
EUROCON 2005 Serbia & Montenegro, Belgrade, November 21-24, 2005

Abstract — This paper presents a pattern language

supporting the design of web/mobile interfaces to static
agents built by FIPA-compliant agent toolkits.

The approach followed was to collaboratively gather the
requirements the language should satisfy, and derive, select
and combine appropriate patterns fulfilling them.

The use of the language has been validated in four case
studies and its suitability for meeting the agent interface
development requirements has been evaluated using Force
Resolution Maps (FRMs). It is has been found that the
proposed language fully satisfies the identified requirements.

Keywords — Agent Interfaces, Design Patterns, FIPA,
Pattern Languages.

I. INTRODUCTION
Despite the emergence of numerous methodologies for

engineering agent systems there is no proportional
development of systematic techniques for designing agent
interfaces enabling agent access over the web and from
mobile devices. To address this issue, in this paper we
propose a design pattern language suitable for the
development of web/mobile interfaces to static agents
built by FIPA-compliant agent toolkits. The selection of
the patterns and rules comprising the language was driven
by a set of requirements that targeted agent systems should
satisfy, which was identified in a collaborative manner
based on experiences in developing web/mobile and agent
applications.

The validity of the proposed pattern language is
demonstrated in four different agent applications each
focusing on different language aspects. Furthermore, the
language is evaluated using Force Resolution Maps
(FRMs) [1]. FRMs have been used to evaluate the
language against its forces and against other design
patterns that are similar to the ones used in the language.

In Section II we discuss the motivation for developing a
pattern language for agent interfaces, followed by a
description of the requirements such a language should
meet in Section III. The proposed pattern language is
presented in Section IV and some applications developed
to test it are discussed in Section V. The suitability of the
proposed language for designing agent interfaces is
evaluated in Section VI, and relevant work is presented in
Section VII. Finally, Section VIII concludes the paper.

Vassilis Konstandinidis is an IEEE member and works for Byte S.A,

Athens 117 41, Greece (email: V.Konstandinidis@computer.org)
Antony Karageorgos is an IEEE member and works for the

department of Communications & Computer Engineering, University of
Thessaly, Volos 38 221, Greece (email: karageorgos@computer.org)

II. MOTIVATION
To address the complexity inherent in agent design and

to facilitate interoperation of heterogeneous agent systems
developed using different tools and methodologies various
aspects of agent systems have been standardized by
organizations such as the IEEE standards committee FIPA
[7]. Based on these standards, numerous agent toolkits
have appeared ([2]-[6]) both under commercial and open
source licences. A common aspect in all these toolkits is
that they provide limited support to agent developers for
designing remote, i.e. accessible from another location
using internet or mobile device technology, interfaces for
agents in a systematic and effective way.

Design patterns can greatly facilitate the design of
software systems in a plethora of ways [8]. However,
despite their benefits individual design patterns alone are
not sufficient for building complete/complex software
systems. As Coplien [9] emphasises “A pattern in
isolation solves an isolated design problem; a pattern
language builds a system. It is through pattern languages
that patterns achieve their fullest power”.

Therefore, it came natural that the problem of designing
web-based and mobile agent interfaces can be resolved by
using a suitable pattern language targeting the interface
requirements of agent applications, which is the focus of
the work described in this paper.

III. REQUIREMENTS OF THE TARGETED
SOFTWARE SYSTEM

A. Requirements gathering process
To determine the requirements of the targeted agent

software interfaces we held a series of Joint Agent
Development (JAD) [10] sessions, during which we
divided the interested parties into three groups: End users,
members of development teams that deal with the agent
part of the targeted system, and members of development
teams that deal with the OO part of the targeted system.

B. Requirements
The results of JAD sessions are summarised in the

following requirements that agent interfaces must satisfy:
• The presentation and command aspects of the

web/mobile interface application must be decoupled
from its conceptual aspects.

• The web/mobile interface part of the system need
contact the agent via method calls (keeping in mind
that an agent communicates with the outside world
through message calls).

A Pattern Language for FIPA Agent Interface
Design

Vassilis Konstandinidis, Anthony Karageorgos

• The entire system must be distributed, where perhaps
all its components sit on different machines and
communicate to each other through remote method
calls.

IV. THE PATTERN LANGUAGE

A. Prerequisites
As with all pattern languages, a list of pre-conditions

must hold before this pattern language can be
implemented. In this case, the pre-conditions are two:
• First, there needs to be an agent platform ready that

will host the targeted agent (or agents, if the pattern
language is implemented more than once to target
more than one agent).

• Secondly, the targeted agent(s) must be up and
running and their APIs known to the developer(s) of
the pattern language.

B. Individual patterns
Having studied a plethora of design patterns and from a

variety of sources we concluded that the following
patterns should be included in the pattern language to
address the requirements/problems presented above:
• Model-View-Controller (MVC) [8] to address the first

force.
• Adapter [11] to address the second force.
• Broker [8] to address the third force.

The reasons for this choice can be summed as follows:
a. During the JAD sessions it was made clear that the

targeted system can be constructed solely on
techniques and technologies that belong to the OO
world (with the exception of the agents themselves, of
course). More precisely, given the API of the agent(s)
we want to create a web/mobile interface for, the rest
of the system can be constructed in a way that is no
different from any other web/mobile application.
Hence, the three patterns in the pattern language are
OO design patterns and not agent-related patterns.

b. The Adapter, MVC and Broker patterns are very
popular and well-documented patterns that many
developers/systems analysts know how to
use/implement in different programming languages.

C. Domain of the Pattern Language
The language proposed here can be classified as

“targeting agent based systems, which are built solely on
FIPA-compliant toolkits, where all the agents involved are
static (not mobile).”

D. Representation
The pattern language can be represented graphically as

follows:

Figure 1: The structure of the pattern language

As we can see from the figure, the Adapter and Broker
patterns need to be implemented before the MVC pattern.
The role of the Adapter is to pass messages from the
web/mobile interface to the agent, in a format that the

agent application understands and vice versa. But the
Adapter might not be running on the same machine as the
user interface application. How can the user application
get a reference to the Adapter? The answer is to
implement the Broker pattern for the Adapter (i.e. the
Adapter will be the service of the Broker architecture). It
does not really matter which pattern to implement first, as
the implementation of one does not interfere/depend on
the implementation of the other.

E. Set of rules
Coplien has said that: “A pattern language defines a

collection of patterns and the rules to combine them into
an architectural style.” [12].

Following this statement, we present a set of rules to
combine the different patterns in the proposed pattern
language in Table 1 below:

TABLE 1: SUMMARY OF THE RULES IN THE PATTERN
LANGUAGE

Rule Apply when
Create an Adapter for the agent,
make it available across different
Java Virtual Machines (JVMs),
across a network or networks,
and therefore to the user
interface application, through the
use of a Broker, and develop the
user interface application itself
using the MVC pattern, in the
following order: Adapter or
Broker followed by MVC.

- The agent and the Adapter
run on a machine A, and
the user interface
application runs on a
machine B.

- The agent, the Adapter and
the user interface
application are all hosted
on the same machine.

- The Adapter and the user
interface application run on
a machine A, and the agent
runs on a machine B.

- The agent, the Adapter and
the user interface
application all run on
different machines.

Use just the MVC pattern to
create the user interface
application itself. There is no
need to implement other patterns
to access the agent from the UI
application.

The agent toolkit used is LEAP
running on a pJava or MIDP
device, we want to create a
mobile interface to the agent
running on that device, and we
want to create this interface on
the same device.

F. Variants
In the case where the agent toolkit used is LEAP

running either on a pJava or MIDP device, the pattern
language consists only of the MVC design pattern.

V. TESTING

A. Introduction
In order to validate the pattern language we used it to

design four different agent-based applications. Demo
applications I, II and III are direct implementations of the
pattern language, whilst demo application IV is an
implementation of its variant.

B. Demo application I

1) Introduction
In this demo application we created a web interface to

an open-source, FIPA-compliant agent platform that: a)
displays a list of all the agent platforms that are up on the
agentcities.net network [13], b) allows the user to select a
platform from that list and send to it a simple “ping”

message, and finally c) get a reply from the remote
platform.

In creating this application we set up the UMIST Agent
City [14] and joined it to the agentcities.net network.
2) Structure

Following the pattern language, the structure of the
system looks as follows:

Figure 2: Structure of demo application I

C. Demo application II

1) Introduction
This demo application is actually based on the

“FruitMarket” demo that comes with the distribution of
ZEUS, where instead of simply creating AWT interfaces
for the “ShopBot” and “SupplyBot” agents we created
Java applet interfaces for both agents.
2) Structure

Following the pattern language, the structure of the
system looks as follows:

Figure 3: Structure of demo application II

D. Demo application III

1) Introduction
This is essentially the same application as the demo

application we presented above with the only difference
being that the interface instead of being web-based it is
now a mobile-based one.
2) Structure

Following the pattern language, the structure of the
system looks as follows:

Figure 4: Structure of demo application III

E. Demo application IV

1) Introduction
In this demo application we created two different agents

running on the mobile agent platform LEAP: a) one that is
fired up when the LEAP main container starts and runs on
the same PC as the LEAP main container, and b) another
one that runs on a mobile device that runs a LEAP
container (not the main). The first agent has an AWT
interface that displays the number of messages that this
agent sends to the second agent and vice versa. The
second agent has an MIDP or Personal Java interface that
does the same thing.
2) Structure

Following the variant of the pattern language, the
structure of the system looks as follows:

Figure 5: Structure of demo application IV

VI. EVALUATION

A. Meeting the pattern language forces
Based on the results of the demo applications we

developed to validate the pattern language, we can safely
say that it successfully addresses its forces. Since this
alone is not enough to completely conclude about its
quality we compare it to other solutions in the next
section.

B. Comparison with other solutions
In this section, we use FRMs [1] to validate the pattern

language against a number of forces relevant to agent
interface development. FRMs can help designers decide if
a pattern fits the application requirements and can possibly
be applied, and if yes whether it is the best candidate.

The following forces are considered: Real-time
responsiveness, Reliability, Data management security,
Complexity, Efficiency, Recovery, Maintainability,
Accuracy, Effectiveness, Reusability, Need to decouple
the presentation/UI of the agent from its functional core,
Need to convert the interface of the targeted agent into
another interface that the non-agent, UI, client application
can use to contact the agent, Need to make the system
distributed when the UI application is running on a
different machine than that of the agent.

C. Adapter pattern FRM
Starting with the Adapter pattern we compared it

against the Bridge, Decorator, Proxy and Strategy patterns
[8] and we concluded to the following FRM:

Figure 6: An FRM for the Adapter pattern

D. MVC pattern FRM
On with the MVC pattern we compared it against the

PAC and View Handler patterns [11] and we concluded to
the following FRM:

Figure 7: An FRM for the MVC pattern

E. Broker pattern FRM
Finally, in the case of the Broker pattern we compared it

against the Forwarder-Receiver, Proxy, Client-Dispatcher-
Server, Mediator and Lookup patterns [11] and we
concluded to the following FRM:

Figure 8: An FRM for the Broker pattern

F. Pattern Language FRM
Combining all the above FRMs together we concluded

to the following FRM for the pattern language:

Figure 9: An FRM for the pattern language

The results of this FRM show that the pattern language

resolves most of its forces in a positive way. Three of its
forces though are resolved moderately well, and more
work should be done to change this.

VII. RELEVANT WORK
Current agent development toolkits do not provide
adequate support for building agent interfaces. The
solution given by JADE [2] is unreliable targeting only
JSP-based web interfaces. LEAP [3] and MicroFIPA-OS
[4] do not consider agent interaction between different
mobile agent platforms, and DialoX [15], the solution
given in April toolkit [5] does not consider agent mobility.

VIII. CONCLUSIONS AND FURTHER WORK
We proposed a pattern language supporting the design

of agent interfaces. We considered static agents and FIPA
compliant agent toolkits. We showed that the language
meets satisfactorily a set of necessary requirements. Future
work includes extending the language with additional
patterns and with guidelines for their proper use.

REFERENCES
[1] J. Souza, S. Matwin, N. Japkowicz, “Evaluating Data Mining

Models: A Pattern Language,” Proceedings of the 9th Conference
on Pattern Language of Programs (PLOP'2002), 2002.

[2] http://sharon.cselt.it/projects/jade (Accessed: 15 June 2005).
[3] http://leap.crm-paris.com/index.html (Accessed: 15 June 2005).
[4] http://www.emorphia.com/research/about.htm (Accessed: 15 June

2005).
[5] http://sf.us.agentcities.net/aap/ (Accessed: 10 March 2005).
[6] http://sourceforge.net/projects/zeusagent/ (Accessed: 10 March

2005).
[7] http://www.fipa.org (Accessed: 15 June 2005).
[8] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns:

Elements of Reusable Object-Oriented Software, Addison-Wesley,
1995.

[9] J. O. Coplien, “Software Patterns”, SIGS Books, 1996.
[10] Jane Wood, Denise Silver, “Joint Application Development”, 2nd

ed., New York : Wiley, 1995.
[11] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal, A

System of Patterns: Pattern-Oriented Software Architecture, Wiley,
1996.

[12] http://hillside.net/patterns/definition.html (Accessed: 15 June 2005)
[13] http://www.agentcities.net (Accessed: 15 June 2005).
[14] http://www.agentcities.co.umist.ac.uk/ (Accessed: 15 June 2005)
[15] http://sourceforge.net/projects/networkagent/ (Accessed: 10 March

2004).

