when designing agent organizations. In the near future,
RAMASD will be extended to consider role playing within some context. As a
longer-term research task, the role algebra will be used to study the impact of
allocating and deallocating roles to agents on runtime when the system re-
quirements change dynamically. Finally, the specification of multiple con-
straints on roles and their characteristics can lead to overconstrained problems.
To investigate this issue, the efficiency of a number of algorithms for allocat-
ing roles to agents under different numbers and hardness of constraints will
be examined.

NOTES

1. The terms agent-based system and agent organization are used interchangeably
in this paper.

2. Activity in this context will represent the whole causal sequence of events
and actions caused by one triggering event and will correspond to the UML’s
concept of “use case.”

3. More information about the use of the mediator role interaction pattern can
be found in E.A. Kendall, Agent analysis and design with role models, vol. 1:
Overview (unpublished internal report), BT Exact Technologies, January 1999.

REFERENCES

1. Andersen, E.P. Conceptual modelling of objects: A role modeling ap-
proach. Ph.D. dissertation, University of Oslo, 1997.

2. Andrews, P., and Adler, S. Privacy: Basing Service on Respect. New York:
Center for IBM E-business Innovation, IBM Labs, 2001 (www-1.ibm.com/

http://www-1.ibm.com/services/strategy/files/IBM_Consulting_Privacy_Basing_service_on_respect.pdf

INTERNATIONAL JOURNAL OF ELECTRONIC COMMERCE 87

services/strategy/files/IBM_Consulting_Privacy_Basing_service_on_
respect.pdf).

3. Bartelt, A., and Lamersdorf, W. Agent-oriented concepts to foster the
automation of e-business. In A.M. Tjoa, R.R. Wagner, and A. Al-Zobaidi
(eds.), Proceedings of the Eleventh International Workshop on Database and
Expert Systems (DEXA 2000). Munich: IEEE Computer Society Press, 2000,
pp. 775–779.

4. Biddle, B.J. Role Theory: Expectations, Identities and Behaviors. London:
Academic Press, 1979.

5. Blake, M.B. WARP: An agent-based process and architecture for
workflow-oriented distributed component configuration. In H.R. Arabnia
(ed.), Proceedings of the 2000 International Conference on Artificial Intelligence
(IC’AI2000) (Session on Software Agent-Oriented Workflow). Las Vegas: CSREA
Press, 2000, pp. 205–213.

6. Blake, M.B. Innovations in software agent-based B2B technologies. In
Workshop on Agent-Based Approaches to B2B at the Fifth International Conference
on Autonomous Agents (AGENTS 2001). Montreal: ACM Press, 2001, pp. 1–7.

7. Blake, M.B.; Cornett, T., and Piquado, T. Using intelligent agents in
conjunction with B2B interoperability. In Proceedings of the 2001 International
Conference on Artificial Intelligence (IC’AI2001) (Session on Agent-Oriented
Software Architectures for B2B). Las Vegas: CSREA Press, 2001, pp. 538–545.

8. Bresciani, P.; Perini, A.; Giunchiglia, F.; Giorgini, P.; and Mylopoulos, J. A
knowledge level software engineering methodology for agent oriented
programming. In E. Andre and S. Sen (eds.), Proceedings of the Fifth Interna-
tional Conference on Autonomous Agents (AGENTS 2001). Montreal: ACM
Press, 2001, pp. 648–655.

9. Caire, G.; Coulier, W.; Garijo, F.; Gomez, J.; Pavon, J.; Leal, F.; Chainho,
P.; Kearney, P.; Stark, J.; Evans, R.; and Massonet, P. Agent-oriented analysis
using Message/UML. In M.J. Wooldridge, G. Weis, and P. Ciancarini (eds.),
Agent-Oriented Software Engineering II: Second International Workshop (AOSE
2001), Montreal, Canada. Berlin: Springer-Verlag, 2001, pp. 151–168.
10. Chung, L.; Nixon, B.A.; Yu, E.; and Mylopoulos, J. Non-Functional
Requirements in Software Engineering. New York: Kluwer Academic Publish-
ers, 2000.
11. Covisint. Covisint Solution Suites. Covisint, LLC., 2002 (www.covisint
.com).
12. Durante, A.; Bell, D.; Goldstein, L.; Gustafson, J.; and Kuno, H. A Model
for the E-Service Marketplace. Palo Alto, CA: HP Laboratories, 2000
(www.hpl.hp.com/techreports/2000/HPL-2000–17.html).
13. Electronic Marketplaces Source Guides. Business to Business Marketplaces
to the Automotive Industry. Momentum Technologies LLC, 2000 (www
.sourceguides.com/markets/byI/auto/byC/B2B/B2B.shtml).
14. Ferber, J., and Gutknecht, O. A meta-model for the analysis and design
of organizations of multi-agent systems. In E. Durfee, M. Georgeff, and
N.R. Jennings (eds.), Proceedings of the International Conference in Multi-
Agent Systems (ICMAS 98). Paris: IEEE Computer Society Press, 1998, pp.
128–135.
15. Guttman, R.H.; Moukas, A.G.; and Maes, P. Agent-mediated electronic

http://www-1.ibm.com/services/strategy/files/IBM_Consulting_Privacy_Basing_service_on_respect.pdf
http://www-1.ibm.com/services/strategy/files/IBM_Consulting_Privacy_Basing_service_on_respect.pdf
http://www.covisint.com
http://www.covisint.com
http://www.hpl.hp.com/techreports/2000/HPL-2000-17.html
http://www.sourceguides.com/markets/byI/auto/byC/B2B/B2B.shtml
http://www.sourceguides.com/markets/byI/auto/byC/B2B/B2B.shtml

88 KARAGEORGOS, THOMPSON, AND MEHANDJIEV

commerce: A survey. Knowledge Engineering Review, 13, 2 (July 1998), 147–
159.
16. IDC. Strengthening end-to-end e-business security and privacy. IDC Rep
No. 23166, 2000 (www-1.ibm.com/partnerworld/pwhome.nsf/
vAssetsLookup/IDC_E2E.pdf/$File/IDC_E2E.pdf).
17. Iglesias, C.A.; Garijo, M.; Gonzalez, J.C.; and Velasco, J.R. Analysis and
design of multi-agent systems using MAS-CommonKADS. In M.P. Singh, A.S.
Rao, and M.J. Wooldridge (eds.), Intelligent Agents IV: Agent Theories, Architec-
tures, and Languages (ATAL ’97). Berlin: Springer-Verlag, 1998, pp. 313–326.
18. Jennings, N.R. An agent-based approach for building complex software
systems. Communications of the ACM, 44, 4 (April 2001), 35–41.
19. Jennings, N.R.; Faratin, P.; Norman, T.J.; O’Brien, P.; and Odgers, B.
Autonomous agents for business process manage5ment. Applied Artificial
Intelligence, 14, 2 (February 2000), 145–189.
20. Karageorgos, A. Reducing complexity of agent-based system design.
Ph.D. dissertation, University of Manchester Institute of Science and
Technology, 2002.
21. Kauffman, R.J.; Subramani, M.; and Wood, C.A. Analyzing information
intermediaries in electronic brokerage. In R.H. Sprague, Jr. (ed.), Proceedings
of the 33rd Hawai’i International Conference on System Sciences. Maui: IEEE
Computer Society Press, 2000.
22. Kendall, E.A. Role models: Patterns of agent system analysis and design.
BT Technology Journal, 17, 4 (October 1999), 46–57.
23. Kendall, E.A., and Zhao, L. Capturing and structuring goals. In P.
Bramble, G. Gibson, and A. Cockburn (eds.), Workshop on Use Case Patterns,
Object Oriented Programming Systems Languages and Architectures (OOPSLA).
Vancouver: ACM Press, 1998.
24. Maes, P.; Guttman, R.H.; and Moukas, A.G. Agents that buy and sell:
Transforming commerce as we know it. Communications of the ACM, 42, 3
(March 1999), 81–91.
25. McConnell, M., and Hamilton, B.A. Information assurance in the
twenty-first century. IEEE Computer (Supplement on Security and Privacy), 35,
4 (April 2002), 16–19.
26. Morgenthal, J.P. Which B2B exchange is right for you? Software (Febru-
ary/March 2001) (www.softwaremag.com/archive/2001feb/
SelectingB2B Exchange.html).
27. Nwana, H.S.; Ndumu, D.T.; Lee, L.C.; and Collis, J.C. Zeus: A toolkit for
building distributed multi-agent systems. Applied Artificial Intelligence
Journal, 13, 1 (January 1999), 129–185.
28. Omicini, A. SODA : Societies and infrastructures in the analysis and
design of agent-based systems. In P. Ciancarini and M.J. Wooldridge (eds.),
Agent-Oriented Software Engineering II: First International Workshop (AOSE
2000), Limerick, Ireland. Berlin: Springer-Verlag, 2000, pp. 185–193.
29. Parunak, H.V.D. Agents in overalls: Experiences and issues in the
development and deployment of industrial agent-based systems. Interna-
tional Journal of Cooperative Information Systems, 9, 3 (September 2000),
209–227.
30. Parunak, V.; Sauter, J.; and Clark, S. Toward the specification and design

http://www.softwaremag.com/archive/2001feb/SelectingB2BExchange.html
http://www-1.ibm.com/partnerworld/pwhome.nsf/vAssetsLookup/IDC_E2E.pdf/%24File/IDC_E2E.pdf
http://www-1.ibm.com/partnerworld/pwhome.nsf/vAssetsLookup/IDC_E2E.pdf/%24File/IDC_E2E.pdf
http://www.softwaremag.com/archive/2001feb/SelectingB2BExchange.html
http://zerlina.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0883-9514^28200002^2914:2L.145[aid=1722802]
http://zerlina.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/1358-3948^28199910^2917:4L.46[aid=3307721]
http://zerlina.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0883-9514^28199901^2913:1L.129[aid=1738951]
http://zerlina.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0883-9514^28200002^2914:2L.145[aid=1722802]
http://zerlina.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0883-9514^28199901^2913:1L.129[aid=1738951]

INTERNATIONAL JOURNAL OF ELECTRONIC COMMERCE 89

of industrial synthetic ecosystems. In M.P. Singh, A. Rao, and M.J.
Wooldridge (eds.), Intelligent Agents IV: Agent Theories, Architectures, and
Languages. Berlin: Springer-Verlag, 1998, pp. 45–59.
31. Ricci, A.; Denti, E.; and Omicini, A. Agent coordination infrastructures
for virtual enterprises and workflow management. In M. Klush and F.
Zambonelli (eds.), Cooperative Information Agents V: Proceedings of the Fifth
International Workshop (CIA 2001). Heidelberg: Springer-Verlag, 2001, pp.
235–246.
32. Romanosky, S. Security design patterns v 1.4. Security Focus (2001)
(www.securityfocus.com/guest/9793/).
33. Sabater, J.; Sierra, C.; Parsons, S.; and Jennings, N.R. Engineering execut-
able agents using multi-context systems. In N.R. Jennings and Y. Lespérance
(eds.), Intelligent Agents VI: Agent Theories, Architectures, and Languages: Sixth
International Workshop (ATAL’99). Berlin: Springer-Verlag, 2000, pp. 131–148.
34. Scott, W.R. Organizations: Rational, Natural and Open Systems. New York:
Prentice-Hall International, 1992.
35. Shen, W., and Norrie, D.H. Agent-based systems for intelligent manufac-
turing: A state-of-the-art survey. Knowledge and Information Systems, 1, 2
(May 1999), 129–156.
36. Shepherdson, J.W.; Thompson, S.G.; and Odgers, B. Decentralised
workflows and software agents. BT Technology Journal, 17, 4 (October 1999),
65–71.
37. Singh, M.P., and Huhns, M.N. Multi-agent systems for workflow.
International Journal of Intelligent Systems in Accounting, Finance and Manage-
ment, 8, 2 (June 1999), 105–117.
38. So, Y.-P., and Durfee, E.H. Designing organizations for computational
agents. In M.J. Prietula, K.M. Carley, and L. Gasser (eds.), Simulating
Organizations: Computational Models of Institutions and Groups. Menlo Park,
CA: AAAI Press, 1998, pp. 47–64.
39. Sparkman, C.H.; DeLoach, S.A.; and Self, A.L. Automated derivation of
complex agent architectures from analysis specifications. In M.J.
Wooldridge, G. Weis, and P. Ciancarini (eds.), Agent-Oriented Software
Engineering II: Second International Workshop (AOSE 2001), Montreal, Canada.
Berlin: Springer-Verlag, 2001, pp. 278–296.
40. Tambe, M.; Pynadath, D.V.; and Chauvat, N. Building dynamic agent
organizations in cyberspace. IEEE Internet Computing, 4, 2 (March/April
2000), 65–73.
41. Thompson, S.G., and Odgers, B.R. Collaborative personal agents for
team working. In D. Kitchin, R. Aylett, L. McCluskey, J. Porteous, and S.
Steel (eds.), Proceedings of 2000 Artificial Intelligence and Simulation of
Behavior (AISB) Symposium. Birmingham, UK, 2000, pp. 49–61.
42. Wood, M., and DeLoach, S.A. An overview of the multi-agent systems
engineering methodology. In P. Ciancarini and M.J. Wooldridge (eds.),
Agent-Oriented Software Engineering II: First International Workshop (AOSE
2000), Limerick, Ireland. Berlin: Springer-Verlag, 2000, pp. 207–221.
43. Wooldridge, M.; Jennings, N.R.; and Kinny, D. The Gaia methodology
for agent-oriented analysis and design. International Journal of Autonomous
Agents and Multi-Agent Systems, 3, 3 (September 2000), 285–312.

http://zerlina.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/1089-7801^282000^294:2L.65[aid=3307727]
http://zerlina.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/1089-7801^282000^294:2L.65[aid=3307727]
http://www.securityfocus.com/guest/9793/
http://zerlina.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/1358-3948^28199910^2917:4L.65[aid=3307724]
http://zerlina.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/1387-2532^28200009^293:3L.285[aid=3307726]
http://zerlina.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/1358-3948^28199910^2917:4L.65[aid=3307724]
http://zerlina.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/1387-2532^28200009^293:3L.285[aid=3307726]

90 KARAGEORGOS, THOMPSON, AND MEHANDJIEV

44. Yoder, J., and Barcalow, J. Architectural patterns for enabling application
security. The Fourth Pattern Languages of Programming Conference.
Technical Report WUCS-97–34. Allerton Park, IL: Washington University,
September 1997 (jerry.cs.uiuc.edu/~plop/plop97/Proceedings/yoder.pdf).
45. Yu, L., and Schmid, B.F. A conceptual framework for agent oriented and
role based workflow modelling. CaiSE Workshop Conference on Agent Ori-
ented Information Systems (AOIS´99). Heidelberg: AOIS.org, May 1999
(www.mcm.unisg.ch/people/lyu/yuAOIS99.pdf).
46. Zambonelli, F.; Jennings, N.R.; and Wooldridge, M. Organizational
abstractions for the analysis and design of multi-agent systems. In P.
Ciancarini and M.J. Wooldridge (eds.), Agent-Oriented Software Engineering
II: First International Workshop (AOSE 2000), Limerick, Ireland. Berlin:
Springer-Verlag, 2000, pp. 235–250.

ANTHONY KARAGEORGOS (karageorgos@acm.org) received a B.Sc. in applied
mathematics from the Aristotle University of Thessaloniki in 1991 and an M.Sc. in
computer science from the University of Essex in 1994. Since then, he has been a lecturer
on information technology and a simulation analyst and consultant. He is currently
doing Ph.D. research at the University of Manchester Institute of Science and
Technology, and his project is sponsored by BT Labs. His research interests are in
agent-oriented software engineering, agent-based business applications, and computer
simulation. His Ph.D. work has so far resulted in one patent application and a number
of academic awards and research papers. He is a member of the ACM, IEEE, and SCS.

SIMON THOMPSON (simon.2.thompson@bt.com) joined the Intelligent Business
Systems Research Group at BT in December 1997 from the University of Portsmouth,
where he was a research assistant. He has a B.Sc. in computer science from the Uni-
versity of Hertfordshire and a Ph.D. from the University of Portsmouth. His Ph.D.
thesis was concerned with structural risk minimization in machine learning. Since
1997, Dr. Thompson has been working on developing commercial applications of in-
telligent agents. He is also heavily involved in the development of agent systems and
is currently the maintainer of the Zeus Agent Toolkit, an open-source project devel-
oped by BT and now widely adopted as a leading tool for developing collaborative
agent systems. He has authored papers on subjects ranging from machine learning,
genetic algorithms, and multiagent systems to business process representation and
abstraction. His areas of expertise are Java, distributed computing, intelligent agents,
collaborative agents, machine learning, open-source development, community devel-
opment processes, XML directories, and agent-development toolkits and environments.

NIKOLAY MEHANDJIEV (nikolay@computer.org) is a lecturer in the Department of
Computation at the University of Manchester Institute of Science and Technology. He
graduated in computer science from Sofia Technical University in 1990 and completed
his Ph.D. on “User Enhanceability for Information Systems Through Visual Program-
ming” at the University of Hull. His research interests focus on systems-development
models, languages, and tools in the context of rapidly changing business. He has
active research projects in the areas of visual languages for end-user development,
agent-based architectures, flexible information systems, and multiperspective busi-
ness modeling.

http://www.mcm.unisg.ch/people/lyu/yuAOIS99.pdf

