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Abstract. Complexity in software design refers to the difficulty in understand-
ing and manipulating the set of concepts, models and techniques involved in the 
design process. Agents are sophisticated software artefacts, associated with a 
large number of features and therefore Agent-Based System (ABS) engineering 
methods involve considerable design complexity. This paper proposes a frame-
work to evaluate ABS engineering methods against a number of design com-
plexity related criteria. The framework is applied to a number of representative 
ABS engineering methods and the results are used to motivate and guide fur-
ther work in the area. 

1   Introduction 

ABSs can currently be designed using a number of ad-hoc methods, formal methods 
or informal but structured methods. In addition, design can be done either statically, 
before the ABS is deployed, or dynamically on run-time. All existing methods have 
certain weaknesses and involve considerable difficulty in understanding and manipu-
lating the concepts and models needed for the detailed ABS design. This is referred to 
as design complexity. 

The term complexity has been given many definitions in the literature and the ma-
jority of them are based on the Oxford English dictionary definition, referring to 
“difficulty in understanding”. Software engineering complexity relates to how diffi-
cult it is to implement a particular computer system [14]. It is considered that high 
software complexity results to low software quality [8]. In this work, the focus is on 
ABS engineering complexity and in particular on that related to ABS design. 

The sophisticated structure and properties of software agents increase the complex-
ity inherent in ABS design. For example, designing agents to operate in dynamic and 
open environments and carry out non-trivial tasks that require maximisation of some 
utility payoff function involves high design complexity [25].  

Lower software complexity provides advantages such as lower development and 
maintenance time and cost, less functional errors and increased reusability. Therefore, 
it is common in software metrics research to try to predict software qualities based on 
complexity metrics [14]. Furthermore, certain factors associated with lower complex-



ity can be identified. For example, reusing design knowledge reduces design com-
plexity allowing designers to work with concepts of larger granularity at higher ab-
straction levels [1]. 

The unsuitability of traditional software engineering methods has spawned new 
methods specifically targeting ABSs. The new methods utilize a variety of modelling 
concepts and techniques and involve different degrees of design complexity. For 
example, semi-automating the design process results to lower design complexity [11]. 
It is therefore necessary to assess ABS engineering methods with respect to design 
complexity and to identify issues that would need further improvement. To this end, a 
framework for evaluating ABS engineering methods with respect to design complex-
ity is proposed in this paper.  

The contents of the paper are as follows. The proposed framework is described in 
Section 2. Section 3 discusses the results of applying the framework to evaluate a 
number of representative ABS engineering methods. Some issues concerning further 
research are highlighted in Section 4. Finally, Section 5 concludes the paper. 

2 An Evaluation Framework for ABS Design Complexity 

The proposed framework was inspired by attempts to understand and discuss the 
issues involved in ABS design in a systematic manner [9] and it is based on similar 
work concerning evaluation of object-oriented software engineering methods [23], 
comparison of ABS toolkits [20] and measurement of software complexity [8].  

The framework examines ABS engineering methods from four different views, 
Concepts, Models, Process and Pragmatics, which are summarised in Fig. 1. Each 
view represents a set of conceptually linked aspects and examines ABS engineering 
methods from a different perspective. For example, the implementation language and 
the use of standard notations are both related to implementation and hence they 
should be associated with an implementation-related view. 

When assessing an ABS engineering method using the proposed framework, a 
ranking scheme for each aspect is applied. The ranking is based on subjective, quali-
tative values, for example, low, medium, high. The possible ranking values are dis-
cussed together with the different aspects of the framework below. Where appropri-
ate, examples referring to relevant ABS engineering methods are provided. 

Concepts 

The concepts view concentrates on which modelling concepts are used in each 
method to represent the ABS behaviour. It includes the following aspects: 

1. Concept Definition: This aspect refers to restrictive premises concerning the 
agent architecture and the type1 of agents that can be produced with the method. 
Based on this criterion, an ABS engineering method can be characterised as 
open, bounded or limited (highly bounded). A method is open if it does not con-
sider a particular agent architecture and does not produce specific agent types, 

                                                           
1 An agent type is a class of agents with similar capabilities and purpose. 



such as Gaia [26]. An example of a method bounded to a particular agent archi-
tecture is Tropos [5], which assumes only BDI agents. Finally, an example of a 
method limited to specific agent types is RAPPID [19], which considers only 
Component Agents that represent humans and Characteristic Agents that repre-
sent parts of a product design system. It is preferable for a method to be open as 
it can directly produce various agent types resulting to lower design complexity. 

 

Fig. 1. A framework for assessing the design complexity of ABS engineering methods  

2. Design in Scope: This aspect refers to whether a method includes specific steps 
and guidelines for the design phase of the ABS engineering lifecycle and can be 
true or false. For example, MESSAGE/UML [6] covers only the analysis phase 
while Tropos [5] covers analysis, design and also part of the implementation. 
Explicitly supporting the design phase results to lower design complexity. 

3. Heuristics support: This aspect refers to the formal support for applying heuristic 
guidelines and tips when designing the ABS and can be true or false. Formal 
heuristics support involves providing formal techniques that can be used to en-
sure application of the design heuristics. For example, in KARMA [22] heuristics 
can be specified as constraints in the STEAM specification language. In contrast, 
in RAPPID [19] there is no rigorous way for ensuring that design heuristics have 
been applied. Formal heuristics support results to lower design complexity.  

Models 

The Models view refers to the models that are used to represent different parts of 
the ABS or issues of particular interest and the techniques that are used to create and 
manipulate those models. The Models view includes the following aspects of interest:  
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1. Organisational settings: This framework aspect concerns whether organisational 
settings are considered as first-class design constructs and can be true or false. 
For example, in Zeus [17] organisational settings are represented by explicit role 
models in contrast to DESIRE [4] where they are implied by the agent behaviour. 
Organisational settings should be considered as first class design constructs [18], 
[27], enabling work in higher abstraction levels and resulting to lower design 
complexity. 

2. Collective Behaviours: This aspect refers to whether an approach includes ap-
propriate first-class modelling constructs to represent collective agent behaviour 
anf can be true or false. Collective behaviour may be modelled implicitly via the 
individual agent behaviour, as is the case in RAPPID [19], or it may be modelled 
explicitly; for example, in Zeus it is modelled by role models [17]. Collective be-
haviours should be considered as first class design constructs enabling reasoning 
at a high abstraction level [12] and hence resulting to lower design complexity.  

3. Non-functional aspects: This aspect refers to whether non-functional aspects are 
explicitly considered in the method and can be true or false. Non-functional as-
pects can be explicitly represented by appropriate modelling constructs, such as 
in Tropos [5], or they can be implicitly modelled within individual agent behav-
iour such as in Gaia [26]. Explicitly modelling non-functional aspects enables 
work at a higher abstraction level and results in lower design complexity. 

Process 

The process view concentrates on the steps that are executed to construct the mod-
els discussed in the Models view and on techniques that support and assess those 
steps. In particular, this view is concerned with the following aspects: 

1. Design Perspective: This aspect refers to the perspective from which each 
method views the ABS design. The perspective can be top-down or bottom- up or 
both (top-down and bottom-up) depending on how the design of the ABS pro-
gresses. In the top-down perspective, the design models are constructed by refin-
ing high-level models of the agent organisation, such as in Gaia [26]. In the bot-
tom-up perspective, design models are progressively composed from existing 
finer-grain models thus enabling reuse [12]. Supporting both perspectives, as in 
MESSAGE/UML [6], results in lower design complexity. 

2. Support for Reuse: This aspect refers to whether the method supports using pre-
vious knowledge in designing an ABS and can be true or false. Support for reuse 
involves modelling constructs, techniques and guidelines for the identification, 
representation, testing and application of reusable knowledge. For example, in 
the Zeus toolkit methodology [17] there are guidelines for creating, storing and 
reusing negotiation strategies when specifying agent interactions, whilst in 
RAPPID [19] there are not such facilities. Support for reuse is a fundamental step 
towards achieving lower design complexity [1].  

3. Design Automation: This aspect refers to whether there are formal underpinnings 
in the specification models of the method enabling automation of the design 
process to a certain extent. Some process steps should definitely be carried out 



based on the judgement of the human designers, for example the selection of 
roles in the analysis phase in Gaia [26]. However, other steps could be automated 
and carried out by a software tool, for example based on formal model transfor-
mations [21]. The degree to which the process steps are automated can be charac-
terised as true or false. For example, the DESIRE [4] design process can be 
automated, as many steps are formally defined using mathematical techniques, in 
contrast to RAPPID [19] where there are no formal underpinnings. Automating 
the design process results in lower design complexity and reduces development 
effort and errors [1]. 

Pragmatics  

This view focuses on the pragmatics of each ABS engineering method. In other 
words, this view refers to how practical the method is for the design of real-world 
agent systems. It is concerned with the following aspects: 

1. Generality: The generality of a method refers to the existence of restrictive prem-
ises concerning the environment and the application domain that affect the appli-
cability of the method and can be characterised as high, medium or low. High 
generality means that the method can be applied without any significant restric-
tions, such as Tropos [5]. The generality is medium when there are considerable 
restrictions but the applicability of the method is still wide. For example, Gaia 
[26] assumes closed ABSs and small numbers of cooperating agents. In contrast, 
RAPPID [19] is limited since it can only be applied to design ABSs that will be 
used to support industrial product design and, therefore, its generality is low. 
High generality results to lower design complexity since it is easier to apply the 
method in various application domains. 

2. Abstractability: This aspect refers to whether there is support to enable work at 
different levels of abstraction which is one of the main factors affecting design 
complexity [1] and it can be true or false. For example, role-based methods, such 
as [12], support abstractability since agent behaviour can be specified at both the 
level of roles and at the level of role characteristics. In contrast, in Tropos [5] this 
is done only at the agent level and hence Tropos does not support abstractability.  

3. Tool support: This aspect is concerned with whether there are tools supporting 
the realisation of the method. For example, the role-based approach method in 
[17] is supported by the Zeus agent building toolkit, which assists the users in 
designing ABSs. On the other hand, there is no tool support for the Gaia ap-
proach [26] and the engineer is responsible for manually creating all the relevant 
models. The tool support of an approach can be characterised as true or false. It 
is preferable for an approach to be supported by CASE tools since this reduces 
development effort and development errors [14] and automates repetitive tasks 
[16] increasing the usability of the method and resulting to lower design com-
plexity. 

It must be noted that some aspects are interrelated. For example, low or limited 
concept definition is likely to be combined with low or medium generality, as is the 



case in RAPPID [19]. However, this is not always the case, For example, Tropos [5] 
is bounded to only BDI agents and it is still applicable in many application domains.  

Fig. 2. Classification of Agent-Based System Engineering Methods 

3   Comparative Evaluation of ABS Engineering Approaches  

ABS engineering methods can be classified as ad-hoc, formal, informal and struc-
tured, and dynamic (see Fig. 2). Ad-hoc methods involve designing an ABS in an 
application domain specific manner while formal approaches are based on the use of 
formal methods. Informal and structured methods originate from knowledge engi-
neering and software engineering and are predominantly extensions of object-
oriented analysis and design methodologies. Finally, dynamic methods involve defin-
ing the structure of an ABS and the behaviour of the individual agents dynamically on 
run-time. All classes have advantages and disadvantages with informal and structured 
methods being regarded as more practical for numerous real-world applications.  

A representative method (RAPPID [19], DESIRE [4], Gaia [26], MESSAGE/UML 
[6], Tropos [5], Zeus [17] and KARMA [22]) from each class of the above classifica-
tion scheme has been evaluated according to the four views of the evaluation frame-
work described in Section 2. A summary of the results is presented in Table 1. A 
more detailed discussion of this classification scheme and a review of the above ABS 
engineering methods can be found in [11]. 

Regarding the Concepts perspective, about half of the ABS engineering methods 
examined (DESIRE, Tropos and Zeus) are bounded to a specific agent architecture. 
RAPPID is the only one limited to specific agent types as well. Furthermore, the 
majority of the methods examined (DESIRE, Gaia, Tropos, Zeus and KARMA) con-
sider design as an explicit step in the ABS engineering lifecycle. However, only 
KARMA provides formal support for heuristics in the design of the ABS. Clearly, 
this is a general deficiency of current ABS engineering methods. 

As far as it concerns the Models perspective, only Zeus and KARMA explicitly 
model organisational settings. Representing collective behaviours as first class design 
constructs is also not supported in most of the examined methods. The only excep-
tions are Zeus where collective behaviours can be represented by role models and 
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KARMA where collective behaviours are modelled by appropriate team plans. The 
lack of support for non-functional aspects is even more pronounced. Indeed, only 
Tropos considers non-functional aspects in the design of ABSs. 

 
 
 
Table 1. Evaluation of ABS engineering methods with respect to design complexity  
 
In the Process perspective, only MESSAGE/UML allows working in both top-

down and bottom-up fashion and the current version of MESSAGE/UML supports 
only the analysis phase of the ABS engineering lifecycle. Zeus supports bottom up 
design, the rest of the approaches are all allowing top-down design. Furthermore, 
only two approaches explicitly provide support for reuse, DESIRE and Zeus. 
DESIRE includes guidelines about how the agent system designer can reuse generic 
task components in the design of the ABS and Zeus includes guidelines about how to 
reuse generic behaviours represented by role models and generic agent characteristics 
⎯ for example negotiation strategies. There is also significant lack of support for 
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automatic design of ABSs. Only KARMA supports automatic selection of the agents 
that will participate in the agent organisation based on team plans specified by the 
designer. 

Regarding the Pragmatics perspective, approximately half of the approaches 
(MESSAGE, Tropos and KARMA) are general targeting a broad range of application 
domains. The rest are restricted as follows: Gaia assumes closed ABSs consisting of 
small numbers of static, cooperating agents. Zeus has restrictions regarding the envi-
ronments where the agents produced can operate. For example, Zeus agents cannot be 
mobile and they require a large amount of physical RAM memory to execute. 
DESIRE is also specific to applications requiring static agents whose behaviour can 
be described by a task-based hierarchy. RAPPID is the most specific approach since 
it targets a specific application domain; that of supporting industrial product design. 

4   Implications for Further Research  

The above analysis has demonstrated that none of the ABS engineering methods 
examined covers all aspects of design support included in the evaluation framework 
introduced in Section 2. An effective approach to ABS design should therefore cover 
a number of outstanding issues, which are described in more detail below. 

4.1   Support for Design Heuristics 

Existing ABS engineering methods do not provide systematic and rigorous models 
for considering heuristics in the design of the ABS. In methods having formal under-
pinnings, such as DESIRE [4], design heuristics can be taken into account in a rigor-
ous manner in the design but there are no guidelines and systematic techniques assist-
ing in this task. The designer needs to manually incorporate the heuristic rules in the 
formal ABS specifications. 

Some methods support informal ABS design heuristics. For example in Zeus [17] 
the sphere of responsibility and point of interaction heuristics are provided. The for-
mer requires the designer to partition the application resources to areas of control and 
represent each area with a software agent. The latter refers to representing each re-
source in the application domain with an agent. However, those informal heuristics 
cannot be easily applied to the design of large ABSs. Furthermore, it is difficult for 
the designer to predict the effect on design decisions when those heuristics contradict 
with other requirements such as non-functional requirements. Hence, new ways to 
support heuristics in ABS are required. 

4.2   Organisational Settings 

Some ABS engineering methods explicitly model organisational settings ⎯ for 
example, MAS-CommonKADS [10] and SODA [18] ⎯ and there are cases where 
the agent organisation is designed during a distinct design step, before the agent be-
haviour is completely specified [3]. However, it has been argued that even when 
organisational settings are explicitly modelled, the models only represent the organ-
isational relationships between agents without considering social tasks and social 
laws [28]. Furthermore, organisational settings are not considered as first class design 
constructs apart from a few exceptions of approaches that use roles [17], [18]. An-
other problem concerning organisational settings is that existing approaches do not 



provide rigorous methods for combining organisational settings with application 
functionality. This has to be done intuitively by the designer without any assistance 
by a software tool. 

4.3   Collective Behaviour 

A similar problem exists regarding representing collective behaviour. Many au-
thors argue that collective behaviours should be treated as first-class design con-
structs, namely that they should be able to be instantiated and given identity [2], [12]. 
However, even where this is issue is addressed, such as in Zeus [17], there is no rig-
orous way to reuse collective application functionality and combine it with organisa-
tional settings. 

4.4   Non-Functional Aspects 

An issue of major concern in ABS design is the modelling and consideration of 
non-functional aspects such as security and performance. To the best of author’s 
knowledge, no other ABS engineering approach explicitly considers non-functional 
aspects in design apart from Tropos [5], which, at some stage, includes introducing 
actors and sub-actors that contribute positively to the satisfaction of non-functional 
requirements. However, the Tropos approach to modelling non-functional aspects 
suffers from two main weaknesses. Firstly, it models non-functional aspects in a way 
that it cannot be directly reused in other ABS designs. Secondly, quantitative charac-
terisation of non-functional aspects is not possible. 

In some cases, non-functional aspects are the basis for criteria for reorganisation in 
dynamic approaches, as is the case in KARMA [22]. In these instances non-
functional aspects are taken into account by adjusting the agent behaviour and the 
organisation of the ABS on run-time. However, this treatment of non-functional as-
pects impedes the reuse of non-functional models. It also contributes to significant 
consumption of resources and system instability.  

4.5   Automating the Design Process 

In order to reduce development effort and software design errors the design proc-
ess should be partially automated [13]. This view is also adopted by informal ABS 
engineering methods [7], [21], [24] that try to provide the formal underpinnings for 
automatically designing ABSs from appropriate informal specifications. The common 
way of doing that is by progressing from analysis to design by successive formal 
transformations of the analysis models. The transformations used, however, focus on 
ensuring that the designed agent components are correctly represented in respect to 
the analysis models, using object-oriented software engineering concepts and tech-
niques. For example, in [21] formal transformations are used to decide on the number 
of objects and concurrent threads that should be used to correctly realise the behav-
iour of each agent component. To the best of author’s knowledge, current informal 
ABS engineering approaches do not provide any automatic support for actually de-
ciding on what behaviour each agent in the ABS should have. This is not the case for 
dynamic approaches where the design of the agent system is done during reorganisa-
tion steps. For example, in KARMA the agent components are automatically selected 
based on specifications of the agent-based application requirements described in the 



STEAM modelling framework [22]. However, KARMA assumes that agents already 
exist in cyberspace, which is not generally the case.  

4.6   Working at Different Abstraction Levels 

There is a consensus that abstraction in software design reduces design complexity 
[15]. Although it has the trade-off of reducing software efficiency and performance, it 
may add to the reliability of the produced software as frequently used components are 
thoroughly tested and the design process can be automated [1].  

As abstraction is a common practice in software design, a number of ABS engi-
neering methods allow the designer to work at different levels of abstraction. How-
ever, not all of them provide appropriate formal support. For example, 
MESSAGE/UML allows modelling at levels 0 and level 1 but there is no formal 
description of the relations between the models of the two levels. As a result, proper 
use of MESSAGE/UML requires the designers to have a clear understanding and 
explicitly consider the links between models at levels 0 and 1, which makes the ABS 
design task more difficult,    

The only approaches examined that provide formal support for working at differ-
ent levels of abstraction are DESIRE [4] and KARMA [22]. However, their support is 
limited. DESIRE only supports interaction between tasks at different abstraction 
levels and KARMA supports teamwork at different levels of abstraction in the form 
of joint intentions. Agent behaviour, however, is characterised with other aspects as 
well. For example, coordination protocols or negotiation strategies, which the de-
signer should specify at the lowest level of detail in those two approaches. This prob-
lem is addressed in the Zeus approach [17]. For example, in Zeus, the agent system 
designer can either select a predefined negotiation strategy or specify all negotiation 
rules in detail. Zeus models agent behaviour at different levels of abstraction based on 
role modelling. However, this support is informal since the relations among roles 
have not been given formal semantics.  

5   Summary  

This paper proposed a framework to assess ABS engineering methods with respect 
to design complexity they involve. Using this framework, a set of representative 
methods have been examined revealing a number of issues that would require further 
research.  

The proposed framework suggests looking into ABS engineering approaches from 
four views: Concepts, Models, Process and Pragmatics. The Concepts view refers to 
the modelling concepts used to model ABSs and it concerns the generality of the 
concept definition, the existence of specific support for design in the ABS engineer-
ing process and the support for design heuristics. The Models view refers to model-
ling of organisational settings and collective behaviour to be used as first class design 
constructs and to explicit modelling of non-functional aspects. The Process view 
examines the perspective of the design process and whether it can be based on reuse 
and if it can be automated. The Pragmatics view evaluates the applicability of the 
approach to real-world applications by assessing the generality, the complexity han-
dling and the tool support of the approach.  



None of the methods examined supports all aspects of the proposed framework. 
Therefore, new ABS engineering methods are needed providing better support for the 
framework aspects resulting thus to lower design complexity. It is the authors’ belief 
that using roles as behavioural modelling constructs and providing appropriate se-
mantics for role relations and role characteristics is the most appropriate path to fol-
low towards achieving this goal.   
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