
A Design Complexity Evaluation Framework for
Agent-Based System Engineering Methods

Anthony Karageorgos1, Nikolay Mehandjiev1 and Simon Thompson2

1 Department of Computation, UMIST, Manchester M60 1QD, UK
{karageorgos, mehandjiev}@acm.org

2 Intelligent Business Systems, BT Exact Technologies, Ipswich IP5 3RE, UK
simon.2.thompson@bt.com

Abstract. Complexity in software design refers to the difficulty in understand-
ing and manipulating the set of concepts, models and techniques involved in the
design process. Agents are sophisticated software artefacts, associated with a
large number of features and therefore Agent-Based System (ABS) engineering
methods involve considerable design complexity. This paper proposes a frame-
work to evaluate ABS engineering methods against a number of design com-
plexity related criteria. The framework is applied to a number of representative
ABS engineering methods and the results are used to motivate and guide fur-
ther work in the area.

1 Introduction

ABSs can currently be designed using a number of ad-hoc methods, formal methods
or informal but structured methods. In addition, design can be done either statically,
before the ABS is deployed, or dynamically on run-time. All existing methods have
certain weaknesses and involve considerable difficulty in understanding and manipu-
lating the concepts and models needed for the detailed ABS design. This is referred to
as design complexity.

The term complexity has been given many definitions in the literature and the ma-
jority of them are based on the Oxford English dictionary definition, referring to
“difficulty in understanding”. Software engineering complexity relates to how diffi-
cult it is to implement a particular computer system [14]. It is considered that high
software complexity results to low software quality [8]. In this work, the focus is on
ABS engineering complexity and in particular on that related to ABS design.

The sophisticated structure and properties of software agents increase the complex-
ity inherent in ABS design. For example, designing agents to operate in dynamic and
open environments and carry out non-trivial tasks that require maximisation of some
utility payoff function involves high design complexity [25].

Lower software complexity provides advantages such as lower development and
maintenance time and cost, less functional errors and increased reusability. Therefore,
it is common in software metrics research to try to predict software qualities based on
complexity metrics [14]. Furthermore, certain factors associated with lower complex-

ity can be identified. For example, reusing design knowledge reduces design com-
plexity allowing designers to work with concepts of larger granularity at higher ab-
straction levels [1].

The unsuitability of traditional software engineering methods has spawned new
methods specifically targeting ABSs. The new methods utilize a variety of modelling
concepts and techniques and involve different degrees of design complexity. For
example, semi-automating the design process results to lower design complexity [11].
It is therefore necessary to assess ABS engineering methods with respect to design
complexity and to identify issues that would need further improvement. To this end, a
framework for evaluating ABS engineering methods with respect to design complex-
ity is proposed in this paper.

The contents of the paper are as follows. The proposed framework is described in
Section 2. Section 3 discusses the results of applying the framework to evaluate a
number of representative ABS engineering methods. Some issues concerning further
research are highlighted in Section 4. Finally, Section 5 concludes the paper.

2 An Evaluation Framework for ABS Design Complexity

The proposed framework was inspired by attempts to understand and discuss the
issues involved in ABS design in a systematic manner [9] and it is based on similar
work concerning evaluation of object-oriented software engineering methods [23],
comparison of ABS toolkits [20] and measurement of software complexity [8].

The framework examines ABS engineering methods from four different views,
Concepts, Models, Process and Pragmatics, which are summarised in Fig. 1. Each
view represents a set of conceptually linked aspects and examines ABS engineering
methods from a different perspective. For example, the implementation language and
the use of standard notations are both related to implementation and hence they
should be associated with an implementation-related view.

When assessing an ABS engineering method using the proposed framework, a
ranking scheme for each aspect is applied. The ranking is based on subjective, quali-
tative values, for example, low, medium, high. The possible ranking values are dis-
cussed together with the different aspects of the framework below. Where appropri-
ate, examples referring to relevant ABS engineering methods are provided.

Concepts

The concepts view concentrates on which modelling concepts are used in each
method to represent the ABS behaviour. It includes the following aspects:

1. Concept Definition: This aspect refers to restrictive premises concerning the
agent architecture and the type1 of agents that can be produced with the method.
Based on this criterion, an ABS engineering method can be characterised as
open, bounded or limited (highly bounded). A method is open if it does not con-
sider a particular agent architecture and does not produce specific agent types,

1 An agent type is a class of agents with similar capabilities and purpose.

such as Gaia [26]. An example of a method bounded to a particular agent archi-
tecture is Tropos [5], which assumes only BDI agents. Finally, an example of a
method limited to specific agent types is RAPPID [19], which considers only
Component Agents that represent humans and Characteristic Agents that repre-
sent parts of a product design system. It is preferable for a method to be open as
it can directly produce various agent types resulting to lower design complexity.

Fig. 1. A framework for assessing the design complexity of ABS engineering methods

2. Design in Scope: This aspect refers to whether a method includes specific steps
and guidelines for the design phase of the ABS engineering lifecycle and can be
true or false. For example, MESSAGE/UML [6] covers only the analysis phase
while Tropos [5] covers analysis, design and also part of the implementation.
Explicitly supporting the design phase results to lower design complexity.

3. Heuristics support: This aspect refers to the formal support for applying heuristic
guidelines and tips when designing the ABS and can be true or false. Formal
heuristics support involves providing formal techniques that can be used to en-
sure application of the design heuristics. For example, in KARMA [22] heuristics
can be specified as constraints in the STEAM specification language. In contrast,
in RAPPID [19] there is no rigorous way for ensuring that design heuristics have
been applied. Formal heuristics support results to lower design complexity.

Models

The Models view refers to the models that are used to represent different parts of
the ABS or issues of particular interest and the techniques that are used to create and
manipulate those models. The Models view includes the following aspects of interest:

Agent-Based
System
Design

Process Models

Concepts

Pragmatics

- Concept Definition
- Design in scope
- Heuristics support

- Organisational settings
- Collective behaviour
- Non-functional aspects

- Design perspective
- Support for reuse
- Design automation

- Generality
- Abstractability
- Tool support

1. Organisational settings: This framework aspect concerns whether organisational
settings are considered as first-class design constructs and can be true or false.
For example, in Zeus [17] organisational settings are represented by explicit role
models in contrast to DESIRE [4] where they are implied by the agent behaviour.
Organisational settings should be considered as first class design constructs [18],
[27], enabling work in higher abstraction levels and resulting to lower design
complexity.

2. Collective Behaviours: This aspect refers to whether an approach includes ap-
propriate first-class modelling constructs to represent collective agent behaviour
anf can be true or false. Collective behaviour may be modelled implicitly via the
individual agent behaviour, as is the case in RAPPID [19], or it may be modelled
explicitly; for example, in Zeus it is modelled by role models [17]. Collective be-
haviours should be considered as first class design constructs enabling reasoning
at a high abstraction level [12] and hence resulting to lower design complexity.

3. Non-functional aspects: This aspect refers to whether non-functional aspects are
explicitly considered in the method and can be true or false. Non-functional as-
pects can be explicitly represented by appropriate modelling constructs, such as
in Tropos [5], or they can be implicitly modelled within individual agent behav-
iour such as in Gaia [26]. Explicitly modelling non-functional aspects enables
work at a higher abstraction level and results in lower design complexity.

Process

The process view concentrates on the steps that are executed to construct the mod-
els discussed in the Models view and on techniques that support and assess those
steps. In particular, this view is concerned with the following aspects:

1. Design Perspective: This aspect refers to the perspective from which each
method views the ABS design. The perspective can be top-down or bottom- up or
both (top-down and bottom-up) depending on how the design of the ABS pro-
gresses. In the top-down perspective, the design models are constructed by refin-
ing high-level models of the agent organisation, such as in Gaia [26]. In the bot-
tom-up perspective, design models are progressively composed from existing
finer-grain models thus enabling reuse [12]. Supporting both perspectives, as in
MESSAGE/UML [6], results in lower design complexity.

2. Support for Reuse: This aspect refers to whether the method supports using pre-
vious knowledge in designing an ABS and can be true or false. Support for reuse
involves modelling constructs, techniques and guidelines for the identification,
representation, testing and application of reusable knowledge. For example, in
the Zeus toolkit methodology [17] there are guidelines for creating, storing and
reusing negotiation strategies when specifying agent interactions, whilst in
RAPPID [19] there are not such facilities. Support for reuse is a fundamental step
towards achieving lower design complexity [1].

3. Design Automation: This aspect refers to whether there are formal underpinnings
in the specification models of the method enabling automation of the design
process to a certain extent. Some process steps should definitely be carried out

based on the judgement of the human designers, for example the selection of
roles in the analysis phase in Gaia [26]. However, other steps could be automated
and carried out by a software tool, for example based on formal model transfor-
mations [21]. The degree to which the process steps are automated can be charac-
terised as true or false. For example, the DESIRE [4] design process can be
automated, as many steps are formally defined using mathematical techniques, in
contrast to RAPPID [19] where there are no formal underpinnings. Automating
the design process results in lower design complexity and reduces development
effort and errors [1].

Pragmatics

This view focuses on the pragmatics of each ABS engineering method. In other
words, this view refers to how practical the method is for the design of real-world
agent systems. It is concerned with the following aspects:

1. Generality: The generality of a method refers to the existence of restrictive prem-
ises concerning the environment and the application domain that affect the appli-
cability of the method and can be characterised as high, medium or low. High
generality means that the method can be applied without any significant restric-
tions, such as Tropos [5]. The generality is medium when there are considerable
restrictions but the applicability of the method is still wide. For example, Gaia
[26] assumes closed ABSs and small numbers of cooperating agents. In contrast,
RAPPID [19] is limited since it can only be applied to design ABSs that will be
used to support industrial product design and, therefore, its generality is low.
High generality results to lower design complexity since it is easier to apply the
method in various application domains.

2. Abstractability: This aspect refers to whether there is support to enable work at
different levels of abstraction which is one of the main factors affecting design
complexity [1] and it can be true or false. For example, role-based methods, such
as [12], support abstractability since agent behaviour can be specified at both the
level of roles and at the level of role characteristics. In contrast, in Tropos [5] this
is done only at the agent level and hence Tropos does not support abstractability.

3. Tool support: This aspect is concerned with whether there are tools supporting
the realisation of the method. For example, the role-based approach method in
[17] is supported by the Zeus agent building toolkit, which assists the users in
designing ABSs. On the other hand, there is no tool support for the Gaia ap-
proach [26] and the engineer is responsible for manually creating all the relevant
models. The tool support of an approach can be characterised as true or false. It
is preferable for an approach to be supported by CASE tools since this reduces
development effort and development errors [14] and automates repetitive tasks
[16] increasing the usability of the method and resulting to lower design com-
plexity.

It must be noted that some aspects are interrelated. For example, low or limited
concept definition is likely to be combined with low or medium generality, as is the

case in RAPPID [19]. However, this is not always the case, For example, Tropos [5]
is bounded to only BDI agents and it is still applicable in many application domains.

Fig. 2. Classification of Agent-Based System Engineering Methods

3 Comparative Evaluation of ABS Engineering Approaches

ABS engineering methods can be classified as ad-hoc, formal, informal and struc-
tured, and dynamic (see Fig. 2). Ad-hoc methods involve designing an ABS in an
application domain specific manner while formal approaches are based on the use of
formal methods. Informal and structured methods originate from knowledge engi-
neering and software engineering and are predominantly extensions of object-
oriented analysis and design methodologies. Finally, dynamic methods involve defin-
ing the structure of an ABS and the behaviour of the individual agents dynamically on
run-time. All classes have advantages and disadvantages with informal and structured
methods being regarded as more practical for numerous real-world applications.

A representative method (RAPPID [19], DESIRE [4], Gaia [26], MESSAGE/UML
[6], Tropos [5], Zeus [17] and KARMA [22]) from each class of the above classifica-
tion scheme has been evaluated according to the four views of the evaluation frame-
work described in Section 2. A summary of the results is presented in Table 1. A
more detailed discussion of this classification scheme and a review of the above ABS
engineering methods can be found in [11].

Regarding the Concepts perspective, about half of the ABS engineering methods
examined (DESIRE, Tropos and Zeus) are bounded to a specific agent architecture.
RAPPID is the only one limited to specific agent types as well. Furthermore, the
majority of the methods examined (DESIRE, Gaia, Tropos, Zeus and KARMA) con-
sider design as an explicit step in the ABS engineering lifecycle. However, only
KARMA provides formal support for heuristics in the design of the ABS. Clearly,
this is a general deficiency of current ABS engineering methods.

As far as it concerns the Models perspective, only Zeus and KARMA explicitly
model organisational settings. Representing collective behaviours as first class design
constructs is also not supported in most of the examined methods. The only excep-
tions are Zeus where collective behaviours can be represented by role models and

Ad-hoc
e.g. RAPPID

Formal
e.g. DESIRE

Information Systems
e.g. Tropos

OOSE
e.g. GAIA

Knowledge Engineering
e.g. SODA

Tool Based
e.g. Zeus

Informal

Static Dynamic
e.g. KARMA/TEAMCORE

Agent-Based System Engineering
Approaches

KARMA where collective behaviours are modelled by appropriate team plans. The
lack of support for non-functional aspects is even more pronounced. Indeed, only
Tropos considers non-functional aspects in the design of ABSs.

Table 1. Evaluation of ABS engineering methods with respect to design complexity

In the Process perspective, only MESSAGE/UML allows working in both top-

down and bottom-up fashion and the current version of MESSAGE/UML supports
only the analysis phase of the ABS engineering lifecycle. Zeus supports bottom up
design, the rest of the approaches are all allowing top-down design. Furthermore,
only two approaches explicitly provide support for reuse, DESIRE and Zeus.
DESIRE includes guidelines about how the agent system designer can reuse generic
task components in the design of the ABS and Zeus includes guidelines about how to
reuse generic behaviours represented by role models and generic agent characteristics
⎯ for example negotiation strategies. There is also significant lack of support for

Concepts

R
A

PP
ID

D
E

SI
R

E

G
ai

a

M
E

SS
A

G
E

T
ro

po
s

Z
eu

s

K
A

R
M

A

Concept definition ≤≥ <> >< >< <> <> ><
Design in scope − √ √ − √ √ √

Heuristics support − − − − − − √
 Models

Organisational settings − − − − − √ √
Collective behaviour − − − − − √ √

Non-functional aspects − − − − √ − −
 Process

Design perspective ↓ ↓ ↓ ↕ ↓ ↑ ↓
Support for reuse − √ − − − √ −

Design automation − − − − − − √
 Pragmatics

Generality ○ ∅ ∅ ⊗ ⊗ ∅ ⊗
Abstractability − √ − − − − √
Tool support − √ − √ − √ √

Legend

 ○ - low
 ∅ - medium
 ⊗ - high

≤≥ - limited
 <> - bounded

 >< - open

 ↑ - bottom-up
↓ - top-down

 ↕ - both

√ - yes
− - no

automatic design of ABSs. Only KARMA supports automatic selection of the agents
that will participate in the agent organisation based on team plans specified by the
designer.

Regarding the Pragmatics perspective, approximately half of the approaches
(MESSAGE, Tropos and KARMA) are general targeting a broad range of application
domains. The rest are restricted as follows: Gaia assumes closed ABSs consisting of
small numbers of static, cooperating agents. Zeus has restrictions regarding the envi-
ronments where the agents produced can operate. For example, Zeus agents cannot be
mobile and they require a large amount of physical RAM memory to execute.
DESIRE is also specific to applications requiring static agents whose behaviour can
be described by a task-based hierarchy. RAPPID is the most specific approach since
it targets a specific application domain; that of supporting industrial product design.

4 Implications for Further Research

The above analysis has demonstrated that none of the ABS engineering methods
examined covers all aspects of design support included in the evaluation framework
introduced in Section 2. An effective approach to ABS design should therefore cover
a number of outstanding issues, which are described in more detail below.

4.1 Support for Design Heuristics

Existing ABS engineering methods do not provide systematic and rigorous models
for considering heuristics in the design of the ABS. In methods having formal under-
pinnings, such as DESIRE [4], design heuristics can be taken into account in a rigor-
ous manner in the design but there are no guidelines and systematic techniques assist-
ing in this task. The designer needs to manually incorporate the heuristic rules in the
formal ABS specifications.

Some methods support informal ABS design heuristics. For example in Zeus [17]
the sphere of responsibility and point of interaction heuristics are provided. The for-
mer requires the designer to partition the application resources to areas of control and
represent each area with a software agent. The latter refers to representing each re-
source in the application domain with an agent. However, those informal heuristics
cannot be easily applied to the design of large ABSs. Furthermore, it is difficult for
the designer to predict the effect on design decisions when those heuristics contradict
with other requirements such as non-functional requirements. Hence, new ways to
support heuristics in ABS are required.

4.2 Organisational Settings

Some ABS engineering methods explicitly model organisational settings ⎯ for
example, MAS-CommonKADS [10] and SODA [18] ⎯ and there are cases where
the agent organisation is designed during a distinct design step, before the agent be-
haviour is completely specified [3]. However, it has been argued that even when
organisational settings are explicitly modelled, the models only represent the organ-
isational relationships between agents without considering social tasks and social
laws [28]. Furthermore, organisational settings are not considered as first class design
constructs apart from a few exceptions of approaches that use roles [17], [18]. An-
other problem concerning organisational settings is that existing approaches do not

provide rigorous methods for combining organisational settings with application
functionality. This has to be done intuitively by the designer without any assistance
by a software tool.

4.3 Collective Behaviour

A similar problem exists regarding representing collective behaviour. Many au-
thors argue that collective behaviours should be treated as first-class design con-
structs, namely that they should be able to be instantiated and given identity [2], [12].
However, even where this is issue is addressed, such as in Zeus [17], there is no rig-
orous way to reuse collective application functionality and combine it with organisa-
tional settings.

4.4 Non-Functional Aspects

An issue of major concern in ABS design is the modelling and consideration of
non-functional aspects such as security and performance. To the best of author’s
knowledge, no other ABS engineering approach explicitly considers non-functional
aspects in design apart from Tropos [5], which, at some stage, includes introducing
actors and sub-actors that contribute positively to the satisfaction of non-functional
requirements. However, the Tropos approach to modelling non-functional aspects
suffers from two main weaknesses. Firstly, it models non-functional aspects in a way
that it cannot be directly reused in other ABS designs. Secondly, quantitative charac-
terisation of non-functional aspects is not possible.

In some cases, non-functional aspects are the basis for criteria for reorganisation in
dynamic approaches, as is the case in KARMA [22]. In these instances non-
functional aspects are taken into account by adjusting the agent behaviour and the
organisation of the ABS on run-time. However, this treatment of non-functional as-
pects impedes the reuse of non-functional models. It also contributes to significant
consumption of resources and system instability.

4.5 Automating the Design Process

In order to reduce development effort and software design errors the design proc-
ess should be partially automated [13]. This view is also adopted by informal ABS
engineering methods [7], [21], [24] that try to provide the formal underpinnings for
automatically designing ABSs from appropriate informal specifications. The common
way of doing that is by progressing from analysis to design by successive formal
transformations of the analysis models. The transformations used, however, focus on
ensuring that the designed agent components are correctly represented in respect to
the analysis models, using object-oriented software engineering concepts and tech-
niques. For example, in [21] formal transformations are used to decide on the number
of objects and concurrent threads that should be used to correctly realise the behav-
iour of each agent component. To the best of author’s knowledge, current informal
ABS engineering approaches do not provide any automatic support for actually de-
ciding on what behaviour each agent in the ABS should have. This is not the case for
dynamic approaches where the design of the agent system is done during reorganisa-
tion steps. For example, in KARMA the agent components are automatically selected
based on specifications of the agent-based application requirements described in the

STEAM modelling framework [22]. However, KARMA assumes that agents already
exist in cyberspace, which is not generally the case.

4.6 Working at Different Abstraction Levels

There is a consensus that abstraction in software design reduces design complexity
[15]. Although it has the trade-off of reducing software efficiency and performance, it
may add to the reliability of the produced software as frequently used components are
thoroughly tested and the design process can be automated [1].

As abstraction is a common practice in software design, a number of ABS engi-
neering methods allow the designer to work at different levels of abstraction. How-
ever, not all of them provide appropriate formal support. For example,
MESSAGE/UML allows modelling at levels 0 and level 1 but there is no formal
description of the relations between the models of the two levels. As a result, proper
use of MESSAGE/UML requires the designers to have a clear understanding and
explicitly consider the links between models at levels 0 and 1, which makes the ABS
design task more difficult,

The only approaches examined that provide formal support for working at differ-
ent levels of abstraction are DESIRE [4] and KARMA [22]. However, their support is
limited. DESIRE only supports interaction between tasks at different abstraction
levels and KARMA supports teamwork at different levels of abstraction in the form
of joint intentions. Agent behaviour, however, is characterised with other aspects as
well. For example, coordination protocols or negotiation strategies, which the de-
signer should specify at the lowest level of detail in those two approaches. This prob-
lem is addressed in the Zeus approach [17]. For example, in Zeus, the agent system
designer can either select a predefined negotiation strategy or specify all negotiation
rules in detail. Zeus models agent behaviour at different levels of abstraction based on
role modelling. However, this support is informal since the relations among roles
have not been given formal semantics.

5 Summary

This paper proposed a framework to assess ABS engineering methods with respect
to design complexity they involve. Using this framework, a set of representative
methods have been examined revealing a number of issues that would require further
research.

The proposed framework suggests looking into ABS engineering approaches from
four views: Concepts, Models, Process and Pragmatics. The Concepts view refers to
the modelling concepts used to model ABSs and it concerns the generality of the
concept definition, the existence of specific support for design in the ABS engineer-
ing process and the support for design heuristics. The Models view refers to model-
ling of organisational settings and collective behaviour to be used as first class design
constructs and to explicit modelling of non-functional aspects. The Process view
examines the perspective of the design process and whether it can be based on reuse
and if it can be automated. The Pragmatics view evaluates the applicability of the
approach to real-world applications by assessing the generality, the complexity han-
dling and the tool support of the approach.

None of the methods examined supports all aspects of the proposed framework.
Therefore, new ABS engineering methods are needed providing better support for the
framework aspects resulting thus to lower design complexity. It is the authors’ belief
that using roles as behavioural modelling constructs and providing appropriate se-
mantics for role relations and role characteristics is the most appropriate path to fol-
low towards achieving this goal.

References

1. Alagar, V.S., Periyasamy, K.: Specification of Software Systems. New York: Springer-
Verlag, 1998.

2. Andersen, E.P.: Conceptual Modelling of Objects: A Role Modelling Approach. PhD Thesis.
Oslo, Norway: University of Oslo, 1997.

3. Barber, K.S., Liu, T.H., Han, D.C.: Agent-Oriented Design. Austin, TX, USA: University of
Texas at Austin, 1999, http://powerlips.ece.utexas.edu/pubs/techReports/1999/TR99-UT-
LIPS-AGENTS-01.pdf.

4. Brazier, F.M.T., Dunin-Keplicz, B., Jennings, N., Treur, J.: DESIRE: Modelling Multi-
Agent Systems in a Compositional Formal Framework. International Journal of Cooperative
Information Systems, Special Issue on Formal Methods in Cooperative Information Sys-
tems: Multi-Agent Systems, 5, 1 (June 1997), 67-94.

5. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Modeling Early Re-
quirements in Tropos: a Transformation Based Approach. In Wooldridge, M.J., Weis, G.,
Ciancarini, P. (eds.): Agent-Oriented Software Engineering II, Second International Work-
shop (AOSE 2001), Montreal, Canada. Berlin: Springer Verlag, 2002, 151-168.

6. Caire, G., Coulier, W., Garijo, F., Gomez, J., Pavon, J., Leal, F., Chainho, P., Kearney, P.,
Stark, J., Evans, R., Massonet, P.: Agent Oriented Analysis Using Message/UML. In
Wooldridge, M.J., Weis, G., Ciancarini, P. (eds.): Agent-Oriented Software Engineering II,
Second International Workshop, (AOSE 2001), Montreal, Canada. Berlin: Springer Verlag,
2002, 151-168.

7. Depke, R., Heckel, R., Kuster, J.M.: Agent-Oriented Modelling with Graph Transformation.
In Ciancarini, P., Wooldridge, M. (eds.): Agent-Oriented Software Engineering I, First In-
ternational Workshop (AOSE 2000), Limerick, Ireland. Berlin: Springer-Verlag, 2001, 106-
119.

8. Fenton, N., Pfleeger, S.L.: Software Metrics: A Rigorous and Practical Approach. Boston,
MA, USA: PWS Publishing Co., 1997.

9. Iglesias, C.A., Garrijo, M., Gonzalez, J.C.: A Survey of Agent-Oriented Methodologies. In
Muller, J., Singh, M.P., Rao, A.S. (eds.): Proceedings of the 5th International Workshop on
Intelligent Agents {V}: Agent Theories, Architectures, and Languages (ATAL-98). Heidel-
berg, Germany: Springer-Verlag, 1999, 317-330.

10. Iglesias, C.A., Garijo, M., Gonzalez, J.C., Velasco, J.R.: Analysis and Design of Multiagent
Systems using MAS-CommonKADS. In Singh, M.P., Rao, A.S., Wooldridge, M.J. (eds.):
Intelligent Agents IV: Agent Theories, Architectures, and Languages (ATAL '97). Berlin,
Germany: Springer Verlag, 1998, 313-326.

11. Karageorgos, A.: Using Role modelling and Synthesis to Reduce Complexity in Agent-
Based System Design. PhD Thesis. Manchester, UK: University of Manchester Institute of
Science and Technology, 2003.

12. Kendall, E.A.: Role models - patterns of agent system analysis and design. BT Technology
Journal, 17, 4 (October 1999), 46-57.

13. Lowry, M.R., McCartney, R.D. (eds.): Automating Software Design. Menlo Park, CA:
AAAI Press, 1991.

14. MacDonell, S.G.: Determining delivered functional error content based on the complexity
of CASE specifications. New Zealand Journal of Computing, 5, 1 (July 1994), 57-65.

15. Metzger, A., Quelns, S.: A Reuse- and Prototyping-based Approach for the Specification of
Building Automation Systems. In Schuerr, A. (ed.): OMER-2 Workshop Proceedings. Mu-
nich: University of the Federal Armed Forces, Germany, 2001, 3-9.

16. Ng, K., Kramer, J., Magee, J.: A CASE Tool for Software Architecture Design. Automated
Software Engineering, 3, 3/4 (1996), 261-284.

17. Nwana, H.S., Ndumu, D.T., Lee, L.C., Collis, J.C.: Zeus: A Toolkit for Building Distrib-
uted Multi-Agent Systems. Applied Artificial Intelligence Journal, 13, 1 (January 1999),
129 - 185.

18. Omicini, A.: SODA : Societies and Infrastructures in the Analysis and Design of Agent-
based Systems. In Ciancarini, P., Wooldridge, M.J. (eds.), Agent-Oriented Software Engi-
neering I, First International Workshop (AOSE 2000), Limerick, Ireland. Berlin: Springer
Verlag, 2001, 185-193.

19. Parunak, V.D., Sauter, J., Fleischer, M., Ward, A.: The RAPPID Project: Symbiosis be-
tween Industrial Requirements and MAS Research. Autonomous Agents and Multi-Agent
Systems, 2, 2 (June 1999), 111-140.

20. Silva, A.R., Romao, A., Deugo, D., Silva, M.M.d.: Towards a Reference Model for Survey-
ing Mobile Agent Systems. Autonomous Agents and Multi-Agent Systems, 4, 3 (September
2001), 187-231.

21. Sparkman, C.H., DeLoach, S.A., Self, A.L.: Automated Derivation of Complex Agent
Architectures from Analysis Specifications. In Wooldridge, M.J., Weis, G., Ciancarini, P.
(eds.): Agent-Oriented Software Engineering II, Second International Workshop (AOSE
2001), Montreal, Canada. Berlin: Springer Verlag, 2002, 278-296.

22. Tambe, M., Pynadath, D.V., Chauvat, N.: Building Dynamic Agent Organisations in Cy-
berspace. IEEE Internet Computing, 4, 2 (March/April 2000), 65-73.

23. The Object Agency Inc.: A Comparison of Object-Oriented Development Methodologies.
The Object Agency, Inc, (Autumn 1995), http://www.toa.com/pub/mcr.pdf.

24. Wood, M., DeLoach, S.A.: An Overview of the Multiagent Systems Engineering Method-
ology. In Ciancarini, P., Wooldridge, M.J. (eds.): Agent-Oriented Software Engineering I,
First International Workshop (AOSE 2000), Limerick, Ireland. Berlin: Springer Verlag,
2001, 207-221.

25. Wooldridge, M.: On the Sources of Complexity in Agent Design. Applied Artificial Intelli-
gence, 14, 7 (August 2000), 623-644.

26. Wooldridge, M., Jennings, N.R., Kinny, D.: The Gaia methodology for agent-oriented
analysis and design. International Journal of Autonomous Agents and Multi-Agent Systems,
3, 3 (September 2000), 285-312.

27. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Organisational Abstractions for the
Analysis and Design of Multi-Agent Systems. In Ciancarini, P., Wooldridge, M.J. (eds.):
Agent-Oriented Software Engineering I, First International Workshop (AOSE 2000), Limer-
ick, Ireland. Berlin: Springer Verlag, 2001, 235-250.

28. Zambonelli, F., Jennings, N.R., Omicini, A., Wooldridge, M.J.: Agent-Oriented Software
Engineering for Internet Applications. In Omicini, A., Zambonelli, F., Klusch, M., Tolks-
dorf, R. (eds.): Coordination of Internet Agents: Models, Technologies and Applications.
Berlin Heidelberg: Springer-Verlag, 2001, 326-346.

