Supporting FIPA Interoperability for Legacy
Multi-Agent Systems

Christos Georgousopoulos', Omer F. Rana’, and Anthony K arageorgos®

1 Department of Computer Science, Cardiff University, P.O.Box 916,
Cardiff CF24 3XF, UK
{geol 0s, o.f.rana}@s.cf.ac. uk
http://wwmv. cs. cf.ac.uk/Digital-Library
2 Department of Computation, UMIST, Manchester, M60 1QD, UK
karageorgos@co.umist.ac.uk

Abstract. A system that conforms to FIPA specifications (standards) is a FIPA-
compliant system, and can interoperate with any other heterogeneous systems which
are FIPA-compliant aso. The conversion of a Multi-Agent System (MAS) into a
FIPA-compliant system (i.e. one that adheres to FIPA standards), is important to
support interoperability across different MAS. A different approach to conforming a
MAS to a FIPA-compliant one, other that the common one of converting the whole
system to adhere to FIPA specifications, is the use of the FIPA-compliant
gatewayq[7]. In this paper we extent our work on the FIPA-compliant gateways and
we demonstrate the successful interoperability of the gateways based on a MAS
utilising an active digital library composed of multi-spectral images of the Earth, as
part of the Synthetic Aperture Radar Atlas (SARA).

1 Introduction

The conversion of a Multi-Agent System (MAS) into a FIPA-compliant system (i.e. a
system that adheres to FIPA standards), implies that system developers must rebuild their
systems based on FIPA specifications. Such a conversion imposes amendments on the
system architecture to conform to the new standards, which may results in extensive code
rewriting and testing.

We extend our work on the FIPA-compliant gateways[7] here. We describe how a
developer may attach FIPA-compliant gateways to a MAS and briefly discuss the
advantages of adopting this approach. Note that our approach should not be confused with
agent software integration support for FIPA specifications, or with similar approaches that
clam FIPA compliance but they actually ater[12] the original FIPA specifications.
Finally, we demonstrate how interoperability can be applied to a MAS, with particular
emphasis on the SARA (Synthetic Aperture Radar Atlas) architecture[15] by providing
results of our experiments.

The approach presented in this paper is particular relevant to Agent-oriented software
engineering as it enables existing agent systems to be integrated in a seamless manner.
When engineering agent systems, it is likely that different implementation and design
approaches have been adopted. The “gateway” approach presented here may also be used
to combine such systems together, and enabl e interaction between them using FIPA-based
performatives. Although we are aware that standards are likely to be modified over time,
FIPA provides the most valuable agent interoperability specification at the present time.
Our approach is therefore focused on supporting interaction between agent systems that
adhere to this standard.

2 Building FIPA-Compliant Gateways

Based on the guidelines provided by the FIPA association, for an agent platform
implementation to be considered FIPA-compliant it must at least implement the “Agent
Management” and “Agent Communication Language’ specifications, which should
conform to the latest experimental and/or standard status specifications.

The usual approach to conforming a MAS into a FIPA-compliant one is to modify the
whole system based on FIPA specifications. A different approach that has not yet been
adopted by any developer is to amend just a part of the system’s architecture. The top
picture of figure 1, represents a typical multi-agent system (MAS 1) that has been
conformed to FIPA specifications in order to be able to interoperate i.e. receive/send data
from/to other FIPA-compliant multi-agent systems (EXternal MAS). Figure 1b, represents
our approach to conforming a MAS into a FIPA-compliant one. The actual architecture of
the system remains the same as before, but two FIPA-compliant gateways (in grey) have
to be added to the system. These work as adaptors (wrappers) to ensure interoperability
with other FIPA-compliant external multi-agent systems (EX MAYS). Interoperability in
this sense applies at both the communication and application levels. The communication
level comprises the connection and communication layer, whereas the application level
comprises the ontological and agent service layer[4].

The two gateways are the FIPA-compliant part of the system. Each of those has all of
the mandatory, normative components of the FIPA architecture. The use of these FIPA-
compliant gateways is depicted in figure 5 of section 4.2, where we demonstrate the
adoption of the FIPA-compliant gateways by the SARA multi-agent system. Each
gateway contains three agents. the Agent Management System (AMS), the Directory
Facilitator (DF) and the gateway agent. The AMS and DF are the FIPA agents, as defined
by FIPA specifications. The gateway agent is the only agent of the system registered by
both AMS and DF, which acts as a wrapper between MAS2 and any external MAS. All
the available services of the system are represented by this agent. It is like having an
ordinary FIPA compliant system with only one registered agent capable of providing
services. The Directory Facilitator (DF) and Agent Communication Channel (ACC),
support the required infrastructure for enabling service interoperability, and are part of the

EXMAS —>» —» EXMAS

@) FIPAcompliant

MAS 2

ga%a% il I n % gaéay
[o
B T8

on-FIPA compliant

FIPA gateway
FIPA g ateway

(b)

Fig. 1. Two different approaches of conforming an agent platform into a FIPA-compliant one

FIPA specifications. The communication between an EX MAS and MAS2 is
accomplished though the Agent Communication Channel (ACC) and the protocols that
are supported (concerning the connection layer) are reflected thought the platform
address. The gateway agent communicates with agents from EX MAS using the FIPA
Agent Communication Language (ACL). Its responsibility is to translate the incoming
messages to a form understood by its internal agentsi.e. the agents that are hidden by the
EX MAS. Likewise, the internal agents requests have to be also converted by the
gateway agent into ACL messages, in order to be understood by an EX MAS. The
gateway agent maintains a list of the agents within the system being wrapped, along with
the registered services (with DF) that each of them can provide. Therefore, based on the
service requested by an EX MAS, the gateway agent knows to which system agent the
message should be forwarded, after it has been translated into the form understood by the
appropriate agent that receives the request.

Hence, the external MAS does not see anything else apart from the gateway agent;
which on receiving a request from an externa MAS (on the left side of MAS2) is
responsible for transferring the request to the agents of its system, which are hidden by the
external MAS, for processing the request. Once the reguest is accomplished, aresponseis
returned to the external MAS through the gateway agent. In the case where agents from
MAS 2 need to communicate with an external MAS (on the right side of MAS2), their
request is passed through the gateway agent and translated into ACL ; the results gathered
by the external MAS are returned to MAS 2 agents through the gateway agent as well.

The gateway agent also supports agent conversation sessions by supplying the
conversation ID (of its communication with the external agent) to its appropriate internal
agent along with the translated message. Once, it receives feedback from one of its
internal agents, it replies to the corresponding external agent on the conversation indicated

by the conversation ID received by the former one i.e. the conversation ID that the
gateway agent had initially sent to itsinternal agent.

The capability of the FIPA-compliant gateway may be further extended by defining
extra sets of operations that may be supported by these agents. For instance, the utilisation
of a security layer will enable heterogeneous MAS to interoperate using X509 based
digital certificates. In addition, an agent mobility layer would provide the capability to
support agent migration between heterogeneous MAS built on the same agent platform.

2.1 Supporting Multiple Gateway Agents

Although one of the advantages of the FIPA-compliant gateway isto isolate the externally
accessible part of the architecture i.e. the gateways, from the rest of the system for
increasing security (since the policy of the architecture remains hidden to a foreign
Agency), some developers might need to expose more than one agents to an external
MAS.

This could be achieved by adding multiple gateway agents to the FIPA-compliant
gateway that provides interoperability between the legacy MAS and an external one, as
shown in figure 2a. In this case, the agent that would need to be directly accessed by an
external MAS, and could be represented by a separate gateway agent. For instance, with
reference to figure 2, agentl with servicel is resented by gateway agentl (GA), service2
of agent2 by GA2 and service3/4 & 5 by GA3.

Even in the case where al of the available services provided by a legacy MAS are
represented by a single gateway agent, the introduction of multiple gateway agents with
replicated servicesin the FIPA-compliant gateway may also be useful for:

- Baancing the incoming reguests among the existing gateway agents. In a MAS with
numerous received requests, the gateway agent that receives a request from an EX
MAS may pass the request to another (less occupied) gateway agent. For instance, the
steps that have to be followed in order for a message to be passed from one gateway
agent to another one, see figure 2b, are:

Step 1: An agent from an EX MAS sends arequest to GA 1.

Step 2: If the message is not understood by GA1, it repliesto the sender agent with a
Not-understood message, otherwise it sends an Agree message including the
parameter reply-to with the gateway agent’s nameto which the message is
forwarded i.e. GA2. Therefore, subsequent messages (from the external agent)
will be directed to GA2.

Step 3: GA1 forwards the external agent’s message to GA2 via an Inform message
including the parameter reply-to with the external agent’s name.

Step 4: GA2 communicates with its appropriate internal agent according to the service
reguired. The message that is sent to the internal agent is the content of the
GA1 smessage, which has aready been translated by GA1 (to validate the
external agent’s message) to the form understood by their internal agents.

Step 5: GA2 upon receipt of results from itsinternal agent, generatesan ACL message
and sends it to the external agent via an Inform message.

- Increasing fault tolerance of the interoperability part of a legacy MAS. The FIPA-
compliant gateways may be configured to be distributed i.e. each gateway agent to be
distributed on a different host. Therefore, even if one of the gateway agents fails, the
MAS may till be able to provide its services to an external MAS through the rest of

the gateway agents.

MAS 2 ‘ ‘ EXMAS MAS 2

e LR
:» §<j 888 hal 2l ° é“WNﬁ 3
g B ! Al L 88

service 3 B
AMSB

service 4
DF | |[non-FIPA compliant @ FIPAcomplant DF | |non-FIPAcompliant

i B/G/ﬁﬁg

]

FIPA gateway
»
o 800
o

©
&

service 5

FIPAgateway

AMS

Fig. 2. Multiple gateway agents

To conclude, there are three case scenarios for the FIPA-compliant gateway that
provides interoperability between the legacy MAS and an external one: (&) a single
gateway agent with all the available services registered under its entity (b) a gateway
agent per service (c) multiple gateway agents with replicated services. According to the
MAS that need to address FIPA interoperability, developers can choose one of the above
scenarios that suit their needs.

2.2 Advantages of FIPA-Compliant Gateways

The aternative approach of using FIPA-compliant gateways[7] for conforming a legacy
MAS into a FIPA-compliant, yields the following advantages:

- System’s architecture remains the same as before. Implementation is only needed for
the FIPA-compliant gateways and the interaction between the gateway agents with the
other agents of the system. The continuous improvement of FIPA specifications have a
direct affect on the developer’'s systems since they should conform to the latest
specifications. Consequently, developers can save time in terms of design and
implementation by applying the new standards (the FIPA revised specifications) only

in a specific part of their system i.e the FIPA-compliant gateways, avoiding the
complexity of amending the whole system.

Security isincreased. Thereis still no coherent agent security details from FIPA at this
time. Although, FIPA is planning in the future to investigate security related issues
within FIPA architecture, and formulate a long term strategy for the integration of
security features into FIPA specificationg[3], [10], there is currently debate as to
whether a generic or default level of agent security ought to be specified. It is also
required that such security criteria be applicable to different types of agent
infrastructures and application domaing 13]. Based on the gateways approach, isolating
the interoperable part of the architecture (i.e. the gateways) from the rest of the system
increases security. The policy of the architecture remains hidden to the foreign Agency
due to the FIPA-compliant gateways. The interaction between the system and a foreign
agency is managed by the gateway agent; the rest of the agents, hardware/software
resources cannot be accessed. Securing the FIPA-compliant gateways, from where
foreign malicious agents can enter into the system, implies minimum security for the
rest of the system. Therefore, the FIPA-compliant gateways can also act as a shield for
the core system. Requirements and design issues for adding security to FIPA agent
systems can be found in [13].

Performance is improved. FIPA specifications exist for the intercommunication
between heterogeneous agent systems i.e agents that are hosted on different platforms.
Consider an agent system which does not need to communicate with an external one.
The conversion of such a system into a FIPA-compliant one would be useless, since the
agents which belong to the system can obviously interoperate between themselves.
Since interoperability can be achieved with the use of the FIPA-compliant gateways
without actually affecting the actual system, it is unnecessary to conform the whole
system to FIPA specifications. For instance, the existence of the Directory Falicitator
(DF), Agent Management System (MAS), Agent Communication Channel (ACC) and
Internal Platform Message Transport (IPMT), which are mandatory, normative
components of the FIPA architecture, impose extra complexity and delay in a system
constituted by homogeneous agents capable of interoperating between themselves. It is
likely that a legacy agent system will not utilise the FIPA Agent Communication
Language (ACL), especially if the agents within such a system are identical. An
important role of the gateway, in this context, is to translate messages from a FIPA-
compliant to a legacy system. There are also cases where agents exchange data in the
form of simple Strings i.e. without the need of parsing and unparsing the transmitted
information. In addition, the FIPA-compliant gateways have a direct affect on the
security of the system and therefore on its performance. The more secure the FIPA-
compliant gateways are, the less security is needed for the rest of the system. For
instance, the cost of encrypting the messages transmitted between the agents, apart
from the gateway agent, can be avoided. Consequently, the minimization of security
(apart from the FIPA-compliant gateways) increases the overall performance of the
system.

3 Stepsof Deployment

The deployment of the FIPA-compliant gateways involves the following steps: (a) the
creation and configuration of the two FIPA-compliant gateways i.e. one to support
interoperability between an external MAS and the legacy one, and vice-versa, and (b) the
creation of each of the gateway agentsi.e. one per gateway.

3.1 Creation of the FIPA-Compliant Gateways

As mentioned in section 2, an agent platform implementation to be considered FIPA-
compliant, it must at least adhere to the latest FIPA “Agent Management” and “Agent
Communication Language” specifications. Therefore, the gateways should also adhere to
those specifications.

The creation of the gateways, that will adhere to those specifications, may be easily
achieved by using atoolkit like FIPA-OS[5]. After the initial installation of FIPA-OS only
the configuration[6] of the platform remains. Briefly, this includes the configuration of
the:

- platform profile: describes information about the FIPA-OS platform, including the
platform’s host-name, the ‘location’ of the AMS and location of other profiles used by
entities within the platform (i.e. gateway agents, ACC). The identification of a Naming
Serviceis also necessary for agents on a platform to locate one another.

- ACC profile: provides configuration information for the ACC of the platform,
including the internal MTPs the platform is using, the externa MTPs for
communication with external MAS, details of other platforms that should be contacted
at start-up.

Once the configuration is finished, the execution of a simple FIPA-OS script starts-up the
configured FIPA-agent platform with the AMS and DF agents initialized. The last piece
remaining for the implementation of the FIPA-compliant gateways are the gateway
agents.

3.2 Creation of the Gateway Agent that Supports Interoperability Between an EX
MAS and the Legacy One

An example of asimple gateway agent (GA) written in Java using the FIPA-OS toolkit[5]
is demonstrated below. Basically, GA is composed of three main classes. In the first class,
the constructor (line 1), GA sets alistener (line 5) and registers itself with the AMS of its
platform (line 6). In line 7, GA calls the registration_with_DF method, where it registers
itself with the DF along with all the available services provided by itsinternal agents.

In the second class (line 12), a method is created for each performative that is
supported by GA. For instance, when GA receives a message, its listener set in the first
class, calls ldelTask class and according to the incoming performative the appropriate
method of IdleTask is executed e.g. code lines 14-18 handle any incoming Request
performative. Therefore, when GA receives a Request from an externa MAS its
handleRequest method is executed (line 12) which in turn calls the b_response (third
class).

When the third class (line 21) is initialized, GA validates the incoming Request
message (line 26) and, if it is not understood it sends a Not-under stood performative to the
external sender agent, otherwise it sends an Agree performative. In the case where the
message is understood, GA calls the find_IntAgent method (line 31) in order to find which
of itsinternal agent hands the service indicated by the incoming message. In line 32, GA
forwards the trandlated incoming message (line 26) to its appropriate internal agent along
with the external agent’s conversation ID. Once the internal agent has accomplished its
task i.e. served the request, GA trandlates the results received by the former agent in order
to generate an ACL message (line 35). Then, it replies to the external agent based on the
conversation indicated by the conversation ID received from the internal agent (that GA
had initially passed to it) viaan Inform performative (line 36) which include the results.

Example of asimple Gateway Agent

1 public class GA extends FI PACSAgent

2

3 public GA(String platform String nane, String ownershi p)
4

5 set Li st ener Task(new | dl eTask());

6 regi sterWthAMS() ;

7 registration_with_DF();

8 C.

9 }

10 ...

11

12 public class IdleTask extends Task

13

14 public void handl eRequest (Conversati on conv)
15 {

16 -

17 newTask(new b_response(conv), conv);
18 }

19 .

20

21 public class b_response extends Task
22

23 protected void startTask()

24 {

25 /[l Transl ate the i ncom ng ACL nsg.

It it

[11f ACL nmeg is OK, serve the request.
i nternal _agent =find_I nt Agent (service_req);
nes=cont act _| nt Agent (i nternal _agent, nes_transl, convlD);

nes_transl =transl ate_nes_GA to_I nt A(ext _mes);
is not OK send a Not-understood ACL nsg,
ot herwi se send an Agree ACL nsg.

//send results to the ext.agent via an Inform ACL nsg
reply_nes=translate_nes_IntA to_GA(nes);
response_nes(ext_agent, reply_nes, covl D2);

An example of serving a Request received by the gateway agent from an external agent is
demonstrated in figure 3 with a message flow diagram.

Internal
Agent

ACL Informperformative

< ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

EXMAS Gateway
agent Agent
1.send an ACL Request
performative
2. validate the incoming
ACL message
3. reply with an Agree/Not-
und ersttod per formative <
< ,,,,,,,,,,,,,,,,,,,,,,
4. find appropriate Int.Agent
for the required service &
sendthe translated request |
7. send the resultsvia an 6. send results

< ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

5. accomplish task
i.e. request

Fig. 3. Message flow between an external agent and the Gateway agent

3.3 Creation of the Gateway Agent that Supports Interoperability Between the
Legacy MAS and an External One

The realization of this GA is completely upon the developer’s point of view. According to
the services required by its internal agents, GA should be programmed in order to know
which external agent(s) provide the appropriate service(s), how to communicate with
those agents and how to trandate an internal agents' request to ACL messages and vice-

versai.e. how the incoming ACL messages have to be translated to the form understood
by itsinternal agents.

Note that amendments on the original architecture of the legacy MAS on which the
FIPA-compliant gateways will be adopted, concerns only the agents that need to
communicate with the gateway agent. This involves an extra method in the structure of
each internal agent so as to enable them to send and receive a message from/to the

appropriate gateway agent.

4 Testing the Interoper ability of the FIPA-Compliant Gateways

Our research is based on the Synthetic Aperture Radar Atlas (SARA) active Digital
Library[14], [15]. In order to achieve interoperability between our system and an external
one, we have adopted the FIPA-compliant gateways approach. In the following section we
give a brief discussion of SARA project, we demonstrate how interoperability can be
achieved by using the approach outlined previously and we present results of experiment
tests performed on the interoperability of our system.

4.1 The SARA ActiveDigital Library

SARA is an active digital library of multi-spectral remote sensing images of the earth
from the SIR-C Shuttle mission, which provides web-based online access to a library of
data objects at Caltech, the San Diego Supercomputer Center, and the University of Lecce
in Italy. The objective of the SARA project is to develop an infrastructure for a high-
speed, high-volume, multi-protocol distributed database, together with a means to attach
distributed computing resources for data conversion, visualization and knowledge
discovery[17].

A prototype MAS, which comprises both intelligent and mobile agents, has been
developed to manage and analyse distributed multi-agency remote sensing data; more
information can be found on our web-site]9]. The SARA architecture (figure 4) is
composed of a collection of information and web servers, each of them having a group of
agents, Local Interface Agents (LIA) and User Interface Agents (UIA) accordingly.

We separate mobile agents from stationary service agents. Our approach is to localize
the most complex functionality in non-mobile LIAs, which remain at one location,
providing resources and facilities to lightweight mobile agents that require less processor
time to be serialized and therefore quicker to transmit. LIAs are stationary agents that
provide an extensible set of services and a level of abstraction between resource servers
and requesting mobile agents. UIAs provide a front end to the end user, for checking the
user input and displaying the results.

Information SERVER 1

Information SERVER 2

Web SERVER 1 — —
= = = =
= B I = = z
CLIENT Web Server = ~ = ~
== FILE COMPUTE || META-DATA FILE COMPUTE || META-DATA
B ARCHIVE SERVER ARCHIVE SERVER
A Voyager gatform e Voyager atform |
i i
+ i i i

EX MAS——

AGENT ENVIRONMENT

Web SERVER 2

CLIENT 4@?"5”“‘*’

EX MAS

e 8'3 LAA LRA LIGA *
Lyl x4

38

7 va 8 ;

vy

RA ;

UIA: User Interface Agent
UAA: User Assstant Agent

—————— message exchange

~——— creation of agent

movement
send feceive reque st

——— Management age nt's intera ction

AGENT ENVIRONMENT

T_"_"_' APA-compiantgateway
Q hidden architectural details

URA: User Request Agent

LIA: Local Interface Agent

L AA: Local Assistant Agent

LMA: Local Manage ment Agent
UMA: Universal Management Agernt
LRA: LocalRetrieval Agent

L SA: Local Security Agent

LIGA: Local InterGration Agent
URAS:URASs Servant
EXSA:Extermal Service Agent

Fig. 4. The FIPA interoperable SARA architecture

4.2 SARA and FIPA Compliance

The introduction of FIPA interoperability into the SARA system enables it to
communicate with other MAS and vice-versa. The union of SARA system with other
MAS extends its capabilities by providing users with further information. For instance,
information retrieved from the SARA system can be further enhanced by additional
information gathered from a GIS system that is capable of interoperating with SARA. The
longitude and latitude of a particular area of the earth can be used as parameterson a GIS
(Geographic Information System) to retrieve land information such as street names, which
can then be combined with the image based on geographical coordinates in SARA,
resulting in a detailed map of the particular area. Likewise, an external MAS can
interoperate with SARA and use its information.

The interoperability of the SARA system is based on the use of FIPA-compliant
gateways which are implemented using FIPA-OS toolkit. The architecture of the SARA

system with added FIPA interoperability is depicted in figure 4. An external multi-agent
system (EX MAS) can interoperate with SARA through the FIPA-compliant gateway
(outlined by the dashed box) which is placed on every Web-server, where SARA can
interoperate with an EX MAS through the FIPA-compliant gateway which is placed on
every Information-server. The architecture of the FIPA-compliant gateways which is a
dight variation of the architecture of FIPA-OS configuration case 2[6] is depicted in
detail in figures 5.

SARA web-server 1 SARA information-server 1

[CLIENT|—

| External MAS | External MAS

ACL over llOP
or RMI MTP

ACL over lIOP
or RMIMTP

ACLover ACLover
RMI MTP RMIMTP

RMI Naming Service ‘CORBA Naming Servic%

RMINaming Service

MI Naming Service ‘CORBA Naming Service

RMI Naming Service

@ | ()

Fig. 5. Representation of the FIPA-compliant gateways: (a) on the Web-server and (b) on the
Information-server

The EXSA agent is the gateway agent of the FIPA-compliant gateway placed on every
Web-server. This agent is responsible for receiving a request from an external MASi.e. a
foreign agent, and passing it to the URA. EXSA can be considered similar to UAA; based
on the fact that, asaclient is represented by a UAA, an external MAS is represented by an
EXSA. When URA receives the appropriate information from EXSA it processes its
request (i.e. by starting its itinerary) as it would be instructed by a UAA agent. When
URA finishes its job, it sends the results back to the EXSA which then passes this to the
foreign agent from where the request has been initially placed. The resource access level
and request’s priority level isaccording to the EX MAS that accesses SARA.

The URAS agent is the gateway agent of the FIPA-compliant gateway placed on every
Information-server. The purpose of this agent is to server URA with information gathered
from externa MAS. When URA needs to access an EX MAS, it passes its request to the
URAS which is responsible of fulfilling URA’s request. Ones, URAS has came in contact
with the foreign agent of the appropriate EX MAS and has the results requested by the
URA, it sends them back to URA. Until URAS has not acquired the results requested by

URA, URA is free to continue with its next task (if it has one), migrate to another
information-server or wait for URAS agent’ s response.

4.3 Experiment Test Results

To test the interoperability of SARA system with an external one we have conducted our
experiments using two different types of agent FIPA-compliant platforms. The first one
was implemented using FIPA-OS toolkit (version 2_1 0-20030219000011, build:314)
running on Unix and the second one was implemented on JADE framework[11] (version
2.4.1) running on Linux.

The tester agent of the FIPA-OS agent platform was a simple agent that was created to
search the DF of SARA system for the EXSA’s service and perform a Request. The
second tester agent of the JADE agent platform was one of the tester agents of the
Manchester node of Agentcitieg1], which is running in the Agentcities test-bed since
December 2001 hosted by UMIST (University of Manchester Ingtitute of Science and
Technology)[2].

The screenshots in figure 6 show the results of our experiments. The top picture is the
console server of the SARA web server (running on Windows XP), the middle one is the
console of the SARA information server (running on Unix) and the last one shows the
execution of the tester agent of the FIPA-OS agent platform (running on Unix).

Initially, both of the tester agents performed a search on the DF of SARA to find the
EXSA gateway agent’s AID (Agent IDentifier) that provides the appropriate service. The
interaction of an agent with the SARA DF is managed by FIPA-OS itself. Once, the tester
agents have acquired the gateway agent’s AID, they both sent a Request performative to
EXSA, similar to the following one:

Example of asimple Request ACL message

(request
:sender (agent_from EX MAS)
:receiver (EXSA)
:content “coordinates 16.317 107.654 16.061 108. 082 16.828
108.575 17.087 108. 144"
;1 anguage ASCI |

)

The coordinates specified in the content of the ACL message corresponds to the
collection of images required by the sender agent. When EXSA received the requests
from the tester agents (figure 6d) it validated them. Since the incoming requests were
valid, it replied to each of the tester agents with an Agree performative (figure 6¢) and
created for each of them a proxy of the URA agent locally. URA is the internal SARA

agent that accepts as input Earth coordinates and gives as output a collection of images
corresponding to the coordinates provided. The messages sent to each URA from EXSA

(a)

C:vproject \WEB-INFsservlets>java UServer

Uoyager Server iz running...

Proxy for the EMSA agent has bheen created.

The EXSA agent (FIPA-compliant gateway? will be initialised.
31,8383 @7:17:52 EX8A: Mow. I am initialised? i
31,8383 @7:18:25 EXSA: A Request has been Pecelued. J

Agent detail o dentlfler sname EXMASEbloodstone.cs.cf.
ac.uk :addresses (sequence fipaos—vmi:/sbloodstone.cs.cf.ac.uk:3888/EXMAS > >

Conversation ID: EXMAS@hloodstone.cs.cf.ac.ukiB491345732264
31,8383 @7:18:25 EHSA: Messange with conversation ID:EXMASPbloodstone.cs.cf.ac.
ukiBA491345732264 understood.-Trying to communicate with URA.and take the resull
ts . = - .
(31 /1 8. 3 : Results have heen transfered to EXMASEbloodstone.cs.cf.al
c_.uk agent.

910403 B4:08:29 EXSA ived ’L

Agent detail {agent—identif i ame DFTeste
tcities.org -addresses (segquence http:rrsHalkidiki2.co.umist.ac.uk:??7?7/acc > >
Conversation ID: EXSARgallium.cs.cf.ac.uklB492892126114
018483 B4:80:29 ENSA: Messange with conversation ID:EXSARgallium.cs.cf.ac.
4920892126114 is understood.Trying to communicate with URA.and take the results..

éi‘/-ﬂ4/ﬁ3 B4:88:31 EXSA: Results have been transfered to DFTesterPHalkidiki.agent]
cities.org agent .

—| Terminal [=
window Edit Options Help
scncgl-% java Server il
31/03/03 07:18:20 The Voyager server launched successfuly.

31/03/03 07:18:20 The LAA"s resource-check is enabled.

31/03/03 07:18:28 URA: (with id:galliun_BOOD_EXSA_1049134834217) trying to contact LAA & LRA..

31/03/03 07:18:29 LAA_con: generating JOBC conection, instructed by URA (with id:gallium_s000 EXSA_1D
431348342172

31/03/03 07:18:30 Lra_E¥query: executing SQL query received by URA (with id:gallium_S000_EXSA_ 1049134
834217

31/03/03 07:18:31 Laa_discon: closing JDBC connection, instructed by URA {with id:gallium_B000_EXSA_1
0491348342172

/03703 07:18:32 URA: Task accomplished. Sending the results to the appropriate UPAJEXSA agent...
31/03/03 07:18:32 URA: self terminating...

01/04/03 04:00:30 URA: (with id:galliun_8000_EXSA_1049209407389) trying to contact LAA & LRA..

01/04/03 04:00:30 LAA_con: generating JDBC conection, instructed by URA {with id:gallium_g000 EXSFL1D
49209407383)

D1ID4I§3 04:00:30 Lra_EXgquery: executing SQL query received by URA (with id:gallium_S000_EXSA_ 1043209
407389

01/04/03 04:00:30 Laa_discon: <losing JOBC connection, instructed by URA (with id:gallium_s000_EXSA_1
0432034073590

01/04/03 04:00:30 URA: Task accomplished. Sendmg the results to the appropriate UPAJEXSA agent..
01/04/03 04:00:30 URA: self terminating..

1(b <
(
—| Terminal =
window Edit Options Help

scncgl-% java Agent_EXMAS Shomesscmcgl/fipaos/profilessplatform.profile EXMAS exmas =

31/03/03 07:18:23 Searching SARA DF for EXSA service...
/03703 07 23 Service has been found.

31/03/03 07 24 Sending a Regquest to EXSA agent...
31/03/03 07 25 An Agree message is received.
31/03/03 07:18:33 &n Inforn message is received.

The results retrieved from EXSA agent:
http:/fwww. cs. cf .ac. ukfuser/C. Georgousopoulost/9al Tium/EXSA/ 2310303 /9a1 Tium_B000_EXS
fi1049134834217 . xm]

(c) |

Fig. 6. Test results

were the tester agent’s request trandated into XML form (as understood by URA) and the
conversation ID of the corresponding tester agent’ s interaction with EXSA.

After each URA has been initialized by EXSA, it communicated with its local
management agent i.e. UMA, in order to receive the itinerary that has to follow through
the SARA information servers in order to accomplish its task i.e. gather the information
requested by EXSA. UMA isresponsible for constructing every URA’ s itinerary in SARA
according to the information provided by the latter and the current status of the system
(known by UMA), i.e. availability of resources, server failures, number of agents on each
server. UMA may also direct URA to collect the results of its query from a server which
have already been stored by a previous agent having a similar query. The management
agent’s (UMA, LMA) interaction is described in [8].

For each URA, the steps of accomplishing their task may be traced by following the
numbers on the diagram of the SARA architecture in figure 4 or with reference to the
SARA information server’s console in figure 6b. The console records the execution of
every URA agent on the visited SARA information servers and reveals their interaction
with the local stationary agents hosted by V oyager[16] agent platform.

After URA has accomplished its task, it sent the results back to the EXSA along with
the conversation ID, initially received by EXSA, and self-terminated. Then EXSA replied
to each of the tester agents based on the conversation indicated by the conversation ID
received from its internal agent i.e. URA, via an Inform performative including a URL
address (see figure 6b and 6¢). The actual results could be acquired by accessing the
corresponding URL address.

Details on the messages exchanged between the tester agents and the EXSA gateway
agent, the trandation of a Request ACL message performed by EXSA to the form
understood by URA i.e. XML, and an example of results gathered by URA based on
specific coordinates can be found in the Appendix.

5 Conclusion

In this paper we described how a developer may attach FIPA-compliant gateways to a
legacy MAS. We discussed the advantages of adopting this approach and we
demonstrated the successful interoperability provided by conducting experiment test on a
MAS utilizing the FIPA-compliant gateways.

Currently we are developing a novel architecture for generic FIPA-compliant gateways
that could be attached in alegacy MAS to provide automated FIPA interoperability with
an external MAS. By the term automated we means that a developer would not need to
have any knowledge of the FIPA specifications in order to make its system FIPA-
compliant. Although, the proposed architecture of the generic FIPA-compliant gateways
will support a limited number of performatives, a developer would be able to extend the

gateway agent class in order to support any performative that it will not be initialy
supported by the generic architecture.

References

1. AgentCities - a global, collaborative effort to construct an open network of on-line systems
hosting diverse agent based services, http://www.agentcities.org (2003)

2. AgentCities node hosted by UMIST (University of Manchester Institute of Science and
Technology), UK, http://www.agentcities.co.umist.ac.uk (2003)

3. Burg, B., Dale, J.,, Willmott, S.: Open Standards and Open Sources for Agent-Based Systems,
Articlein: Agentlink, news 6 (2001)

4. Charlton, P., Bonnefoy, D., Lhuillier, N., Gouaich, A.,Camenen, Y .: Dealing with interoperability
for Agent Based Services, White paper, http://leap.crm-paris.com/agentcities/Resources/resou
rces.html (2000)

5. FIPA-OS, http://www.nortel networks.com/products/announcements/fipa/index.html

6. FIPA-OS Inter-platform Communications Configuration Guide, http://www.nortelnetworks.com/
products/announcements/fipalindex.html (2002)

7. Georgousopoulos, C., Rana, O. F.: An approach to conforming aMAS to a FIPA-compliant
system. In First International Joint Conference on Autonomous Agents and Multi-Agent Systems
- AAMAS 2002, ACM ISBN 1-58113-480-0, Italy, Bologna (2002) 968-975

8. Georgousopoulos, C., Rana, O. F.: Combining State and Model-based Approaches for Mobile
Agent Load Balancing. In SAC 2003 - ACM Symposium on Applied Computing, ACM ISBN 1-
58113-624-2, Melbourne, Florida, USA (2003) 878-885

9. http://www.cs.cf.ac.uk/Digital-Library/

10. http://www.fipa.org/docs/output/f-out-00065/

11. JADE (Java Agent DEvelopment Framework), http://sharon.cselt.it/projects/jade (2003)

12. Panti, M., Penserini, L., Spalazzi, L., Vaenti, S.: A FIPA compliant agent platform for federated
information systems. In ACIS International Journal of Computer & Information Science, volume
1, issue 3. Special issue on software engineering applied to networking & parallel/distributed
computing, |SSN:1525-9293, USA (2000) 145-156

13. Poslad, S., Calisti, M.: Towards improved trust and security in FIPA agent platforms.
Proceedings of Autonomous Agents 2000 Workshop on Deception, Fraud and Trust in Agent
Societies, Spain (2000)

14. Yang, Y., Rana, O. F., Georgousopoulos, C., Waker, D. W., Williams, R., Aloisio, G.: Agent
based data management in digital libraries. In Parallel Computing Journal, Elsevier Science, vol.
28, issue 5 (2002) 773-792

15. Yang, Y., Rang, O. F., Walker, D. W., Williams, R., Aloisio, G.: Towards an XML and Agent-
Based Framework for the Distributed Management of Multi-Spectral Data. 6th International
Digital Media Symposium, Bradford, UK (2001)

16. Voyager, Recursion Software, Inc., http://www.recursionsw.com/osi.asp (2003)

17. Williams, R.D., Sears, B.: A High-Performance Active Digital Library, Parallel Computing,
Special issue on Metacomputing (1998)

APPENDIX: Test results

The messages received by the tester agent of the JADE agent platform:

(AGREE
:sender (agent-identifier :name EXSA@alliumcs. cf.ac.uk :addresses
(sequence fipaos-rm://galliumcs.cf.ac.uk: 3000/ EXSA fipaos-rm://gallium
.cs. cf.ac. uk: 3000/ acc | OR 000000000000001149444c3a464950412f 4d54533a312e30
00000000000000010000000000000030000100000000000867616c6c69756d0004cf 00000
0000018af abcaf e000000026dc432d3000000080000000000000000 iiop://galliumcs
cf. ac. uk: 4000/ acc corbanane: :gallium cs.cf. ac. uk: 4000/ NaneSer vi ce#acc
http://galliumcs.cf.ac.uk: 8080))
:receiver (set (agent-identifier :name DFTester @al ki di ki .agentcities.org
:addresses (sequence http://Halkidiki2.co.umst.ac.uk:7777/acc)))
:content "coordinates 16.317 107.654 16.061 108.082 16.828 108.575 17.087
108. 144"
;1 anguage ASCI |
:conversation-id EXSA@al | i um cs. cf. ac. uk104920921126114

)

(1 NFORM
:sender (agent-identifier :name EXSA@alliumcs.cf.ac.uk :addresses
(sequence fipaos-rm://galliumcs.cf.ac.uk: 3000/ EXSA fipaos-rm://gallium
.cs. cf.ac. uk: 3000/ acc | OR 000000000000001149444c3a464950412f 4d54533a312e30
00000000000000010000000000000030000100000000000867616c6c69756d0004cf 000000
000018af abcaf e000000026dc432d3000000080000000000000000 iiop://galliumcs
cf. ac. uk: 4000/ acc corbanane: :galliumcs.cf.ac. uk: 4000/ NanmeSer vi ce#acc
http://galliumcs.cf.ac.uk:8080))
:receiver (set (agent-identifier :name DFTester @al ki di ki . agentcities.org
:addresses (sequence http://Halkidiki2.co.umst.ac.uk: 7777/ acc)))
:content "http://ww.cs.cf.ac. uk/user/C. Geor gousopoul os1/ gal | i umi EXSA/ 0104
03/ gal | i um 8000_EXSA_1049209212627. xm "
1l anguage ASCI |
:conversation-id EXSA@al | i um cs. cf. ac. uk104920921126114

)

The message that is generated after the translation of the ACL message received by the
EXSA gateway agent, into the XML form understood by itsinternal agent i.e. URA:

<?xm version="1.0" >

<! DOCTYPE nessage SYSTEM “nessage. dtd”>

<Message type="request” id="CLI ENTID" >

<Cont ext sender="//web_server 1/ EXSA’ receiver="//web_server1l/ URA">
<Cont ent > <querydef > &t rackquery; </ querydef > </ Cont ent >

</ Message>

where the trackquery contains:

<?xm version="1.0" >
<! DOCTYPE trackquery SYSTEM “trackquery.dtd”>
<t rackquery>

<Condi ti on><and>

<Mor eThanOr Equal ><|l eft >l ati t ude. upperl eft</l eft><right>16. 317</ri ght>

</ Mor eThanOr Equal >

<Mor eThanOr Equal ><I ef t >l ongti t ude. upper | ef t </ | ef t ><ri ght >107. 654</ri ght >
</ Mor eThanOr Equal >

<Mor eThanOr Equal ><l eft >l ati t ude. upperri ght </l eft><ri ght >16. 061</ri ght >
</ Mor eThanOr Equal >

<LessThanOr Equal ><I ef t >l ongti t ude. upperri ght </ | ef t ><ri ght >108. 082</ri ght >
</ LessThanOr Equal >

<LessThanOr Equal ><l eft >l atitude. | owerl eft</| eft><ri ght>16.828</ri ght>

</ LessThanOr Equal >

<Mor eThanOr Equal ><I ef t >l ongi t ude. | ower| eft </ I ef t ><ri ght >108. 575</ri ght >
</ Mor eThanOr Equal >

<LessThanOr Equal ><l eft >l ati tude. | owerright</left><right>17.087</right>
</ LessThanOr Equal >

<LessThanOr Equal ><I ef t >l ongi t ude. | owerri ght </ | ef t ><ri ght >108. 144</ri ght >
</ LessThanOr Equal >

</ and></ Condi ti on>

</trackquery>

The results retrieved from the SARA DL based on the coordinates specified by the tester
agent of the JADE agent platform are:

<?xm version="1.0"7?>

<SARAMETADATA>

<SARATRACK | DTRACK="13106" >

<NAME>Phnum Voeene, Canbodi a</ NAMVE>

<TRACKDATE>1994- 04- 16 00: 00: 00. 0</ TRACKDATE>

<W DTH>4304</ W DTH>

<HEI GHT>7996</ HEI GHT>

<CHANNEL S>2</ CHANNEL S>

<SARACOORDS>

<SARACOORD><LAT>16. 317</ LAT><LON>107. 654</ LON></ SARACOORD>
<SARACOORD><LAT>16. 061</ LAT><LON>108. 082</ LON></ SARACOORD>
<SARACOORD><LAT>16. 828</ LAT><LON>108. 575</ LON></ SARACOORD>
<SARACOORD><LAT>17. 087</ LAT><LON>108. 144</ LON></ SARACOORD>
</ SARACOCORDS>

<SARAFI LES>

<SARAFI LE NAME="pr 13106_byt hh" ><POLARI ZATI ON>LHH</ POLARI ZATI ON></ SARAFI LE>
<SARAFI LE NAME="pr 13107_byt hv" ><POLARI ZATI ON>CHV</ POLARI ZATI ON></ SARAFI LE>
</ SARAFI LES>

<SARASTORED><SERVER>ser ver 1</ SERVER></ SARASTORED>

</ SARATRACK>

</ SARANVETADATA>

