

Using Role modelling and Synthesis to Reduce
Complexity in Agent-Based System Design

A thesis submitted to the University of Manchester Institute

of Science and Technology for the degree of Doctor of

Philosophy

Anthony Karageorgos

Department of Computation

Manchester 2003

Declaration

No portion of the work referred to in the thesis has been submitted in support of an application

for another degree or qualification of this or any other university, or other institution of

learning.

"΄Οσα βουνά κι άν ανεβείτε
απ'τις κορφές τους θ'αγναντεύετε

άλλες κορφές, ψηλότερες
µιαν άλλη πλάση, ξελογιάστρα.

Και στην κορφή σα φτάστε την κατάψηλη,

πάλι θα καταλάβετε πως βρίσκεστε
σαν πρώτα, κάτω απ'όλα τ'άστρα..."

Κωστής Παλαµάς (1859-1944)

Έλληνας ποιητής

"As many mountains as you climb
from their peaks you will be gazing

some other peaks, higher
another world, enchanting.

And when you reach the very highest peak,

again you realize that you lie
under all stars, as before..."

Costis Palamas (1859-1944)

Greek Poet

i

Acknowledgements

First of all, I would like to thank my supervisor, Nikolay Mehandjiev, for his guidance and

cooperation on my research efforts in this PhD project. Nikolay has offered particularly

insightful comments and important feedback during our regular discussions held at the round

table in his office. Furthermore, Nikolay has always been available for providing mentoring and

support in all matters that could possibly concern a person carrying out a PhD.

This work would not have been as successful if I had not had the opportunity to cooperate with

Simon Thompson from BT Exact Technologies. Simon was not only an excellent research

collaborator, but he has also shown a unique attitude for cooperation providing support,

encouragement and ideas. As a result, doing research with Simon was a pleasure rather than

work, regardless of the research challenges that had to be faced.

UMIST provided a comfortable and stimulating environment for research. I found UMIST ideal

for combining research findings and technological innovations and applying them to real world

problems in the industry.

This work has been funded by BT Laboratories (currently BT Exact Technologies). I have spent

some quite productive time there aligning my research with that of large, relevant BT projects

and collaborating with researchers with similar interests. The outcome of my visits to BT was

really fruitful thanks to all those that I have interacted with.

Furthermore, I would like to thank my wife, Eleni, who has been patient and encouraging all

these years when I was stealing time from her to put it into research. Eleni’s support made all

difficulties in life look simpler and certain to be resolved.

Last, but not least, I would like to thank my parents who have always advised me to follow my

dreams and who have always supported my decisions and choices, even if they had different

personal preferences.

 ii

iii

Abstract
Real-world applications of Agent-Based Systems (ABS) tend to involve significant design

complexity, making the activities of understanding and manipulating the concepts and models

needed for the detailed design increasingly difficult. Reducing this complexity is the main aim

of the PhD work reported here.

Complexity in software design can be reduced by increasing the level of abstraction where

design decisions are taken and by executing a number of design process steps automatically.

Along this line, the main research objectives of this project are to (a) introduce appropriate

concepts and techniques to allow designers to work at a high level of abstraction and (b) to

develop a design process that allows semi-automated progress from analysis to design. The first

objective involves the need to consider agent organisational settings and collective behaviour as

first class design constructs, whilst the second requires support for taking non-functional aspects

and software design heuristics into account in design decisions.

The main contribution of this thesis is the proposed Role-Algebraic Multi-Agent System Design

(RAMASD) method, which reduces ABS design complexity by enabling designers to work at a

high level of abstraction and by semi-automating the design process. To meet the above

objectives, RAMASD models agent behaviour using roles and it views ABS design as a

problem of allocating roles to appropriate agents. RAMASD represents all design requirements

by using appropriate roles and constraints on role characteristics. Two innovative ideas behind

RAMASD are to enable high-level design by defining the role concept so that it can represent a

rich set of agent behavioural aspects and to use the synthesis concept as the basis for semi-

automating the design process.

These two ideas are supported by the main innovation of RAMASD, the role algebra. The role

algebra is a formal model of role relations concerning allocation of roles to agents. The

semantics of this model are described using a two-sorted algebra. The role algebra leverages

both high-level design, enabling specification of design constraints at the role level, and semi-

automation of the design process by enabling automatic role allocation after role selection has

been made.

An extension to the Zeus agent building toolkit has been constructed to implement support for

RAMASD. To test the applicability of RAMASD, it has been applied in two case studies. The

value of RAMASD in regards to reducing complexity has been shown by comparing it with

similar methods using a design complexity evaluation framework. This is followed by a detailed

comparison with Gaia, a representative ABS design method, in the context of a case study. In all

cases, the superiority of RAMASD is clearly demonstrated.

 iv

v

Publications, Presentations and Patents

(based on the work described here)

1. Karageorgos, A., S. Thompson and N. Mehandjiev, 2003. “Specifying Reuse Concerns in

Agent System Design Using A Role Algebra”. In Kowalczyk, R., Müller, J., Tianfield, H.
and Unland, R., eds. Agent Technologies, Infrastructures, Tools, and Applications for e-
Services. LNAI 2592, Berlin-Heidelberg: Springer Verlag, p. 121-136, ISBN 3-540-
00742-3.

2. Karageorgos, A., N. Mehandjiev and S. Thompson, 2002. “RAMASD: A Semi Automatic
Method for Designing Agent Organisations”, Knowledge Engineering Review, Special
Issue on Coordination and Knowledge Engineering,17, 4 (Fall 2002), 57-84.

3. Karageorgos, A., S. Thompson and N. Mehandjiev, 2002. “Agent-based system design for
B2B electronic commerce”, International Journal of Electronic Commerce, Special Issue
on Agent Technologies for B2B Electronic Commerce, 7, 1, (Fall 2002), 59-90.

4. Karageorgos, A., S. Thompson and N. Mehandjiev, 2002. “Specifying Reuse Concerns in
Agent System Design Using A Role Algebra”. Workshop on Agent Technologies for e-
services (ATES 2002), held in conjunction with Net.ObjectDays (NODe 2002). Erfurt,
Germany, October 7-10.

5. Karageorgos, A., S. Thompson and N. Mehandjiev, 2002. "Semi-Automatic Design of
Agent Organisations". In Proceedings of ACM Symposium in Applied Computing, Special
Track on Coordination Models, Languages and Applications, Madrid, Spain, March 10-
14, ACM Press, pp. 306-313.

6. Karageorgos, A., S. Thompson and N. Mehandjiev, 2001. "Designing Agent Systems
using a Role Algebra", Fourth Workshop of the UK Special Interest Group on Multi-
Agent Systems, Oxford, UK, December 13-15, UKMAS SIG.

7. Thompson, S. and A. Karageorgos 2001. “Multi-Agent System Design Using Role
Models”. Patent Application. BT Case Ref A26117, UK, (Autumn 2001).

 vi

vii

Table of Contents

CHAPTER 1... 1

INTRODUCTION ..1

1.1 MOTIVATION ...1
1.2 CONTEXT OF THE THESIS ...2
1.3 ISSUES AND CHALLENGES..3

1.3.1 The ABS Design Complexity Problem...3
1.3.2 Reusing Design Knowledge..4
1.3.3 Non-Functional Aspects and Design Heuristics ..4

1.4 AIMS AND OBJECTIVES ..5
1.5 MAIN CONTRIBUTIONS ..6
1.6 RESEARCH METHODOLOGY ...7
1.7 CASE STUDY DESCRIPTIONS ..8
1.8 THESIS ORGANISATION..9

CHAPTER 2... 11

AGENT-BASED SYSTEM DESIGN ...11

2.1 DESIGNING ABSS ..11
2.2 OVERVIEW OF AGENT CONCEPTS...11

2.2.1 Agent-Oriented vs Object-Oriented Approaches ...11
2.2.2 Defining the Term ‘Agent’..13
2.2.3 A Simple Agent Formal Model ...15
2.2.4 An Example of a Simple Agent..15
2.2.5 Using Roles to Model Agent Behaviour ..16
2.2.6 Agent Architecture ...17

2.3 AGENT-BASED SYSTEMS ...19
2.3.1 Overview ...19
2.3.2 Interaction in ABSs ..20
2.3.3 ABSs as Organisations of Agents..20
2.3.4 Software Complexity and ABS Design ..21

2.3.4.1 Complexity in Software Engineering... 21
2.3.4.2 Complexity in ABS Design... 22

2.4 CLASSIFICATION OF ABS ENGINEERING APPROACHES...24

 viii

2.4.1 Ad-hoc Approaches..25
2.4.2 Formal Approaches ...25
2.4.3 Informal Approaches..26

2.4.3.1 Approaches Based on Object-Oriented Software Engineering .. 27
2.4.3.2 Approaches Based on Information Systems Engineering.. 27
2.4.3.3 Approaches Based on Knowledge Engineering.. 28
2.4.3.4 Tool-Based Approaches.. 28

2.4.4 Dynamic Approaches ...29
2.4.5 Overall Assessment ..29

2.5 SUMMARY ...31

CHAPTER 3... 33

ASSESSMENT OF ABS ENGINEERING APPROACHES ...33

3.1 AN EVALUATION FRAMEWORK FOR ABS DESIGN..33
3.1.1 Concepts..34
3.1.2 Models...35
3.1.3 Process ..36
3.1.4 Pragmatics...37

3.2 COMPARATIVE EVALUATION OF ABS ENGINEERING APPROACHES..............................40
3.3 IMPLICATIONS FOR FURTHER RESEARCH ...41

3.3.1 Support for Design Heuristics ..42
3.3.2 Organisational Settings..42
3.3.3 Collective Behaviour..43
3.3.4 Non-Functional Aspects ...44
3.3.5 Automating the Design Process..45
3.3.6 Working at Different Abstraction Levels...45

3.4 SUMMARY ...47

CHAPTER 4... 49

USING ROLE MODELLING FOR ABS DESIGN...49

4.1 COMPLETE ROLE MODELLING APPROACHES..49
4.2 MODELLING SOCIAL BEHAVIOUR USING ROLES ..50

4.2.1 Defining the Term ‘Role’: a Social View ..50
4.2.1.1 Social Aspects of Role Definitions.. 50
4.2.1.2 Role Relationship Zones... 51

4.2.2 Overview of Role Theory..52

ix

4.2.3 Role Theoretic Concepts ..53
4.2.4 Role Dependency Relations..55
4.2.5 Role Identification and Role Types ...56

4.3 USING ROLES IN INFORMATION SYSTEMS MODELLING ..57
4.3.1 Roles in Business Systems Modelling..57
4.3.2 Role-Based Access Control in Distributed Systems Management59
4.3.3 Roles in Object Oriented Software engineering ..60

4.3.3.1 Defining Roles in Object Oriented Software Engineering.. 61
4.3.3.2 Role Properties... 63
4.3.3.3 Role Relationships, Synthesis and Synergy.. 65

4.3.4 Roles in ABS Modelling..66
4.3.4.1 Modelling Goal-Based Interactions Using Roles.. 67
4.3.4.2 Modelling Organisational Settings Using Roles ... 68

4.4 USING ROLES FOR THE DESIGN OF ABSS ...69
4.4.1 Comparison of Role Modelling Approaches..69
4.4.2 Formalising Role Dependency Relations ..71

4.5 SUMMARY ...71

CHAPTER 5... 73

THE RAMASD METHOD...73

5.1 USING ROLE MODELLING AND SYNTHESIS FOR ABS DESIGN.......................................73
5.2 ROLE MODELLING IN RAMASD ..74

5.2.1 Defining Roles and Role Models ..74
5.2.1.1 Role Characteristics.. 74
5.2.1.2 Properties of Roles and Role Models... 76

5.2.2 Representing and Using Role Models ...77
5.2.3 Role Model Types...77
5.2.4 Identification of Roles in the Application Domain...78

5.2.4.1 Criteria for Role Identification .. 78
5.2.4.2 Goal-Oriented Role Identification ... 79
5.2.4.3 Role Identification for an e-Business Security System ... 82

5.2.5 Management of the Role Modelling Process ...84
5.2.6 Consistency of Role-Based Specifications...85
5.2.7 Rigorous Role Assignment Using Role Algebra ..85

5.2.7.1 Relations in the Role Algebra ... 86
5.2.7.2 Semantics of the Role Algebra .. 88
5.2.7.3 Graphical Representation of Role Relations... 90

5.3 APPLYING THE SYNTHESIS CONCEPT TO ABS DESIGN ...90

 x

5.3.1 Synthesis in Traditional Engineering..90
5.3.2 A Synthesis-Based Design Process Model ..92

5.4 THE RAMASD DESIGN PROCESS ..95
5.5 THE INNOVATIVE FEATURES OF RAMASD..97

5.5.1 The Philosophy of the RAMASD Approach...97
5.5.2 Reusing Collective Behaviour...97

5.5.2.1 Representing and Using Patterns of Behaviour .. 97
5.5.2.2 An Example of Behaviour Reuse .. 98

5.5.3 Representing Organisational Settings...100
5.5.4 Considering Non-Functional Aspects ...102
5.5.5 Considering Design Heuristics...105

5.6 USING RAMASD WITH EXISTING METHODOLOGIES..107
5.7 SUMMARY ...108

CHAPTER 6..109

IMPLEMENTATION OF RAMASD...109

6.1 EXTENDING ZEUS TO SUPPORT RAMASD ...109
6.2 THE ZEUS AGENT BUILDING TOOLKIT ...111
6.3 EXTENDING ZEUS TO SUPPORT RAMASD ...111

6.3.1 The Extended Zeus Agent Development Methodology.....................................111
6.3.2 The Extended Zeus Visual Agent Creator Component.....................................113

6.4 THE RCL CONSTRAINT LANGUAGE ...117
6.5 ALLOCATING ROLES TO AGENTS ...118
6.6 SUMMARY – CONCLUSIONS ...120

CHAPTER 7..121

CASE STUDIES: MOBILE WORKFORCE SUPPORT AND COVISINT.....................121

7.1 APPLYING RAMASD TO REAL WORLD CASES ..121
7.2 MOBILE WORKFORCE SUPPORT...122

7.2.1 The Mobile Workforce Support Problem ..122
7.2.2 Role Identification..123
7.2.3 Specifying Design Constraints..126
7.2.4 Design Results ...127

7.3 EXAMPLE: AN AUTOMOTIVE INDUSTRY B2B EXCHANGE ..129
7.3.1 Case Study Overview ...129
7.3.2 Role Identification..132

xi

7.3.3 Qualitative Modelling of Non-Functional Aspects ..135
7.3.3.1 Security Issues ... 135
7.3.3.2 Privacy Issues .. 136

7.3.4 Organisational Settings..137
7.3.5 Role Composition...138
7.3.6 Specifying Design Constraints..139
7.3.7 Role Allocation Results ..141

7.4 SUMMARY – CONCLUSIONS ...143

CHAPTER 8..145

EVALUATION OF RAMASD ...145

8.1 SELECTING AN EVALUATION APPROACH ...145
8.1.1 Approaches to Evaluating Software Engineering Methods..............................145
8.1.2 Evaluating RAMASD..146
8.1.3 Selecting Case Studies and Test Scenarios..147

8.2 FRAMEWORK-BASED EVALUATION ...147
8.2.1 Main Features of RAMASD..147
8.2.2 Comparing RAMASD With Other Methods...149

8.3 COMPARISON OF RAMASD AND GAIA..151
8.3.1 Overview of Gaia ...151
8.3.2 Applying Gaia in the Mobile Workforce Case Study152
8.3.3 Limitations of Gaia ..155

8.4 DISCUSSION...158
8.4.1 Real World Applicability of RAMASD ..158

8.4.1.1 The Generality of RAMASD .. 158
8.4.1.2 The Scalability of RAMASD .. 159

8.4.2 Novel Aspects of RAMASD...159
8.4.2.1 The Innovative Features of RAMASD... 159
8.4.2.2 The Role Algebra ... 160

8.5 SUMMARY ...161

CHAPTER 9..163

CONCLUSIONS...163

9.1 REVISITING THE RESEARCH HYPOTHESIS...163
9.2 ASSESSING THE THESIS CONTRIBUTIONS ...164
9.3 LIMITATIONS OF RAMASD ...165

 xii

9.4 FURTHER WORK..166
9.5 CONCLUDING REMARKS ..167

APPENDICES...169

APPENDIX A EVALUATION OF ABS DESIGN APPROACHES169

A.1 RAPPID ..169
A.1.1 Overview of RAPPID ...170
A.1.2 Evaluation of RAPPID ...171
A.1.3 Strengths and Weaknesses of RAPPID..172

A.2 DESIRE ..172
A.2.1 Overview of DESIRE..174
A.2.2 Evaluation of DESIRE..174
A.2.3 Strengths and Weaknesses of DESIRE..175

A.3 GAIA ...175
A.3.1 Overview of Gaia ...175
A.3.2 Evaluation of Gaia...176
A.3.3 Strengths and Weaknesses of Gaia ...177

A.4 TROPOS ...177
A.4.1 Overview of Tropos..177
A.4.2 Evaluation of Tropos..178
A.4.3 Strengths and Weaknesses of Tropos ..179

A.5 MESSAGE..179
A.5.1 Overview of MESSAGE/UML...179
A.5.2 Evaluation of MESSAGE..182
A.5.3 Strengths and Weaknesses of MESSAGE/UML...183

A.6 ZEUS..183
A.6.1 Overview of Zeus Agent Development Methodology183
A.6.2 Evaluation of Zeus Agent Development Methodology185
A.6.3 Strengths and Weaknesses of Zeus..186

A.7 KARMA/TEAMCORE..187
A.7.1 Overview of KARMA/TEAMCORE...187
A.7.2 Evaluation of KARMA/TEAMCORE...189
A.7.3 Strengths and Weaknesses of KARMA/TEAMCORE189

APPENDIX B THE ZEUS TOOLKIT..191

B.1 THE COMPONENTS OF THE ZEUS TOOLKIT ...191
B.1.1 The Agent Component Library ...191

xiii

B.1.2 The Visualisation Tools..192
B.1.3 The Agent Building Tools...192

B.2 THE ZEUS AGENT SYSTEM REALISATION PROCESS ..195
B.3 THE ZEUS UTILITY AGENTS ...198
B.4 THE GENERIC ZEUS AGENT..200

APPENDIX C RCL EBNF SYNTAX..203

REFERENCES ...207

 xiv

xv

Table of Figures

Figure 1.1: PhD research question and solution approach ..6
Figure 1.2: Thesis organisation..9
Figure 2.1: Perceive-Reason-Act cycle..13
Figure 2.2: A simple agent formal model...14
Figure 2.3: A container terminal yard agent...15
Figure 2.4: Agent internal components ..18
Figure 2.5: An agent organisation..20
Figure 2.6: Classification of ABS engineering approaches...24
Figure 3.1: A framework for comparing ABS engineering approaches with respect to design ..34
Figure 4.1: Role relationship zones ...52
Figure 4.2: Agent-Position-Role dependencies in the Actor-Dependency model58
Figure 4.3: Role characteristics for distributed systems access control60
Figure 4.4: Roles as association names ..61
Figure 4.5: Roles as patterns of behaviour ...61
Figure 4.6: Object–Role relationships (Wong 1997) ..63
Figure 4.7: The Bureaucracy pattern represented as a role model (Richle 1997).......................64
Figure 4.8: Sample RRC card for the Bureaucracy pattern (Kendal 1999)................................65
Figure 4.9: A high level view of the supply chain management role model (Kendal 1999).......66
Figure 4.10: An example MASE role model (DeLoach et., al. 2001)..67
Figure 5.1: Schematic representation of a role model using UML notation...............................77
Figure 5.2: The phases of a goal-oriented role identification method..80
Figure 5.3: Goal cases for an e-business security protection system ...82
Figure 5.4: Goal hierarchy tree and role identification for an e-business security system..........83
Figure 5.5: Identified roles for the e-business security system..84
Figure 5.6: Semantics of the role algebra...88
Figure 5.7: Graphical notation for the relations of the role algebra...90
Figure 5.8: The synthesis problem solving process ..91
Figure 5.9: A generic synthesis-based design process model..93
Figure 5.10: Schematic representation of the RAMASD design process...................................95
Figure 5.11: An example of collective behaviour reuse in RAMASD98
Figure 5.12: RAMASD roles for the conference management system example99
Figure 5.13: Enforcing organisational rules by appropriate merging of roles101
Figure 5.14: An example of modelling organisational rules using roles..................................102
Figure 5.15: Extended actor diagram for an e-cultural system (aft Giorgini et al., 2001)103

 xvi

Figure 5.16: Using the FIPA directory facilitator role model for e-culture service brokering ..104
Figure 5.17: A personal assistant role model ...105
Figure 5.18: Spheres of responsibility (Collins et al. 1999) ..106
Figure 5.19: Specifying the spheres of responsibility heuristic using role relations.................107
Figure 6.1: Conceptual view of the extended Zeus ABS design tool110
Figure 6.2: The extended Zeus agent development methodology ...112
Figure 6.3: The extended Zeus Agent Generator component ..113
Figure 6.4: The role model and role definition editors ...114
Figure 6.5: The Role Constraints Editor component ..115
Figure 6.6: The Role Allocation component ..116
Figure 6.7: Parts of an RCL specification ..118
Figure 6.8: A simple search algorithm for allocating roles to agent types119
Figure 7.1: A high level view of the mobile workforce coordination case study122
Figure 7.2: Use case goals for the telephone repair service teams case study..........................124
Figure 7.3: Role models for the telephone repair service teams case study125
Figure 7.4: Compositional constraints for the telephone repair service teams case study126
Figure 7.5: Snapshot of the extended Zeus toolkit for the mobile workforce case study..........128
Figure 7.6: Agent types for the telephone repair service teams case study..............................129
Figure 7.7: Use case goals for an automotive industry B2B exchange case study131
Figure 7.8: Role models for the automotive industry B2B exchange case study133
Figure 7.9: The mediator pattern ...137
Figure 7.10: Updated role models based on the mediator pattern ...138
Figure 7.11: Compositional constraints for the B2B exchange case study140
Figure 7.12: Agent types for the B2B exchange case study..142
Figure 7.13: Snapshot of the extended Zeus toolkit for the B2B exchange case study.............143
Figure A.1: The RAPPID ABS architecture...170
Figure A.2: A generic agent model in DESIRE..172
Figure A.3: Relations between Gaia models ..175
Figure A.4: Knowledge level concepts in MESSAGE/UML ..180
Figure A.5: The Zeus agent development methodology ...184
Figure A.6: The Zeus agent architecture ..185
Figure A.7: The KARMA/TEAMCORE Framework...187
Figure B.1: The components of the Zeus agent building toolkit (Collins et al. 1999)..............192
Figure B.2: The Control and Society Tools of the Zeus agent building toolkit........................193
Figure B.3: The agent definition interface of the Zeus agent building tool193
Figure B.4: The Ontology editor..194
Figure B.5: The Zeus agent realisation process (Nwana et al. 1999).......................................195

xvii

Figure B.6: The flow of information between an agent and a task ..197
Figure B.7: The Zeus ABS structure (Thompson 2001) ...199
Figure B.8: The generic Zeus agent internal structure (Collins and Ndumu 1999)201

 xviii

xix

List of Tables

Table 3.1: Description and ranking of evaluation framework aspects39
Table 3.2: Comparison of ABS engineering approaches ..40
Table 4.1: Strengths and weaknesses of role modelling approaches ...70
Table 5.1: Role characteristics...74
Table 8.1: Comparing RAMASD with other ABS design methods ..150
Table 8.2: The role schema for the REPAIR_WORKER role ..153
Table 8.3: Role schemata for the MANAGER and CUSTOMER_HANDLER roles154
Table 8.4: Role schemata for the TRAVEL_DEPT and EXPERTISE_KNOWLEDGE roles .155
Table A.1: Evaluation of RAPPID...171
Table A.2: Evaluation of DESIRE...174
Table A.3: Evaluation of Gaia ...176
Table A.4: Evaluation of Tropos ...178
Table A.5: Evaluation of MESSAGE/UML...182
Table A.6: Evaluation of the Zeus agent development methodology186
Table A.7: Evaluation of KARMA/TEAMCORE..189

 1

Chapter 1

Introduction

This chapter describes the context of this work, starting with the main challenges in Agent-

Based System (ABS) design. Then the hypothesis, aims and objectives of the research work

undertaken are presented, followed by a discussion regarding the novelty of this research and its

contributions. Finally, a description of the case studies used in the evaluation and the structure

of the thesis is given.

1.1 Motivation

Agent-based applications are developed to address the need for software operating in open and

dynamically changing environments, such as the Internet, and they use the key abstraction of a

software agent. Agents are software components that are situated in an environment, are able to

act autonomously, reactively and proactively and have social abilities [211]. An agent-based

application normally includes more than one agent referred to as an Agent-Based System (ABS)

or Multi-Agent System (MAS) [96].

ABSs typically contain many dynamically interacting agents, each with their own thread of

control, that engage in complex interactions with each other and their environment. Such

systems can be considerably more difficult to correctly and efficiently design than those that

simply compute a function of some input through a single thread of control.

Existing approaches to ABS design leave most of the design decisions to the designer, who has

to tackle the system complexity based on intuition and experience. The main reason for this is

that current ABS design methods do not provide the necessary models, process steps and formal

mechanisms that would allow reducing the complexity involved by enabling work at a high-

level of abstraction and by semi-automating the design process. Developing a new ABS design

method that addresses ABS design complexity by handling these issues was therefore selected

to be the topic of this PhD.

The research reported here has been conducted under the assumption that agent-based software

will increasingly be used to address the dynamism and the openness of contemporary software

environments. To enable this widespread use, the complexity of ABS design should be

effectively addressed.

 2

1.2 Context of the Thesis

ABSs can currently be designed using a number of ad-hoc methods, formal methods or informal

but structured methods. In addition, design can be done either statically, before the ABS is

deployed, or dynamically at run-time. All existing methods have certain weaknesses and involve

considerable difficulty in understanding and manipulating the concepts and models needed for

the detailed ABS design. This is referred to as design complexity. This PhD proposes an

informal and structured method which addresses the design complexity problem by semi-

automating the design process and by enabling design at high levels of abstraction. This

research does not consider ABS design on run-time.

Due to their special properties, software agents cannot be effectively designed by directly

applying traditional software design methods. In particular, agents are not simple procedures

and hence they cannot be designed by traditional methods for designing procedural software.

Furthermore, agents supersede objects since, unlike objects, they can control their state. For

example, agents autonomously decide if a particular functionality is in accordance to their

current state and goals before executing it, whilst objects simply execute their public methods

when these are invoked. Object-oriented design methods therefore are also not suitable for the

design of ABSs.

The unsuitability of traditional software design methods has spawned new methods specifically

targeting ABS design. These can be ad-hoc, formal, informal and structured, and dynamic. Ad-

hoc design involves designing an ABS in an application domain specific manner [34]. Ad-hoc

designs are difficult to justify, evaluate and systematically improve. Formal ABS design

approaches are based on the use of formal methods [210]. Formal methods enable specification

of agent behaviour in a rigorous manner. However, they suffer from significant drawbacks. For

example, there is usually no precise relationship between the abstractions used in the

specification model and any concrete computational model. Therefore, informal and structured

methods have emerged. These methods originate from knowledge engineering and software

engineering and are predominantly based on object-oriented analysis and design methodologies.

Finally, dynamic methods involve defining the structure of an ABS and the behaviour of the

individual agents dynamically on run-time [9, 76, 93, 192] but they are resource consuming and

may result in unstable systems [185]. Informal and structured methods are regarded as practical

for numerous real-world applications [208] and therefore they form the context of this work.

Based on the view that design complexity decreases with increasing the level of abstraction and

with semi-automating the design process [1], the efforts in this work concentrated on addressing

these two issues. To this end, a powerful modelling concept was required to represent agent

behaviour and the role concept has been selected as such. Roles refer to encapsulated behaviour

 3

corresponding to positions in organisations or parties in interactions. Therefore, roles are

particularly suitable for modelling agent behaviour and they are used in the majority of ABS

engineering methodologies, for example in [30, 64, 108, 209]. Role modelling enables the

representation of agent behaviour by a number of roles assigned to an agent. In that case,

designing a multi-agent system refers to identifying and assigning appropriate roles to agents.

This research follows this approach by considering roles as the primary constructs for ABS

design. In particular, emphasis is given to formally describing the interrelations between roles as

far as it concerns their assignment to agents. This formalisation enables executing some of the

design steps automatically and it also increases the level of abstraction where design constraints

are specified.

1.3 Issues and Challenges

There are currently many challenges in ABS design. The focus of this work is on a problem

often identified as a core challenge [1, 186]: reducing the complexity the designers must handle.

The solution given is aligned with current research trends with respect to a number of important

design issues: Organisational settings and collective behaviour are considered first class design

constructs and design heuristics and non-functional aspects are taken into account in design

decisions.

1.3.1 The ABS Design Complexity Problem

In order for ABSs to be effective in real world applications, they must be reliable and robust.

Designing ABSs is a non-trivial task. Given a set of analysis models, design involves decisions

regarding the amount of intelligence of each agent, the properties that each agent will have, the

lines of inter-agent communication and the authority relationships between agents. Since agents

are considered autonomous entities, many researchers use the terms agent organisation to refer

to an ABS [64, 185, 209] and organising to refer to the process of creating an agent

organisation. There is no generic solution to an organising problem in the sense that there is no

best organisation for all situations [46, 185]. Therefore, the aim is to find a satisfactory solution,

for example a solution where the designed ABS satisfies all application requirements and design

constraints.

Currently, ABS design methods delegate the decision-making responsibility regarding all

aspects of design to the designer, who handles the resultant system complexity based on

creativity and intuition. Design decisions are therefore exposed to human error. Semi-

automating transformation from analysis to design and increasing the level of abstraction where

design decisions are taken are considered necessary to address this problem [186]. Indeed,

automatic transformations of at least some aspects of the analysis models to design and

 4

providing high-level design constructs can change this, allowing designers focus on aspects

where their creativity is truly necessary. In the case of role-based design, for example, the

designer may select the appropriate role models and an automation tool will carry out the

allocation of roles to agents.

1.3.2 Reusing Design Knowledge

There is a consensus that reusing design knowledge reduces design complexity allowing

designers to work with concepts of larger granularity at higher abstraction levels. In ABS design

this refers to reusing knowledge about goal-driven behaviour of agents. A major challenge in

this respect is how to integrate the different types of reused behaviours in a seamless manner.

Reusing design knowledge has been identified as a technique to manage software complexity

and reduce cost and time to market of software products [1]. Examples of attempts to address

this issue include reusing conceptual models (design patterns) [41] and reusing design

specifications [124]. In particular, much work is expended in discovering patterns in various

domains. However, techniques to deploy these proven design knowledge reuse solutions in ABS

design are still lacking effective support since efficient composition mechanisms to glue

patterns together at the design level do not exist yet [214].

In ABS engineering literature, design knowledge can refer to agent application functionality

[108, 150] and to agent organisational settings [64]. The term organisational settings covers the

general rules and conventions between entities in an organisation as well as various authority

relationships and coordinating interactions among these entities [73]. Reused agent application

behaviours correspond to collective behaviour patterns [108], while widely used agent

organisational settings that are applicable to many types of ABSs are termed organisational

patterns [220]. Both types of patterns play an important role in ABS design. If patterns are to be

helpful when implementing, a way to integrate them is required. In role modelling, design

patterns can be represented by appropriate role models. Hence, efficient techniques for

allocating roles to agents considering role interrelations are needed.

1.3.3 Non-Functional Aspects and Design Heuristics

In addition to application functionality, ABS design must consider non-functional aspects, for

example security and performance. Furthermore, design heuristics should be able to be applied

in a systematic manner to construct satisfactory designs. Non-functional aspects and design

heuristics specify additional design constraints increasing the design complexity. Hence, to

reduce design complexity, effective techniques for automatically taking non-functional aspects

and design heuristics into account in design are required,

 5

The complexity of the agent properties adds difficulty to the problem of designing agent

behaviour, whilst achieving particular non-functional qualities. Existing approaches to ABS

design do not address this issue although the case for considering non-functional aspects in ABS

design has been raised [60]. When ABS design is based on role modelling, non-functional

aspects need to be represented within role models and be considered when allocating roles to

agents. To reduce design complexity this has to be done in an automatic manner.

The quality of software designs can be improved by applying software design heuristics. Such

heuristics can be either general, for example low cohesion and high coupling [118], or specific

to ABS design. For example, it has been suggested that the behaviour responsible for handling a

system resource should be allocated to one agent only [38]. Design heuristics should be

supported by an effective method for semi-automatic ABS design. Appropriate mechanisms for

automatically handling them during ABS design are thus required.

1.4 Aims and Objectives

Given the above context for ABS design and the challenges identified, the overall aim of the

work described in this thesis is to develop a method for designing ABSs which reduces the level

of design complexity compared to existing methods. The method developed is based on the

premise that ABS design concerns the allocation of a set of roles R to a set of agents A such that

the resulting design satisfies the application requirements.

The main approach to design complexity reduction pursued in this thesis includes increasing the

level of abstraction during design and semi-automating the design process. These involve

considering collective behaviour and organisational settings as first class design constructs and

taking non-functional aspects and design heuristics into account in an automatic manner. The

approach is enabled by formalising relations among roles to facilitate assignment of roles to

agents, and by applying the synthesis concept to the design process. The approach is shown in

Figure 1.1. In particular, the following hypothesis is made:

Hypothesis: Formalising role relations in a formal algebraic model (the role algebra) and

developing a synthesis-based design process can assist in developing an ABS design method,

which reduces complexity in ABS design.

To this end, the objectives of this research are:

1. To identify a basic set of possible relations among roles which specify inter-role

constraints related to the process of assigning roles to agents, and introduce a formal

model describing those relations. This formal model will both increase abstraction level

and enable automatic allocation of roles to agents.

 6

How to reduce complexity in agent-based system design?

1. Formalise a basic set of role relations in the role
algebra

2. Develop a synthesis based design process

How to enable designers to
work at a high level of

abstraction?

How to semi-automate the
design process?

Organisational
settings as first class

design constructs

Collective behaviour
as first class design

constructs

Design heuristics

Non-functional
aspects

RAMASD: The Role Algebraic Multi-Agent System Design method

Figure 1.1: PhD research question and solution approach

2. To develop a semi-automatic role-based method for ABS design. This involves

describing the steps, both manual and automatic, that need to be taken to produce an

ABS design model. Furthermore, this requires introducing appropriate techniques that

can be used to incorporate non-functional aspects and design heuristics in role models.

Non-functional aspects and design heuristics can be treated as constraints affecting

allocation of roles to agents in addition to the constraints described by role

relationships.

3. To integrate the proposed method in an ABS design tool, which can be used to assist the

user in applying the method.

4. To prove that the approach is feasible by applying it to a number of case studies. This

will be done using the ABS design tool, which will have been previously implemented.

5. To evaluate the utility of the proposed method by comparing it with existing ABS

design methods as far as it concerns design complexity.

1.5 Main Contributions

The overall contribution of this work is the RAMASD ABS design method and its value is

assessed in Chapter 8. The development of RAMASD, however, involved a number of research

tasks, which resulted in the following additional contributions:

 7

1. A classification and comprehensive evaluation of current ABS design methods with

regard to design complexity.

2. A formal algebraic model (the role algebra) describing relations among roles as far as it

concerns assignment of roles to agents.

The contributions of this work have been under successful peer review and presented in refereed

conferences [102] and published in accredited journals [103, 104]. Furthermore, the role algebra

underpinning the RAMASD method is the subject of a patent application of the author and BT

labs [101], which has so far proceeded to the final stages. Finally, BT are currently planning a

commercial exploitation of RAMASD in a forthcoming commercial version of the Zeus agent

building toolkit [147].

1.6 Research Methodology

This PhD work spans different research areas including Formal Methods, Organisational and

Social Theories and Software Engineering. To identify relations among roles, it uses principles

of human organisation. A formal model of role relations and a synthesis-based design process

are then developed. The next steps of the research methodology concern developing an ABS

design method based on that model, implementing the method in a tool and conducting

experiments to test the effectiveness of the method in different ABS design scenarios.

Existing role-based approaches to ABS design stress the need to identify and characterise

relations between roles [2, 107, 168]. However, only a small number of approaches investigate

the consequences of role relations on ABS design, e.g. [107]. This is partly due to lack of formal

foundations of role relations. Therefore, in this work role relations that would affect ABS design

have been identified and formalised in an algebraic specification model. Role identification used

role theory [15] and other organisational principles.

In this thesis, role relations existing in human organisations have been analysed with the aim of

using them to specify agent behaviour. This exploits the traditional bias of ABS research

towards modelling the way in which human organisations work. Indeed, roles have been

extensively used in human organisations [126, 219] and application of roles to ABS design was

seen as a natural progression.

A formal and rigorous description of role relations is necessary for semi-automatic ABS design.

This was provided by a formal algebraic model of role relationships concerning assignment of

roles to agents. Furthermore, formal underpinnings have to be combined with a systematic

problem solving approach to semi-automate the design process. Such an approach would

address the NP-hard problem of finding a satisfactory design solution among all design

alternatives.

 8

A design process based on the synthesis problem solving approach is appropriate. It involves

decomposing the initial problem into sub-problems, independently solving them and integrating

the sub-solutions into an overall solution while various constraints within and among sub-

solutions are observed [4]. This approach leads to a semi-automatic design process which is able

to find a satisfactory ABS design solution, if it exists.

The RAMASD resultant method has been integrated in an experimental version of the Zeus

agent building toolkit. A simple constraint specification language was developed and

implemented in the tool to represent design constraints. Furthermore, an algorithm for allocating

roles to agents was developed.

The applicability of the RAMASD method has been tested by applying it in two business

focused case studies using the extended Zeus agent-building toolkit. The case studies concerned

providing support to mobile workforce and operating a B2B electronic marketplace

respectively. The value of RAMASD in regards to reducing design complexity has been

assessed by using a specially constructed evaluation framework and by comparing it in detail

with Gaia, a representative ABS design method, in the context of the first case study. The

evaluation results clearly demonstrate the superiority of RAMASD in all cases.

1.7 Case Study Descriptions

The original rationale for establishing the research project described in this thesis was the

realisation that existing ABS design methods cannot deal with the degree of complexity inherent

in designing ABSs to support BT’s business and operational processes. The case studies used to

evaluate the proposed approach are therefore representative of this type of systems.

The first case study concerns support of BT’s mobile workforce. BT has about 25,000 mobile

workers performing about 150,000 repair tasks everyday across the UK [121]. Supporting this

workforce includes the following three dimensions considered in the first case study: a) travel

management, b) teamwork coordination and c) work knowledge management. This case study

was selected to demonstrate how RAMASD could cope with quantitative non-functional aspects

and with design heuristics.

The second case study concerns COVISINT, a B2B electronic marketplace (B2B Exchange)

concerning automotive industry. B2B electronic marketplaces offer a variety of services

including business directories, auctions, supply-chain management and asset re-deployment and

disposal. This case study was selected to demonstrate how RAMASD handles qualitative non-

functional aspects and organisational settings.

 9

Chapter 1
Introduction - Thesis

statement and
research approach

Chapter 2

Classification of ABS
design approaches

Chapter 3
Assessment of related

work and project
motivation

Chapter 5

Description of the
RAMASD method

Chapter 6
RAMASD integration

in the Zeus agent
building toolkit

Chapter 4
Role modelling

foundations for ABS
design

Appendix C

RCL syntax in EBNF
notation

Chapter 7
Case Studies: Mobile
Workforce support

and COVISINT

Appendix B

The Zeus ABS
structure

Chapter 8
Evaluation of the

applicability and the
utlitiy of RAMASD

Chapter 9

Conlusions - Future
Work

Appendix A

Detailed evaluation of
ABS design methods

Figure 1.2: Thesis organisation

1.8 Thesis Organisation

The structure of the thesis is demonstrated in Figure 1.2. Chapter 2 provides a classification of

current ABS engineering approaches with respect to the methods they include for the design

phase. For each category in the classification scheme, a representative approach is examined in

Chapter 3 using an evaluation framework concerning design complexity. The examination

results illuminate on-going research challenges and provide the foundations for further study.

To this end, the foundations of the Role Algebraic Multi-Agent System Design (RAMASD)

method are established in Chapter 4. The suitability of roles and role models as appropriate

constructs to represent complex behaviour is described. This is done by providing details of how

role modelling is used in software engineering and in social systems and in particular role

theory. Furthermore, a number of approaches are compared to identify which role modelling

aspects are suitable for ABS design. Finally, the case for formalising role relations and using

those relations to drive allocation of roles to agents is made.

Chapter 5 elaborates on the expanded definition of roles introduced in Chapter 4 and presents

RAMASD, a systematic method for designing ABSs using role modelling. RAMASD moves

forward from the traditional definition of roles as conceptual modelling constructs and

introduces a novel view of roles as representations of pragmatic behaviour including

organisational knowledge and non-functional aspects. In addition, the primary innovation of

RAMASD, a formal model of role relations termed role algebra, is discussed. The role algebra

forms the basis for defining design constraints at a high abstraction level thus reducing design

 10

complexity. Furthermore, the semi-automatic design process of RAMASD is described. Semi-

automation is possible by having a clear separation of manual and automatic design steps based

on the synthesis problem solving approach and it further reduces design complexity. Finally,

Chapter 5 concludes with a discussion about how RAMASD can be incorporated within role-

based ABS engineering methodologies.

Chapter 6 focuses on the RAMASD software prototype, built by extending the AgentGenerator

tool of the Zeus agent building toolkit. It involves a graphical environment supporting editing,

storing and instantiating roles and role models and automatically allocating roles to agent types

by appropriate constraint problem solving algorithms. This chapter further presents RCL, a

simple specification language for describing constraints on roles and role characteristics and a

heuristic role allocation algorithm that can find a feasible design solution if one exists.

Chapter 7 presents the application of the RAMASD method in two case studies concerning

mobile workforce support and COVISINT, a B2B electronic marketplace. For both case studies,

the RAMASD steps from role modelling to role allocation and instantiation are described in

detail. In each case study description emphasis is given to different RAMASD aspects. In the

first case study description the focus is on quantitative non-functional aspects and on design

heuristics, whilst in the second much attention is paid to qualitative non-functional aspects and

organisational settings.

Chapter 8 provides an assessment of the value of RAMASD in regards to reducing design

complexity. RAMASD is evaluated in two ways. Firstly, by comparing it with other methods

with respect to design complexity using the evaluation framework introduced in Chapter 2. This

is enabled by a discussion regarding how RAMASD has addressed all research challenges

identified in Chapter 2 based on the case studies described in Chapter 7. Secondly, by

performing a detailed comparison of RAMASD and Gaia in the context of the mobile workforce

case study.

Chapter 9 discusses the originality and the contributions of this PhD. Furthermore, it concludes

the thesis by suggesting and discussing areas for further work.

Appendix A provides a detailed assessment for each of the individual ABS design methods

included in the comparisons of Chapter 3. A description of the structure of the ABSs produced

by the Zeus agent building toolkit is provide in Appendix B. Finally, Appendix C describes the

syntax of RCL, the role constraint language that is used to represent design constraints.

 11

Chapter 2

Agent-Based System Design

This chapter classifies and reviews existing ABS engineering approaches focusing on the

complexity encountered by designers whilst constructing realistic agent applications.

2.1 Designing ABSs

The agent paradigm has gained a wide popularity in the last decade and is generally considered

to play a fundamental role in coping with the difficulties inherent in developing large-scale

software systems [98], especially those that support flexible and evolving business organisations

[99]. Many authors agree that ABSs can effectively provide the flexibility, adaptability and

performance required from software supporting business operations [10, 19].

In the literature, a consensus regarding ABS engineering terminology, concepts and

methodologies has hardly been reached yet [70, 146] and several open problems need to be

solved. As established in Chapter 1, an important problem is how to support the design of large

and complex ABSs operating in dynamic and open environments. This problem has to be

addressed in order to be able to use ABSs in real world applications.

This chapter starts by defining some basic ABS concepts in Sections 2.2 and 2.3. In Section 2.4

it proposes a classification scheme of ABS engineering approaches, which is based on the

design methods they include, and it investigates the needs and approaches of current ABS

design methods. This paves the way for a detailed assessment of ABS design methods with

respect to design complexity, which is discussed in Chapter 3. Finally, a summary of this

chapter is provided in Section 2.5.

2.2 Overview of Agent Concepts

This section will gradually introduce a set of fundamental ABS engineering concepts, including

agent, agent architecture and agent roles.

2.2.1 Agent-Oriented vs Object-Oriented Approaches

Agents are in many ways similar to software objects, for example both metaphors adhere to the

principle of information hiding. However, a number of important differences exist, which make

agents more suitable for building adaptable and intelligent software systems [97, 100, 212]:

 12

• Objects are generally passive in nature and they need to be sent a message (method

invocation) before they become active. Agents on the other hand can initiate some action.

• Although objects encapsulate state and behaviour implementation, they do not encapsulate

autonomous behaviour to any extent. Thus, any object can invoke any publicly accessible

method on any other object and the corresponding actions are performed. In contrast, to

initiate a particular behaviour on an agent is to send it a message in a standardised

communication language. The agent may or may not fulfil the request depending on its

current state and goals that aims to achieve.

• Additionally, object-orientation fails to provide an adequate set of concepts and

mechanisms for modelling dynamically changing, open systems. Individual objects

represent dynamic behaviour at too fine granularity and method invocation is too primitive

for describing the types of interactions that take place. Recognition of these facts led to the

development of more powerful design patterns, application frameworks, and

componentware. Agents, on the other hand, demonstrate goal oriented behaviour which is

defined by particular goals and the perception of the environment. Hence, agent behaviour

can change dynamically when the agent goals or the environment perceptions change.

• Finally, object-oriented approaches provide only minimal support for specifying and

managing organizational relationships (basically relationships are defined by static

inheritance hierarchies). Agents are defined along the lines of human behaviour. Hence,

agent systems include complex organisational relationships among agents, which are similar

to those found in human organisations.

Today’s businesses have flexible structures formed dynamically and evolve to adapt to change

and to open markets. The agent metaphor is suitable for software systems capable of meeting

the requirements of today’s business. This is because:

• Agents can adapt their relationships while the system is running. This matches business

systems which tend to consist of a number of interacting components that dynamically come

together, do business and then dissolve.

• Agents can adapt their behaviour based on their goals and on stimuli they sense from their

environment. In contemporary business, each partner tries to maximize his benefit while

cooperating with other partners. This requires flexible behaviour involving negotiation of

business agreements using different strategies, and coordination based on changing rules

and conventions. Agents can intuitively represent this behaviour by appropriate goals and

negotiation and coordination protocols.

 13

Figure 2.1: Perceive-Reason-Act cycle

• Agents can interact with other agents and legacy systems. Agents can support truly open

business systems as they can communicate with other agents using standardised languages

and act as communication front-ends to traditional software systems.

2.2.2 Defining the Term ‘Agent’

As argued in Section 2.2.1, agents are software components that exhibit a number of properties

making them particularly suitable to cope with the dynamism and openness of contemporary

software environments, such as the Internet.

There is currently an ongoing debate in the research community about exactly what constitutes

an agent, which is far from reaching a consensus. In this thesis, a definition given by

Wooldridge in [211] is adopted:

“An agent is an encapsulated computer system that is situated in some environment, and that is

capable of flexible, autonomous action in that environment in order to meet its design

objectives.”

This definition encapsulates a number of important points [96, 98]. Agents are:

• Clearly identifiable problem solving entities having particular objectives to achieve.

• Situated in a particular environment receiving input related to the state of that

environment through their sensors and acting on that environment through their

effectors.

• They are autonomous; they have control on both their internal state and their internal

behaviour.

perceive

reason

act

Environment

 14

Figure 2.2: A simple agent formal model

• They are capable of exhibiting flexible (context-dependent) problem solving behaviour;

they can be both proactive (take the initiative in order to satisfy their design objectives)

and reactive (able to respond in a timely fashion to changes that occur in their

environment.

The agent operation generally follows the Perceive-Reason-Act (PRA) cycle as depicted in

Figure 2.1. This cycle was originally introduced in [74] and was later used by other authors

[122, 173, 206]. According to the PRA cycle, the agent receives some stimulus from the

environment and processes this stimulus with its perceptual apparatus. Subsequently, the agent

starts a reasoning process that combines the newly incorporated information and the agents

existing knowledge and goals and this then determines possible actions of the agent. The best of

these possible actions is then selected and executed. The action activation changes the state of

the environment, which in turn generates new perceptions for the next cycle.

When the agent is purely a software system operating in a software environment then it is called

a software agent [75, 146]. The concept of software agent was first considered within efforts to

mitigate the compatibility problem among various types of heterogeneous legacy software

components that had to communicate to exchange information [75]. The information exchange

was standardised via the use of some common communication language and the software

components that were able to communicate with it. In due course, several additional

characteristics and capabilities were added to software agents including autonomy, mobility and

sophisticated reasoning, which were, perhaps rather wishfully, called intelligence. A good

overview of software agent concepts and a classification of different software agent types is

given by Nwana in [146].

perceive

act

deliberate select

S

A

T

KB

 15

Figure 2.3: A container terminal yard agent

2.2.3 A Simple Agent Formal Model

To describe the PRA cycle more concisely and formally, a notation based to the one described in

[74] can be used. The environment the agent is situated in can be represented by a unordered set

S of states. An agent can be described as a 7-tuple (KB, T, A, perceive, deliberate, select, act),

where KB is a knowledge-base that contains the acquired knowledge of the agent, T is a set of

partitions of the environment S which includes the possible perceptions of the agent and A is a

set of possible actions of the agent. The agent behaviour can then be defined by four functions:

The perceive: S → T function which determines how the state of the environment is perceived

by the agent, i.e. it restricts the amount of information available to the partial information

accessible by the agent. The deliberate: KB × T → KB function updates the agent knowledge

base after reasoning based on the newly received perceptions. The select: KB × T → A function

determines the best action for the current cycle and the act: A × S → S function changes the

state of the environment accordingly. In Figure 2.2, the agent formal model components and the

information flow between them are depicted in a manner similar to the one introduced in [62].

2.2.4 An Example of a Simple Agent

To clarify the concepts described in Sections 2.2.2 and 2.2.3 a simple example from the area of

agents in manufacturing [181] can be used. An agent guiding an automatic transfer vehicle

(ATV) in a container terminal yard is considered. The ATV agent is responsible for unloading

incoming containers from trucks and storing them on piles in the storage area. Figure 2.3 shows

truck stop
area

storage area

ATV

 16

such a facility with several container storage places, one ATV agent and a truck that has just

delivered some containers that must be unloaded. Considering the simple agent model described

in Section 2.2.3 above, the scenario is described as follows: The environment S of the ATV

agent can be modelled by a grid world with labelled grid locations; the possible actions A of the

ATV agent are pick_container, transfer_to_location and drop_container; and the robot's

perception T is the content of the location right in front of the ATV agent and the knowledge

base KB of the ATV agent contains the destination address of each container delivered by a

truck.

The Perceive-Reason-Act cycle of the ATV agent starts when the perceive function determines

the presence of newly arrived containers (assuming that the default waiting position of the ATV

agent is at the track stop area). Subsequently, the deliberate function decides that the only

possible action is pick_container. The pick_container action is subsequently scheduled for

execution by the select function and executed by the act function of the ATV agent. As a result

of this action, the state of the environment changes (because the ATV agent is now holding a

container) and thus the next PRS cycle starts. In the next PRS cycle the ATV agent determines

the destination of the container and based on that it transfers the container in the appropriate

place in the storage area of the container terminal yard. The AGV agent stores the container in

the appropriate place in a subsequent PRS cycle and its operation continues by returning to the

track stop point.

2.2.5 Using Roles to Model Agent Behaviour

In the simple example described in Section 2.2.4, the problem solving capabilities that are

necessary in the problem domain are directly associated with the agent. This approach, however,

can be restrictive and impractical when the agent has to modify its capabilities to adapt to

dynamically changing requirements or to use different capabilities in different circumstances

[108, 209]. For example, if the ATV agent was to be used to unload, carry, and store other items

as well, i.e. huge drain pipes, then all AGV functions would need to be modified explicitly.

Therefore, it has been suggested that a modelling concept able to package multiple agent

capabilities is required [51, 106]. An appropriate concept is the concept of role.

The role concept originated in sociology [15] and it is also used in organisational theory [72]

and business process modelling [115] to represent positions and responsibilities in business

organisations. When more than one role interacts within some context they constitute a role

model [2, 108].

Several definitions of the role concept exist in the agent research community that differ mainly

in what they consider as role properties. For example, Kendal in [108] defines role as a position

and a set of characteristics including tasks, responsibilities, collaborators and planning,

 17

coordination and negotiation capabilities. Weiss in [201] defines roles as ”the functional or

social part which an agent, embedded in a multiagent environment, plays in a (joint) process

like problem solving, planning or learning ''. In all definitions, however, roles are modelling

abstractions of some concrete behaviour. When the characteristics of a role are also

characteristics of an agent, then it is said that the agent plays that role [108]. When designing

agents using roles, the agent characteristics are determined by composing the characteristics of

the individual roles the agent plays. The different types of role definitions available in the

literature are discussed in detail in Chapter 4.

Formally speaking, the concept of a role can be modelled as an extension of an agent’s current

knowledge. The possible actions the agent can take and the perceive, deliberate, select and act

functions. Thus, agents that can play a number of roles from a set of roles R are described by the

7-tuple: (KB∩KBr, T, A∩Ar, perceive ∩ perceiver, deliberate ∩ deliberater, select ∩ selectr, act

∩ actr) where r ∈ R.

To illustrate this definition, the example given in Section 2.2.4 is extended by adding a second

role to the roles the AGV agent can play. Let us denote by “carrier” the role corresponding to

the original AGV agent behaviour. If the possibility of the AGV searching for a container in the

container terminal yard and informing a human operator accordingly is required, the AGV agent

with the role “verifier” could be applied. The role verifier would include an appropriate

perceiveverifier perception function, which would make it possible to receive commands from a

human operator and to determine status and position of an existing container already in the

terminal yard.

In all areas where roles are used, a major problem is the delimitation of roles that occurs within

the context of interest. Not every set of behavioural characteristics can be regarded as a role,

there must exist some special properties that make such a set a role. This thesis proposes a

method aiming to assist designers in this task. The proposed method is discussed in detail in

Section 5.2.

2.2.6 Agent Architecture

The agent concepts discussed so far are useful to describe agent behaviour but they cannot be

directly mapped to some executable software system. This section discusses about how these

theoretical concepts can be mapped to executable software based on an intermediate layer of

abstraction, which includes appropriate models that refine the abstract definition of an agent into

a more concrete specification. The set of models in the intermediate layer of abstraction is called

agent architecture [62, 83, 210]. Furthermore, the term agent architectural specification is used

to refer to the resulting specification.

 18

Figure 2.4: Agent internal components

When the agent is defined in terms of roles it plays, its architecture provides a runtime

environment that is capable of executing the given roles. The above relation is represented

graphically in Figure 2.4. The concept of an agent encloses the architecture that contains the

perception and actuation subsystem as well as a role interpreter. The role interpreter links the

domain-independent agent architecture to the domain specific aspects of the different roles by

associating each role with a particular task tree.

The relation between the roles an agent plays and the architecture of the agent is

complementary. The roles are the application functionality the agent has to deliver and the

architecture of the agent is the means to deliver this functionality. For example, the agent

architecture can be considered as a run-time environment for executing abstract agent

definitions in a similar way that the Java Virtual Machine provides the means to execute Java

code. However, not all agent architectures, for example the one proposed in [22], support the

role concept.

In the example of the container terminal, the hardware of the AGV agent corresponds to the

agent architecture that implements the runtime environment for the possible roles the AGV

agent plays. The roles are modelled as task trees, e.g. the “carrier” role has the subtasks of

checking for incoming containers, determining the destination of each container and then taking

each container to the indicated destination.

Actuators Perception

apparatus
Role 1 Role n…

Role interpreter

Architecture

Task Task Task

Task Task Task

Task

Agent
Domain part

 19

Many agent architectures are based on cognitive models. One of the most prominent examples

of such a cognitive model is the BDI model [162]. According to the BDI model an agent is

described by its Beliefs that determine the current world knowledge of the agent, its Desires that

determine the goals the agent needs to achieve and the Intentions that are generated from

reasoning about the current beliefs and goals and therewith determine the best possible actions.

A variation of the BDI model is used in the Zeus agent architecture [147], which is based on

Facts, Goals and Tasks. The Zeus agent architecture is the one used in this thesis because it

provides an environment for rapid development of agent applications which incorporates the

concept of roles albeit only as an analysis concept.

Agent architectural specifications are still difficult to transfer to executable code. Therefore,

further refinement is required. Wooldridge in [208] suggests three possible means to achieve

this goal. The first possibility is to use functional refinement, which is common in most standard

software engineering environments. The second one is direct execution of the specifications,

which implies powerful description languages and runtime environments. The third possibility

is compilation of the abstract architectural specification into executable code. In this thesis, the

approach of compiling abstract agent architectural specifications to Java source code is

followed. This approach has many advantages including portability, fast execution and direct

interoperation with conventional software written in Java.

2.3 Agent-Based Systems

This section focuses on systems containing multiple agents and describes the main concepts

involved.

2.3.1 Overview

Agents operate and exist in an environment, which typically is both computational and physical.

The environment might be open or closed, and it might or might not contain other agents.

Although there are cases where an agent can operate usefully alone, the level of today’s

interconnection and networking of computers require agents to interact with other agents in

order to fulfil their objectives. In that case, it is more convenient to deal with those interacting

agents collectively, as a society of agents [87] often referred to as Multi-Agent System (MAS)

[201] or Agent-Based System (ABS) [181]. As established in Chapter 1, the term Agent-Based

System (ABS) is adopted in this thesis and it is used to refer to a society of interacting agents.

There are numerous formal definitions of ABSs in the literature, e.g. [22, 62, 68]. Following

[122], a simple formal model of an ABS based on a set structure can be used to describe the

ABS concept:

{S, (T,KB,A, perceive, deliberate, select, act)i}

 20

where S denotes the environment just like in the agent formal model given in Section 2.2.3.

Each agent is represented by the same 7-tuple as in Section 2.2.3, but in addition it is associated

with a unique identifier i that distinguishes it from the other agents.

Figure 2.5: An agent organisation

2.3.2 Interaction in ABSs

The main feature of a system that is comprised of several intelligent entities is that a major part

of the system’s functionality is not explicitly and globally specified, but that it emerges from the

interaction between these individual entities [180]. Interaction is the mutual adaptation of agent

behaviour while preserving individual constraints.

Interaction is not limited to explicit communication or to the case of message exchange. Weiss

in [201] defines agent interaction as “any kind of agent behaviour that is related to other

agents”. For example, ants may not explicitly communicate with other ants but still adapt their

behaviour in a way that the entire ant society shows coordinated interaction. The interaction

between ants can be carried out by several means including physical tactile behaviour, chemical

substances, vision and others.

Coordinated interaction among several autonomous entities is the core concept of ABS design.

The view in this thesis is that to leverage the desired ABS emergent behaviour, appropriate roles

should be allocated to individual agents. To this end, the RAMASD method described in

Chapter 5 is applicable.

2.3.3 ABSs as Organisations of Agents

Agent systems can be considered as organisations of autonomous, intelligent entities [62, 185,

209]. The organisational structure of an organisation determines how the entities within the

knows

reports to reports
to

employs
controls

Manager
agent

Knowledge
agent

Search
agent

Knowledge
agent

User
agent

 21

organisation relate to each other. There is no best organisation for all circumstances but instead

organisation selection depends on a number of dynamically changing factors.

The issue of designing an agent organisation is related to sociology and to organisational theory.

To design an agent organisation one needs to define the lines of the inter-agent communication,

the individual agent functionality and the organisational authority relationships. An agent

organisation does not exist for its own right; instead, it must have a purpose. The selection of

the organisational relationships is done in a way to serve the overall purpose of the organisation.

Agents in an agent organisation should be able to perceive the existence of other agents and to

observe any organisational relationships that may exist between them. An example of an agent

organisation is depicted in Figure 2.5. Each link in the figure has an associated characterization

of its meaning that describes the nature of the connection between the organisational entities.

The criteria affecting an agent organisation design are numerous and highly dependent on

several, possibly contradicting factors that may change dynamically [46, 185]. Therefore,

finding an organisational structure that is suited for a particular functional specification and

integrating with the application functionality are some of the most difficult parts of the ABS

design process [62]. A technique that supports the developer in integrating organisational

structures with application functionality is described in Chapter 5.

2.3.4 Software Complexity and ABS Design

The term complexity has been used in computer systems engineering with two different

meanings [61, 207]: computational complexity and software engineering complexity.

Computational complexity is primarily concerned with determining precise upper and lower

bounds on the amount of computation time and memory space required to solve particular

problems and on developing efficient algorithms for solving these problems. Software

engineering complexity relates to how difficult it is to implement a particular computer system.

In this thesis, the focus is on software engineering complexity and in particular on that inherent

in ABS design.

2.3.4.1 Complexity in Software Engineering

The term complexity has been given many definitions in the literature and the majority of them

are based on the Oxford English dictionary definition, referring to difficulty in understanding. It

is considered that high software complexity results to low software quality [5, 25].

The difficulty in understanding has been the core of all definitions of complexity given in the

context of software engineering. Software complexity refers to the “difficulty of understanding

and verifying software” [92]. This difficulty, can be either described generically as “the degree

of comprehension of people that design software by putting together software components” or

 22

specifically in terms of software components “a system property that depends on the

relationships among elements and not an isolated element’s property” [26] and other

software characteristics “an attribute of an object which is somehow associated with the

following observables: number of its components or elements, kind or type of elements and

structure of the relationships between elements” [45].

There is a consensus that lower software complexity provides advantages such as lower

development and maintenance time and cost, less functional errors and increased reusability [26,

61, 226]. Therefore, it is common in the Software Metrics community to try to predict software

qualities based on complexity metrics [61].

Software complexity can refer to software requirements specifications, to software design

artefacts and to source code. Recently the focus has shifted to specification complexity since

modern case tools can automate to a large degree the design and source code generation [130].

Many authors agree that there are multiple facets of software complexity [1, 26, 84, 207]. For

example, Fenton and Pfleeger in [61] consider four types of software complexity: problem

complexity, algorithmic complexity, structural complexity and cognitive complexity referring to

the complexity of the underlying problem, the implementation algorithms and the structure of

the implemented software and to the effort required to understand the implemented software.

Hastings in [84] considers functional complexity, referring to the number of functions required

to be developed, and problem complexity, referring to the difficulty in understanding the

underlying problem. From the different types of software complexity, problem complexity and

functional complexity are considered the most important [1, 17, 139, 186]. This view is

followed in this thesis as well, as described in the next section.

2.3.4.2 Complexity in ABS Design

The sophisticated structure and properties of software agents increase the complexity inherent in

ABS design [186]. For example, designing agents to operate in dynamic and open environments

and carry out non-trivial tasks that require maximisation of some utility payoff function

involves high software engineering complexity [207].

In this thesis, the interest is in the complexity that the ABS designer has to address when taking

design decisions. As established in Section 1.2, this refers to the difficulty in understanding and

manipulating the concepts and models needed for the detailed ABS design and in this thesis it is

termed design complexity. Design complexity represents the combination of two particular

facets of software complexity, functional complexity and problem complexity (see Section

2.3.4.1), which are considered worthwhile to try to reduce [1, 84].

 23

The meaning of functional and problem complexity in the context of ABSs design is better

illustrated with the following examples:

• Functional Complexity: A way to understand functional complexity is to consider the

number of concepts that are needed to specify the software functionality at a particular level

of abstraction [84, 128]. Along those lines, to understand functional complexity one can

consider the number of concepts that are required to describe the collective behaviour of the

ABS. In the example discussed in Section 2.2.5, the AGV agent was able to play two roles,

namely “carrier” and “verifier”. If reasoning is carried out at that level of abstraction, in

order to define the AGV agent, only these two roles are needed. If reasoning is done at the

task level of abstraction, to define the AGV agent behaviour all the tasks it can carry out

need to be explicitly specified. The latter case involves higher design complexity than the

former.

• Problem Complexity: It is common in software metrics research to measure the complexity

of the problem the software is solving by the number of invariants required for the problem

specification [61, 84]. Along these lines, to understand conceptual complexity the number

of specification constraints that are required to fully specify the behaviour of an ABS can be

considered. For example, let us assume an ABS that supports the various administration

procedures at an educational institution. Among other things, the university members need

to access the library database to manipulate their library loans. If role modelling is used, this

behaviour could be represented by the role Library_User. However, only members of that

institution can use the library and the institution membership behaviour can be modelled by

the Institution_Member role. Hence, an agent must be able to play both Library_User and

Institution_Member roles in order to be conceptually consistent. If reasoning is carried out

at that level of abstraction, only this role constraint that must characterise the agent

behaviour needs to be specified. If reasoning is done on the tasks each agent can carry out,

then obviously more constraints are required.

The above examples show that ABS design complexity depends on the level of abstraction the

designer is working at. They also indicate that design complexity depends on automating some

parts of the design process. For example, appropriate mechanisms to automatically combine the

characteristics of the “carrier” and “verifier” roles when designing the AGV agent would

relieve the designer from having to consider the details of these two roles and carry out the

design manually. Enabling the designer to work at different levels of abstraction and semi-

automating the design process is the basis of the proposed method to reduce ABS design

complexity, which is described in Chapter 5.

 24

Figure 2.6: Classification of ABS engineering approaches

2.4 Classification of ABS Engineering Approaches

There are currently many different types of ABS engineering approaches ranging from simple

strategies to comprehensive methodologies [90, 98, 154, 181]. As described in Section 1.2, this

thesis is primarily concerned with the design of ABSs, namely with specifying the behaviour of

the different types of agents and with deciding on the number of agents of each type that will be

included in the system. The majority of existing ABS engineering approaches involve methods

to support other software engineering phases as well, for example, requirements capture,

analysis, code generation and testing. A systematic classification of ABS engineering

approaches, with respect to the ABS design phase, is useful for better understanding the

advantages and disadvantages of each approach,

Extending the classification introduced by Wooldridge in [208], a classification scheme for

ABS engineering approaches is proposed and summarised in Figure 2.6. The criteria for the

classification are: whether the design methods are applied before or after the deployment of the

ABS; the degree of formality present in each approach; and the relevance of each approach with

traditional software engineering methodologies. Each criterion corresponds to a different level

in the classification tree described in Figure 2.6.

In terms of when design methods are applied, ABS engineering approaches can be classified as

static or dynamic. In static approaches, design methods are applied only once before the

deployment of the ABS. In dynamic approaches, design methods are applied on run-time, many

times or continuously, resulting to reorganisation of the ABS.

Static approaches can be further classified as ad-hoc, formal or informal. The criteria for this

classification are based on the techniques followed to specify the behaviour of each agent in the

ABS. Ad-hoc ABS design refers to constructing ABSs without applying a systematic design

Ad-hoc
e.g. RAPPID

Formal
e.g. DESIRE

Information Systems
e.g. Tropos

OOSE
e.g. GAIA

Knowledge Engineering
e.g. MESSAGE

Tool Based
e.g. Zeus

Informal

Static Dynamic
e.g. KARMA/TEAMCORE

Agent-Based System Engineering
Approaches

 25

method. Formal ABS design concerns the use of formal methods for specification and

verification of the agent behaviour. Finally, informal approaches include structured and

systematic methods for designing ABS where the design decisions are taken based on heuristic

rules and guidelines rather than rigorous criteria.

The majority of informal ABS design approaches originated and are closely related to

traditional software engineering methodologies. Based on this relation, informal approaches can

be further divided into four categories: those originating from object-oriented software

engineering (OOSE) methodologies, e.g. Agent/UML [12], Gaia [209] and MESSAGE/UML

[30], those that are extensions of knowledge engineering methodologies e.g. MAS-

CommonCADS [91], those that are based on information systems methodologies e.g. TROPOS

[23], those that are highly coupled with specific ABS building toolkits, e.g. Zeus [147] and those

that have been developed for specific industrial application domains e.g. RAPPID [152].

The first category can be further broken down into approaches that focus on adapting existing

software engineering standards and notations to ABSs engineering e.g. Agent/UML [12],

approaches that aim to combine agent theories with existing software engineering

methodologies e.g. GAIA [209] and those that combine elements from all approaches in a

comprehensive way e.g. MESSAGE/UML [30].

2.4.1 Ad-hoc Approaches

The philosophy underlying ad-hoc ABS engineering approaches is that design decisions should

be simple and clearly justified by the strengths offered by agent technology, for example

autonomy and flexibility. Therefore, design in ad-hoc approaches is based on generic

guidelines, which are followed in order to argue that the requirements of the application domain

are better supported by utilising properties of the agent metaphor. For example, one such

guideline is that each user should be paired with a software agent that will be able to act on

his/her behalf to a certain extent. An agent is the most suitable software component for this

responsibility as it is able to learn from past interactions and adapt to changing requests from it

owner. An example of ad-hoc ABS design approach is RAPPID, which is discussed in more

detail in Appendix A.1.

2.4.2 Formal Approaches

Formal ABS engineering approaches originated to improve the poor adoption of agent

technology in industrial applications, which was caused by the lack of rigour of ad-hoc

approaches [22]. They are mainly used in three ways [208]: for the specification, systematic

implementation and verification of ABSs. Specification is used for the design of agent

behaviour. In order to formally specify the behaviour of an agent, a theory describing the

internal parts of an agent as well as how those parts interact to generate the agent behaviour is

 26

required. Such a theory is called an Agent Theory [210]. A very common approach to formal

agent theories is to use some temporal modal logic, namely a logic describing possible agent

interactions over time. Two of the best known logical frameworks are the Cohen-Levesque

Theory of Intention [37] and Rao-Georgeff Belief-Desire-Intention model [162]. The Cohen-

Levesque model is based on two agent attributes: beliefs and goals. Other attributes, for

example the notion of intention, are built from those. In contrast, the Rao-Georgeff model takes

intentions as primitives, in addition to beliefs and goals.

A specification expressed in such logics describes the desirable behaviour of a system. For

example, for two agents a and b aimed to support a manufacturing process control system, a

specification formula might be [208]:

if

a believes that valve 32 is open

then

a should intend that b should believe that valve
32 is open

A specification of the whole ABS might be constructed using such formulae to define the

intended behaviour of the system. Specification is the starting point of every formal ABS design

approach [22, 85].

Formal approaches to ABS design are often based on unrealistic assumptions, for example the

possible worlds assumption [208], which impede the efficient mapping of specifications to

appropriate implementations. A formal approach that does not suffer from this weakness,

DESIRE [22], is discussed in more detail in Appendix A.2.

2.4.3 Informal Approaches

Informal ABS engineering approaches can be based on various concepts aiming to capture the

domain knowledge and describe the agent system behaviour. Concepts related to different parts

of the systems can be organised in different models. For example, an interaction model can

describe interactions that take place between agents and an organisational model can describe

the organisational structure of the actors in the business organisation. Such models can be used

for both the analysis and design stages in ABS engineering. The models involved in informal

approaches are based on different views each examining the ABS from a different perspective.

Informal approaches are often based on existing software engineering methodologies, which

they extend to suit the particular requirements of agent-based applications. In particular,

informal approaches are often based on methodologies from object-oriented software

engineering, from knowledge engineering and from information systems. Furthermore, they

may be tailored to specific ABS building toolkits. A common characteristic in informal

 27

approaches is that the design of ABSs cannot be automated to any extent and is carried out

manually by the designers based on informal guidelines and their experience.

2.4.3.1 Approaches Based on Object-Oriented Software Engineering

ABS engineering approaches that are based on object-oriented methodologies generally start

from the full set of concepts and properties of the agent metaphor and try to adapt aspects from

traditional object-oriented methodologies as required, for example Gaia [209]. Furthermore,

many approaches extend object-oriented standards and notations to be applicable to ABS

design. For example, Agent/UML [12] and MASE [205] extend the UML notation considering

agents as specialisation of objects. As a representative example of such approaches Gaia is

reviewed in Appendix A.3.

2.4.3.2 Approaches Based on Information Systems Engineering

Many ABS engineering approaches originate from the area of information systems engineering,

for example [24, 56, 200]. Those approaches are based on the premise that new, open and

evolving business models in areas such as e-Business [10] and e-Services [53] call for software

systems which have open, evolving architectures that operate robustly and exploit resources

available in their environment.

The main argument in those approaches is that the semantics of contemporary business

transactions can only be captured if the specific business actors associated with the involved

events and actions are explicitly represented in the information system in addition to passive

business objects [200]. Therefore, to capture the dynamic aspects of information systems, such

as the events and actions related to the ongoing business processes of an enterprise, it is

necessary to make an ontological distinction between active and passive entities, that is between

agents and objects.

The general philosophy of approaches to ABS engineering that originate from information

systems methodologies is that they acknowledge the need to model dynamically evolving parts

of the system using agents and agent relationships. For this purpose, they introduce expressive

modelling mechanisms and they propose techniques for transforming agent-based conceptual

models to traditional software engineering models. For example, Wagner in his Agent-Object-

Relationship (AOR) approach [200] extends the Entity-Relationship approach to model dynamic

system aspects using agents and relations between agents in addition to static entities. Wagner

also proposes methods to transform agent conceptual models to relational, implementation-

ready information system designs.

Information systems-based approaches claim to supersede other ABS engineering approaches

because they are tailored to software systems that will operate in an organisational context. Such

 28

methodologies aim to use the same concepts to describe the organisational environment within

which the software system will eventually operate, as well as the system itself [31]. For

example, in Tropos [31] the software system is represented as one or more actors, which

contribute to the fulfilment of the stakeholder goals. Tropos is reviewed in more detail in

Appendix A.4.

2.4.3.3 Approaches Based on Knowledge Engineering

Knowledge engineering methodologies are themselves considered suitable for modelling ABSs

because of the knowledge intensive nature of agents. Therefore, they can conveniently provide

techniques for modelling the agent knowledge and cognitive behaviour [90]. In addition,

existing knowledge engineering tools, ontology libraries and problem solving method libraries

can be reused. However, knowledge engineering approaches consider a knowledge-based

system as a centralised one. Thus, they are not geared to the distributed or social aspects of the

agents, or their reflective and goal-oriented attitudes.

Therefore, a number of ABS engineering approaches extend knowledge engineering

methodologies, e.g. MESSAGE/UML [30], ComMoMAS [78] and MAS-CommonKADS [91].

The majority of them are based on the CommonKADS knowledge engineering methodology

[176]. CommonKADS defines the modelling activity as the building of a number of separate

models that capture salient features of the system and its environment. This is the case for the

ABS engineering approaches based on CommonKADS as well. For example, MAS-

CommonKADS includes six analysis models and three design models. A common deficiency in

those approaches is that they do not describe the links between different specification models

and the implementation of the ABS.

The most recent of this class of approaches to ABS engineering is MESSAGE/UML, which is

reviewed and evaluated in Appendix A.5.

2.4.3.4 Tool-Based Approaches

A large number of commercial/research agent development toolkits have proliferated, the

majority of them being in the public domain [165]. Agent development toolkits aim at

facilitating the engineering of ABSs by rapid prototyping. The rapid prototyping approach they

support is tailored to the specific implementation and underlying model assumptions they make.

For example, in Zeus [147] an agent knows about particular facts, can carry out specific tasks

and can have goals, while in Voyager [148] only reactive agents are supported. Another

example is that in Jade [13] a full agent lifecycle including creation and removal can be

specified. In the current version of Zeus there is not such provision and agents are assumed to

execute infinitely. To illustrate and assess this class of ABS engineering approaches the Zeus

ABS engineering approach is reviewed and evaluated in Appendix A.6.

 29

2.4.4 Dynamic Approaches

Dynamic ABS engineering consists of having agents changing their organisational relations and

their behaviour based on the stimuli of the environment and the changes in application

requirements. The approach of having an ABS changing its structure and functionality on run-

time is called Self-Organisation [76, 93, 136, 185]. There are many approaches to self-

organisation ranging from those inspired by biological and chemical systems [156] to

approaches based on heuristics and optimisation of mathematical functions [76] [79].

Reorganisation can be based on various primitive actions taken when appropriate reorganisation

criteria are satisfied. For example, the Organisation Self-Design (OSD) framework, proposed by

Ishida, Gasser and Yokoo in [93], includes the reorganisation primitives of composition and

decomposition. Decomposition involves division of an agent into two similar agents while

composition merges two agents into one. Reorganisation acts in OSD depend on a set of

heuristic rules that can dynamically change the agent relationships, the agent knowledge, the

size of the agent population and the resources allocated to each agent. Decomposition is

performed as a result of environmental demands that are far too great for the existing agent

organisation to handle. Composition may be invoked when communication overheads are

potentially too high, or resource access response times too long to be tolerated. Therefore, the

number of agents is reduced to free resources by limiting resource requests. The initial

organisation starts with one agent containing all domain and organisational knowledge.

Other, reorganisation approaches do not involve only composition and decomposition. For

example, Patisson et. al. in [159] address the organisational reconfiguration problem. Their

approach focuses on repairing broken organisations by reallocating roles and responsibilities to

new organisational nodes, when the nodes previously responsible for particular tasks are unable

to perform them effectively. Further approaches to run time reorganisation are based on

bottleneck analysis [76] and on arranging agents in hierarchical groups that are dynamically

formed based on the agent capabilities and the application requirements [136].

To illustrate and assess this type of ABS engineering approaches the KARMA/TEAMCORE

approach [192] is reviewed in Appendix A.7.

2.4.5 Overall Assessment

In all perspectives, it is clear that ad-hoc approaches provide the weakest support to ABS

designers. The only advantage of ad-hoc approaches is their alignment to particular application

domains, which can facilitate capturing application requirements. However, they do not provide

any systematic support for the design stage and therefore they are difficult to use and error-

prone.

 30

Formal approaches provide rigorous support for verifying and specifying the design of ABSs

and rigorous specification can be the basis for automating to some extent the design and even

the implementation process, as is the case in KARMA/TEAMCORE [192] and Concurrent

METATEM [68] respectively. However, the general approach of automatic synthesis of detailed

agent specifications, although theoretically appealing, is limited in a number of important

aspects [98]. Firstly, as the agent specification language becomes more expressive, for example

a language based on first-order calculus, then the synthesis problem is harder to solve [208] and

there is no algorithm guaranteed to find a solution. Secondly, when the language is based on

first-order logic the algorithm complexity of theorem-proving can be exponential and hence not

practical for real world ABS design. Thirdly, formal techniques based on mathematical theories

are usually difficult to apply for the average software engineer [208] and do not facilitate

communication with customers who do not have a formal mathematical background. Therefore,

many authors argue that at least some steps in methodologies for ABSs engineering should be

left informal [98, 160].

Informal approaches require the designer to address most of the system complexity based on

creativity and intuition alone. This can be a serious problem in engineering large, real world

ABSs. Furthermore, informal approaches lack a semantic framework and notation that would

allow any verification of the design decisions. This complete lack of formality may result in

error-prone designs and it does not allow any automation of the design process. This contrasts

with the view supported by many authors in ABS design [186, 193] and software design in

general [124], that to reduce development effort the design process must be automated to a

certain extent.

Dynamic approaches offer the advantage of being able to adapt the ABS to dynamically

changing requirements, which is of great significance considering the open and dynamic

environments that ABSs need to operate in. However, dynamic reorganisation approaches suffer

from a number of problems. Firstly, they consume a lot of run-time system resources as the

agents in the ABS need to communicate frequently in order to carry out reorganisation acts. The

assessment of the impact of the reorganisation in system resource consumption is a subject of

ongoing research [76, 185, 192]. Secondly, the reorganisation signals may take a long time to

propagate and hence the system behaviour is not always clear. Thirdly, the system performance

may deteriorate for the same reason [119]. Therefore, it is concluded that dynamic

reorganisation should be reduced as much as possible and it should be used only when

necessary, for example when the agent environment changes due to the inherent openness of the

agent systems.

The above analysis leads to the following conclusions regarding the desirable characteristics of

ABS engineering approaches:

 31

• They should be primarily static and involve only minimal reorganisation.

• They should be informal so that they can be easier to use by the average software engineer.

• They should have sufficient formal underpinnings so that some routine steps of the design

process could be automated.

2.5 Summary

This chapter provided an overview of the basic terms characterising the notions of agent and

ABS. It defined the main terms and concepts used in the ABSs design field and investigated its

needs and approaches.

To provide the necessary background for discussing the main thesis topic the basic ideas

underlying intelligent agents and ABSs have been outlined. Starting from a very general

formalisation of an agent, the concepts of agent role and agent architecture were discussed.

Moving onto systems with several agents, the fundamental aspects, such as interaction and the

social dimension of an agent society, were described.

To better study the strengths and weaknesses of current ABS engineering approaches, with

respect to ABS design, a classification scheme was introduced. Existing approaches can be

classified as static or dynamic. Static approaches can be classified as ad-hoc, formal or informal.

Furthermore, informal approaches can be classified as originating from object-oriented

programming, knowledge engineering, information systems or from specific agent building

tools. Dynamic approaches are time and resource consuming, formal design approaches are

difficult to apply in practice and to produce implementations of ABSs and ad-hoc and informal

approaches may result in inconsistent and performance problematic designs. The analysis

conducted using the classification scheme led to the conclusion that an ABS engineering

approach should be primarily static to involve minimal reorganisation, informal to be easy to

understand by the average designer and have sufficient formal underpinnings so that part of the

design process could be automated.

 32

 33

Chapter 3

Assessment of ABS Engineering Approaches

This chapter evaluates a representative selection of ABS engineering approaches against a

number of design complexity related criteria and the results are used to motivate and guide

further work in the area.

3.1 An Evaluation Framework for ABS Design

The classification of ABS engineering approaches has shown a large diversity of approaches

with a variety of objectives and different levels of design complexity. To evaluate this

complexity, and outline areas for improvement, a comprehensive evaluation framework is

proposed here. The analysis is naturally focused on the way ABS design is done.

The proposed framework was inspired by attempts to understand and discuss the issues involved

in ABS design approaches in a systematic manner [90] and it is based on similar frameworks for

understanding and evaluating object-oriented software engineering approaches [195] and on

approaches to comparing ABS toolkits [55, 169, 182] and measuring software complexity [61].

The issues included in the framework have been selected based on their relevance to the

hypothesis that has been made in Section 1.5.

The framework examines ABS engineering approaches from different views, Concepts, Models,

Process and Pragmatics, which are summarised in Figure 3.1. This idea is an analogy to the fact

that there may be different abstractions from the same reality [122]. Different views describe an

ABS engineering approach from different perspectives. Each view represents a set of

conceptually linked aspects. For example, the implementation language and the use of standard

notations are both related to the implementation and hence they should be considered aspects of

an implementation-related view.

As mentioned in Section 2.3.4, two important facets of design complexity are those related with

the concepts involved and the functions required to design the software. This gave rise to the

Concepts and Models views in the proposed evaluation framework. Furthermore, design

complexity should also be assessed with respect to the process followed to develop the software

[61]. Therefore, the Process view was considered as well. Finally, the Pragmatic view was

considered since the aim of the framework was to assess design complexity of ABS design

methods in the context of real-world agent applications.

 34

Figure 3.1: A framework for comparing ABS engineering approaches with respect to design

The aspects of each view were selected based on known issues of concern in ABS design which

are described in more detail in the following sections. Particular attention has been given to

aspects relevant to the ABS design issues of interest identified in Section 1.3: non-functional

aspects, design heuristics and reusing design knowledge.

When assessing an ABS engineering approach using the proposed framework, a ranking scheme

for each aspect is applied. The ranking is based on subjective, qualitative values, for example,

low, medium, high. The possible ranking values are discussed together with the different aspects

of the framework in Sections 3.1.1-3.1.4. A summary of the ranking values together with a short

explanation of the framework aspects is given in Table 3.1.

3.1.1 Concepts

The concepts view concentrates on which modelling concepts are used in each approach to

model and represent the ABS. In this view, the following aspects are of interest:

1. Concept Definition: This aspect refers to restrictive premises concerning the agent

architecture and the type1 of agents that can be designed. Based on this criterion, an ABS

engineering approach can be characterised as open, bounded or limited (highly bounded).

An approach is open if it does not assume a particular agent architecture and does not

1 An agent type is a class of agents with similar capabilities and purpose.

Agent-Based
System Design Process Models

Concepts

Pragmatics

- Concept Definition
- Design in scope
- Heuristics support

- Organisational settings
- Collective behaviour
- Non-functional aspects

- Design perspective
- Support for reuse
- Design automation

- Generality
- Abstractability
- Tool support

 35

produce specific agent types, for example Gaia [209]. Alternatively, an approach may be

bounded to a particular agent architecture, as is the case with Tropos [77], which

assumes only BDI agents. Furthermore, an approach may be limited to producing only

specific types of agents, for example RAPPID [158], which considers only two types of

agents: Component Agents that represent humans and Characteristic Agents that

represent parts of a product design system. It is preferable for an approach to be open as

it can produce more types of agents and ABSs.

2. Design in Scope: This aspect refers to whether an approach includes specific methods

and guidelines for the design phase of the ABS engineering lifecycle. For example,

MESSAGE/UML [30] covers only the analysis phase of the engineering lifecycle while

MASE [205] covers analysis, design and also part of the implementation. As far as it

concerns explicitly supporting the design phase of the ABS engineering lifecycle, an

approach can be characterised as true or false.

3. Heuristics support: This aspect refers to the formal support for applying heuristic

guidelines and tips when designing the ABS. Heuristics can be either specific to ABSs

design, for example the sphere of responsibility heuristic is specific to role-based

approaches for ABS design like Zeus [38], or they can be generic. For example, there is

a consensus in the software engineering community that designed components should

have low coupling and high cohesion [179]. The formal support for design heuristics

provided by an approach can be characterised as true or false. In the case of existing

formal heuristics support, the approach provides formal techniques that can be used to

ensure application of the design heuristics. For example, in KARMA [192] heuristics can

be specified as constraints in the STEAM specification language. In contrast, in RAPPID

[158] there is no rigorous way for ensuring that design heuristics have been applied. It is

preferable for an approach to provide formal heuristics support since this increases the

quality of the ABS designs.

3.1.2 Models

The Models view refers to the models that are used to represent different parts of the ABS or

issues of particular interest and the techniques that are used to create and manipulate those

models. This Models view includes the following aspects of interest:

1. Organisational settings: This aspect refers to how organisational settings are represented

in each approach and whether they can be considered as first-class design constructs.

Organisational settings may be represented by explicit models. For example, in Zeus

[147] they are represented by role models, or they may be implied by the agent

functionality, for example in DESIRE [22] and MASE [205]. The support for explicit

 36

modelling of organisational settings by an approach can be characterised as true or false.

Organisational settings need to be considered as first class design constructs [64, 220]

and therefore ABS engineering approaches should support explicit modelling of

organisational settings and provide the means to use them directly in designing ABSs.

2. Collective Behaviours: This aspect refers to whether an approach includes appropriate

first-class modelling constructs to represent and reason with collective behaviour

resulting from agent interactions. Collective behaviour may be implicitly modelled via

the individual agent behaviour, as is the case in RAPPID [158], or it can be explicitly

modelled by appropriate models; for example, in Zeus it is modelled by role models

[147]. Many authors argue that collective behaviour as well as social and organisational

abstractions should be considered as first class design constructs enabling the agent

system designer to reason at a high abstraction level [108, 150]. The support for explicit

modelling of collective behaviour by an approach can be characterised as true or false. It

is preferable for an approach to support explicit modelling of collective behaviour

because the abstraction achieved reduces development effort and specification errors

[129].

3. Non-functional aspects: This aspect refers to the way that non-functional aspects are

considered in each approach. Non-functional aspects can be implicitly modelled within

individual agent behaviour for example, in Gaia [209] or can be explicitly

represented by appropriate modelling constructs, for example, in Tropos [77].

Furthermore, it is possible for non-functional aspects to be taken into account by

adjusting the agent behaviour on run-time [76, 185]. The support for explicit modelling

of non-functional aspects by an approach can be characterised as true or false. It is

preferable for an approach to support explicit modelling of non-functional aspects and

they should be considered as early in the engineering process as possible [35].

3.1.3 Process

The process view concentrates on the steps that are executed in order to construct the models

discussed in the Models view and on techniques that support and assess those steps. In

particular, this view is concerned with the following aspects:

1. Design Perspective: This aspect refers to the perspective from which each approach

views the ABS design. The perspective can be top-down or bottom- up or both (top-

down and bottom-up) depending on how the design of the ABS progresses. In the top-

down perspective, the design models are constructed by refining high-level models of

the agent organisation, such as in Gaia [209]. In the bottom-up perspective, design

models are progressively composed from existing finer-grain models thus supporting

 37

reuse, for example in [111]. ABS engineering approaches should support both, such as

MESSAGE/UML [30].

2. Support for Reuse: Reuse refers to whether the approach supports using previous

knowledge in designing an ABS. Approaches that explicitly address reuse provide steps,

deliverables and heuristics for the identification, construction, testing, demonstration and

application of reusable components. For example, in the Zeus toolkit methodology [147]

there are guidelines for creating, storing and reusing negotiation strategies when

specifying agent interactions, whilst in RAPPID [158] there are not such facilities.

Regarding supporting reuse, an approach can be characterised as true or false.

Systematically supporting reuse is highly preferable since it reduces development effort

[141].

3. Design Automation: This aspect refers to the degree of formality that exists in the

specification models of the approach. The higher the degree of formality the more the

design process can be automated [124]. Some process steps should definitely be carried

out based on the judgement of the human designers. For example, the selection of roles

in the analysis phase in Gaia has definitely to be carried out by the human designers

[209]. However, some other process steps could be automated and carried out by a

software tool. For example, it is possible to automatically create agent system designs

from the analysis models using formal graph transformations [50, 52, 186]. The degree

to which the process steps of an approach can be automated can be characterised as high,

medium or low. For example, the DESIRE [22] approach can be highly automated, as

many steps are formally defined using mathematical techniques, while RAPPID [158]

cannot be automated since the design process is not formally defined to any degree. It is

preferable for an approach to be highly automated as this reduces development effort and

development errors [1].

3.1.4 Pragmatics

This view focuses on the pragmatics of each ABS engineering approach. In other words, this

view refers to how practical the approach is for the design of real-world agent systems. The

aspects of interest in the pragmatics view are the generality, the complexity handling and the

tool support involved in an approach.

1. Generality: The generality of each approach refers to what development context the

method is appropriate for. Generality has to do with restrictive premises that affect the

applicability of the approach as far as it concerns the environment and the application

domain. The generality of an approach can be characterised as high, medium or low.

High generality means that the approach can be applied without any significant

 38

restrictions, e.g. Tropos [77]. The generality is medium when there are considerable

restrictions but the applicability of the approach is still wide. For example, Gaia [209]

assumes a closed ABS and a small number of cooperating agents. In contrast, RAPPID

[152] is limited in the sense that it can be applied to design ABSs that will only be used

to support industrial product design and, therefore, its generality is low.

2. Abstractability: This aspect refers to whether there is formal support to handle the design

complexity inherent in an ABS engineering approach. As mentioned in Section 2.3.4.1,

design complexity refers to how difficult it is to understand the required concepts and

techniques involved in an approach and apply them to design an ABS. As high design

complexity results in error-prone software products [129] and increased development

effort [25], it should be taken into account when selecting an ABS engineering approach.

One of the main factors affecting ABS design complexity is whether designers are

allowed to work at different levels of abstraction. For example, the complexity involved

in Tropos [24] is higher than the complexity involved in DESIRE [22] since in the latter

it is possible to specify agent behaviour at different abstraction levels which are formally

described. Approaches to handling design complexity by means of working at different

abstraction levels can be characterised as true or false. This generic criterion is used to

characterise the complexity handling of ABS engineering approaches in Section 3.2.

3. Tool support: This aspect is concerned with whether there are tools supporting the

realisation of the approach. For example, the role-based approach introduced in [147] is

supported by the Zeus agent building toolkit, which assists the users in designing ABSs.

On the other hand, there is no tool support for the Gaia approach [209] and the engineer

is responsible for manually creating all the relevant models. The tool support of an

approach can be characterised as true or false. It is preferable for an approach to be

supported by CASE tools since this greatly reduces development effort and development

errors [129] and increases the usability of the approach since it automates mundane and

repetitive tasks [143].

It must be noted that some aspects are interrelated. For example, low or limited concept

definition is likely to be combined with low or medium generality, as is the case in RAPPID

[158]. However, this is not always the case, For example, Tropos [23] is bounded to only BDI

agents and it is still applicable in many application domains.

 39

Table 3.1: Description and ranking of evaluation framework aspects

Evaluation Framework Aspects Description/Ranking Values

Concept definition How is the approach characterised regarding
restrictions in the definitions of agents and agent-

based systems?
[limited (≤≥), bounded (<>), open (><)]

Design in scope Does the engineering approach provide explicit
support for the design phase of the agent-based

system engineering lifecycle?
[yes (√), no(−)]

Heuristics support Does the approach provide formal techniques to
support application of design heuristics?

[yes (√), no(−)]

Concepts

Organisational settings Are organisational settings first-class design
constructs?

[yes (√), no(−)]

Collective behaviour Are collective behaviours first-class design
constructs?

 [yes (√), no(−)]

Non-functional aspects Are non-functional aspects explicitly modelled and
considered in the design of the agent-based system?

[yes (√), no(−)]

Models

Design perspective What is the development perspective of the
approach?

[bottom-up (↑), top-down (↓), both (↕)]

Support for reuse Does the approach provide guidelines and
techniques to reuse existing design knowledge?

[yes (√), no(−)]

Design automation Do suitable formal underpinnings exist that can
automate the design process to a certain extent?

[yes (√), no(−)]

Process

Generality What is the generality (possibility of being applied
to many application domains) of the approach?

[low (○), medium (∅), high (⊗)]

Abstractability Does the approach provide formal support for
reasoning at different levels of abstraction?

[yes (√), no(−)]

Pragmatics

Tool support Is there any assistance to the agent-based system
designers by some software tool?

[yes (√), no(−)]

 40

Table 3.2: Comparison of ABS engineering approaches

3.2 Comparative Evaluation of ABS Engineering Approaches

A representative ABS engineering approach from each class of the classification scheme

proposed in Section 2.4 has been evaluated according to the four views of the conceptual

framework described in Section 3.1 (The approaches are reviewed in detail in Appendix A). A

summary of the results is presented in Table 3.1.

Regarding the Concepts perspective, about half of the ABS engineering approaches (DESIRE,

Tropos and Zeus) are bounded to specific agent architecture. RAPPID is the only one limited to

specific agent types as well. Furthermore, the majority of the approaches examined (DESIRE,

Gaia, Tropos, Zeus and KARMA) consider design as an explicit step in the ABS engineering

R
A

PP
ID

D
E

SI
R

E

G
ai

a

M
E

SS
A

G
E

T
ro

po
s

Z
eu

s

K
A

R
M

A

Concept definition ≤≥ <> >< >< <> <> ><
Design in scope − √ √ − √ √ √

Heuristics support − − − − − − √

Concepts

Organisational settings − − − − − √ √
Collective behaviour − − − − − √ √

Non-functional aspects − − − − √ − −

Models

Design perspective ↓ ↓ ↓ ↕ ↓ ↑ ↓
Support for reuse − √ − − − √ −

Design automation − − − − − − √

Process

Generality ○ ∅ ∅ ⊗ ⊗ ∅ ⊗

Abstractability − √ − − − − √
Tool support − √ − √ − √ √

Pragmatics

Legend

 ○ - low
 ∅ - medium
 ⊗ - high

≤≥ - limited
 <> - bounded
 >< - open

 ↑ - bottom-up
↓ - top-down

 ↕ - both

√ - yes
− - no

 41

lifecycle. However, only KARMA/TEAMCORE provides formal support for heuristics in the

design of the ABS. Clearly, this is a general deficiency of current ABS engineering approaches.

As far as it concerns the Models perspective, only Zeus and KARMA/TEAMCORE explicitly

model organisational settings. Representing collective behaviours as first class design constructs

is also not supported in most of the examined approaches. The only exceptions are Zeus where

collective behaviours can be represented by role models and KARMA/TEAMCORE where

collective behaviours are modelled by appropriate team plans. The lack of support for non-

functional aspects is even more pronounced. Indeed, only Tropos considers non-functional

aspects in the design of ABSs.

In the Process perspective, only MESSAGE/UML allows working in both top-down and

bottom-up fashion and the current version of MESSAGE/UML supports only the analysis phase

of the ABS engineering lifecycle. Zeus supports bottom up design, the rest of the approaches are

all allowing top-down design. Furthermore, only two approaches explicitly provide support for

reuse, DESIRE and Zeus. DESIRE includes guidelines about how the agent system designer can

reuse generic task components in the design of the ABS and Zeus includes guidelines about how

to reuse generic behaviours represented by role models and generic agent characteristics for

example negotiation strategies. There is also significant lack of support for automatic design of

ABSs. Only KARMA/TEAMCORE supports automatic selection of the agents that will

participate in the agent organisation based on team plans specified by the designer.

Regarding the Pragmatics perspective, approximately half of the approaches (MESSAGE,

Tropos and KARMA/TEAMCORE) are general targeting a broad range of application domains.

The rest are restricted as follows: Gaia assumes closed ABSs consisting of small numbers of

static, cooperating agents. Zeus has restrictions regarding the environments where the agents

produced can operate. For example, Zeus agents cannot be mobile and they require a large

amount of physical RAM memory to execute. DESIRE is also specific to applications requiring

static agents whose behaviour can be described by a task-based hierarchy. RAPPID is the most

specific approach since it targets a specific application domain; that of supporting industrial

product design.

The above analysis highlights certain weaknesses in existing approaches and it shows that there

is no approach supporting all framework aspects. As a result, a number of issues that would

require further research can be identified. These are discussed in more detail in the next section.

3.3 Implications for Further Research

The comprehensive analysis of existing ABS engineering approaches (see Sections 2.4.5 and

3.2) has demonstrated that none of the approaches reviewed covers all aspects of design support

 42

included in the evaluation framework introduced in Section 3.1. An effective approach to ABS

design should therefore cover a number of outstanding issues, which are described in more

detail in the following sections.

3.3.1 Support for Design Heuristics

Design heuristics are considered very important for the engineering of robust commercial

software [179]. Considering that the design process needs to be automated to a certain extent to

reduce development effort, as discussed in [124], an effective design method should support the

application of heuristics in both manual and automatic design steps. Automated application of

heuristics requires that models with appropriate formal underpinnings need to be used in the

design process.

Existing ABS engineering approaches do not provide systematic and rigorous models for

considering heuristics in the design of the ABS. In approaches based on formal methods, such

as DESIRE [22], software design heuristics can be taken into account in a rigorous manner but

there are no guidelines and systematic methods to assist the designer in the application of

heuristics. The designer needs to manually incorporate the heuristic rules in the formal ABS

specifications.

There are some approaches, that provide some informal ABS design heuristics. An example is

Zeus [147], where two design heuristics are provided: the sphere of responsibility and point of

interaction heuristics. According to the sphere of responsibility heuristic, the designer should

partition the application resources to areas of control and represent each area of control with a

software agent. The point of interaction heuristic refers to representing each resource in the

application domain with an agent. However, those informal heuristics cannot be easily applied

to the design of large ABSs. Furthermore, it is difficult for the designer to predict the effect on

design decisions when those heuristics contradict with other requirements (e.g. non-functional

requirements). Indeed, often it is important for a method to formally combine design heuristics

with application requirements [44, 225]. In this way, consistency checking would be done

automatically by a software tool and design heuristics would be taken into account, to the extent

that they do not conflict with other application requirements. This thesis, contributes to this

issue by introducing a rigorous method to apply design heuristics. Its contribution is described

in detail in Chapter 5.

3.3.2 Organisational Settings

As established in Section 1.3.2, the term organisational settings is used to refer to the general

rules and conventions, as well as various authority relationships and coordinating interactions,

that exists among entities in an organisation [73]. Organisational settings are important both to

fully utilise the potential of an ABS [64] and to address challenging issues, including system

 43

openness [220] and the dynamism of the environment [8]. Organisational settings are of

particular importance when the ABSs aim to support the operation of human activity systems. In

such cases, the organisational settings of the human systems should be aligned with the

organisational settings of the ABSs [96, 98].

Some agent system engineering approaches explicitly model organisational settings of the ABS

 for example, MAS-CommonKADS [91] and SODA [150] and there are cases where the

agent organisation is designed during a distinct design step, before the agent behaviour is

completely specified [7]. However, it is argued that even when organisational settings are

explicitly modelled, the models only represent the organisational relationships between agents

without considering social tasks and social laws [222]. Furthermore, organisational settings are

not considered as first class design constructs apart from a few exceptions of approaches based

on role modelling [147, 150]. Another problem concerning organisational settings is that

existing approaches do not provide any rigorous methods for combining organisational settings

with application functionality. This has to be done intuitively by the designer without any

assistance by a software tool.

Considering the above discussion, it is apparent that a rigorous method to represent

organisational settings and combine them with application functionality, while considering them

as first class design constructs, is required. This representation should not only model the

organisational relationships among agents, but it should also allow modelling of social tasks and

social lows. This would significantly contribute towards addressing the openness and the

dynamism of the environments where real-world ABSs must operate. This thesis contributes

towards this objective by introducing an approach based on role modelling. This approach is

described in detail in Chapter 5.

3.3.3 Collective Behaviour

A similar problem exists regarding representing collective behaviour. In this thesis, the term

collective behaviour is used to refer to behaviour which results from the interaction of a number

of entities in a particular context. Many authors argue that collective behaviours should be

treated as first-class design constructs, namely that they should be able to be instantiated and

given identity [2, 111]. However, even where this is issue is addressed, such as in Zeus [38],

there is no rigorous way to reuse collective application functionality and combine it with

organisational settings.

Clearly, representing collective behaviours in a rigorous manner so that they can be directly

combined with organisational settings is a research issue of major interest. A prominent

direction toward this goal is to model collective behaviour using role models [49, 51, 111] and

this is the direction followed here. Furthermore, this thesis introduces the necessary formal

 44

underpinnings so that collective behaviours and organisational settings can be combined in a

rigorous manner.

3.3.4 Non-Functional Aspects

An issue of major concern in ABS design is the modelling and consideration of non-functional

aspects such as security and performance [18]. To achieve this it is necessary to explicitly model

and consider non-functional aspects before actually deploying an ABS. Treatments of non-

functional aspects can be classified as product-oriented and process-oriented [35]. Process-

oriented approaches develop techniques for justifying decisions concerning support of non-

functional aspects during the software development process. For example, adding elements in

support to particular non-functional aspects at each modelling step when creating design

models. Product-oriented approaches deal with non-functional issues from the evaluation point

of view. They involve examining software products to check if they fall within certain

constraints of non-functionality and amending them as needed. Ideally, elements from both

approaches should be combined to support explicit modelling of non-functional aspects since

they complement each other [145].

To the best of author’s knowledge, no other ABS engineering approach explicitly considers

non-functional aspects in design apart from Tropos [23], which, at some stage, includes

introducing actors and sub-actors that contribute positively to the satisfaction of non-functional

requirements. However, the Tropos approach to modelling non-functional aspects suffers from

two main weaknesses. Firstly, it models non-functional aspects in a way that it cannot be

directly reused in other ABS designs. Secondly, quantitative characterisation of non-functional

aspects is not possible.

In some cases, non-functional aspects are the basis for criteria for reorganisation in dynamic

approaches, as is the case in KARMA/TEAMCORE. In these instances non-functional aspects

are taken into account by adjusting the agent behaviour and the organisation of the ABS on run-

time. However, this treatment of non-functional aspects impedes the reuse of non-functional

models. It also contributes to significant consumption of resources and system instability.

A new approach to ABS design should provide explicit models of non-functional aspects that

would be used on design time. Furthermore, modelling of non-functional aspects should

combine both product-oriented and process-oriented approaches. In addition, models of non-

functional aspects should be able to integrate with models of system functionality in a rigorous

manner. In this thesis, these issues are addressed by modelling non-functional aspects using

explicit role models and constraints on role characteristics.

 45

3.3.5 Automating the Design Process

In order to reduce development effort and software design errors the design process should be

partially automated [124]. This view is also adopted by informal ABS engineering approaches

[50, 186, 205] that try to provide the formal underpinnings for automatically designing ABSs

from appropriate informal specifications. The common way of doing that is by progressing from

analysis to design by successive formal transformations of the analysis models. The

transformations used, however, focus on ensuring that the designed agent components are

correctly represented in respect to the analysis models, using object-oriented software

engineering concepts and techniques. For example, in [186] formal transformations are used to

decide on the number of objects and concurrent threads that should be used to correctly realise

the behaviour of each agent component. To the best of author’s knowledge, current informal

ABS engineering approaches do not provide any automatic support for actually deciding on

what behaviour each agent in the ABS should have. This is not the case for dynamic approaches

where the design of the agent system is done during reorganisation steps. For example, in

KARMA/TEAMCORE [192] the agent components are automatically selected based on

specifications of the agent-based application requirements described in the STEAM modelling

framework [191] (see also Section A.7). However, KARMA/TEAMCORE assumes that agents

already exist in the cyberspace, which is not generally the case. In addition, the focus of this

work is on automating the static design process which is done only once before deployment.

To provide support for automatic design of the agent-behaviour based on informal models, the

required functionality and the criteria used to determine the behaviour of each agent should be

specified with appropriate rigour. Furthermore, a systematic design process with clear manual

and automatic steps is required. In this thesis these issues are addressed by formalising role

relations with respect to allocating roles to agents and by introducing a design process based on

the principles of synthesis.

3.3.6 Working at Different Abstraction Levels

Design complexity needs to be reduced in order for an ABS engineering approach to be easy to

understand and apply [169]. Alagar and Periyasamy in [1] stress that the most common and

effective technique for dealing with complexity is abstraction. Abstraction means generality.

For example, to describe a collection of similar objects having some common attributes one can

use the notion of set. In this way it is possible to unambiguously refer to all objects in the set at

the same time without concern about how the set is represented.

There is a consensus that abstraction in software design reduces design complexity [139]. It is

mandatory to deliver abstraction mechanisms to programmers both in software engineering

methodologies and in programming languages [183]. Although abstraction has the trade-off of

 46

reducing software efficiency and performance [40], it may add to the reliability of the produced

software as frequently used components are thoroughly tested and the design process can be

automated [1].

Abstractions in software specification can be achieved in two main ways [1, 183]:

• By partitioning the world of objects using modular decomposition techniques. This allows

us to understand the individual and the collective behaviour of objects at various levels of

detail. For example, appropriate role models can represent groups of objects interacting for

the same purpose [108]. Then one can reason at the individual role level or at the role model

level depending on the detail required.

• By encapsulation of related functional characteristics to well understood models. For

example behaviours related with a position and a set of responsibilities can be represented

by appropriate roles [111, 209, 224]. It is argued that reuse of appropriate software

components is mandatory to efficiently engineer ABSs for real-world applications [81, 193].

As abstraction is a common practice in software design, a number of ABS engineering

approaches allow the designer to work at different levels of abstraction. However, not all of

them provide appropriate formal support. For example, MESSAGE/UML allows modelling at

levels 0 and level 1 but there is no formal description of the relations between the models of the

two levels. As a result, proper use of MESSAGE/UML requires the designers to have a clear

understanding and explicitly consider the links between models at levels 0 and 1, which makes

the ABS design task more difficult,

The only approaches examined in Section 3.2 that provide formal support for working at

different levels of abstraction are DESIRE [22] and KARMA/TEAMCORE [192]. However,

their support is limited. DESIRE only supports interaction between tasks at different abstraction

levels and KARMA/TEAMCORE supports teamwork at different levels of abstraction in the

form of joint intentions. Agent behaviour, however, is characterised with other aspects as well.

For example, coordination protocols or negotiation strategies, which the designer should specify

at the lowest level of detail in those two approaches. This problem is addressed in the Zeus

approach [147]. For example, in Zeus the agent system designer can either select a predefined

negotiation strategy or specify all negotiation rules in detail. Zeus models agent behaviour at

different levels of abstraction based on role modelling. However, this support is informal since

the relations among roles have not been given formal semantics.

Consequently, none of the approaches examined provides adequate support to the designers for

working at different levels of abstraction and this is therefore an open issue. Different levels of

abstractions should include all aspects characterising agent behaviour, such as goal-based

behaviours and coordination protocols. This thesis contributes towards this issue by extending

 47

the Zeus role modelling approach to include formal semantics of relations among roles and

more characteristics in the role definition.

3.4 Summary

This chapter proposed a framework to assess ABS engineering approaches with respect to

design. Using this framework, a number of approaches have been examined revealing a number

of issues that would require further research.

The proposed framework suggests looking into ABS engineering approaches from four views:

Concepts, Models, Process and Pragmatics. The Concepts view refers to the modelling

concepts used to model ABSs and it concerns the generality of the concept definition, the

existence of specific support for design in the ABS engineering process and the support for

design heuristics. The Models view refers to modelling of organisational settings and collective

behaviour to be used as first class design constructs and to explicit modelling of non-functional

aspects. The Process view examines the perspective of the design process and whether it can be

based on reuse and if it can be automated. The Pragmatics view evaluates the applicability of

the approach to real-world applications by assessing the generality, the complexity handling and

the tool support of the approach.

The evaluation of a representative ABS design approach for each class in the classification

scheme introduced in Chapter 2 reveals considerable weaknesses in current approaches with

respect to designing the ABS. Existing approaches do not provide formal support for design

heuristics, do not consider organisational settings and collective behaviour as first class design

constructs and they do not take non-functional aspects into account in the design. Overall,

current approaches cannot automate the design process to any extent and they do not provide

adequate support for working at high levels of abstraction.

An effective semi-automatic approach to ABS design should address these problems, and thus

satisfy all the criteria of the evaluation framework proposed in this chapter. In particular, such

an approach would extend informal ABS design approaches based on role modelling by

providing the formal underpinnings for design heuristics support, design process automation

and work at high levels of abstraction. Furthermore, the proposed approach would include

modelling mechanisms that would enable considering ABS organisational settings and

collective behaviour as first class design constructs and would allow taking non-functional

aspects into account in ABSs design. Finally, this approach should be implemented in a

software tool.

 48

 49

Chapter 4

Using Role Modelling for ABS Design

This chapter reflects the need for a systematic approach to ABS design based on role modelling.

It is argued that such an approach should combine role-modelling aspects from sociology and

information systems engineering and that it should be grounded on a comprehensive social

system analysis theory such as role theory. Finally, directions on how role modelling can be

used to address the open research issues raised in Chapter 3 are highlighted paving the way for a

detailed discussion of the proposed ABS design approach in Chapter 5.

4.1 Complete Role Modelling Approaches

Role concepts are used in many areas of computing, such as object oriented software

engineering [163] and workflow system modelling [219]. However, in many cases the use of

role concepts is done in an ad-hoc manner. For example, the term ‘role’ is not defined in detail,

as is the case in [64], or no criteria for deciding what roles each entity in the system can play are

specified [2]. Ad-hoc use of roles makes it difficult to design and implement software systems

systematically and such approaches are considered incomplete [126, 127]. In contrast, when role

modelling approaches are clear from ambiguities and include appropriate methods that can

assist in the analysis, design and implementation of role-based software, then they are termed

complete [127].

Complete approaches should provide a clear description of the term ‘role’ and a distinction

between various role types if applicable. Furthermore, they should describe how roles are

identified, what relationships can be established between various roles or types of roles and

what inconsistencies may arise in role specifications. Finally, they should define how roles can

be assigned to software components.

These criteria are used to establish the foundations of a role modelling approach for ABSs

design by examining aspects from uses of role modelling in social and business system analysis

and software systems engineering. This prepares the ground for a more detailed discussion

about the ABS design method proposed in this thesis, which is positioned in the next chapter.

The discourse starts by defining the term ‘role’ and its characteristics. Subsequently, an

overview of role theory, a comprehensive theory that models and studies social systems based

on role concepts, is given. In Section 4.3, various approaches to using role modelling in

software systems engineering are classified and discussed. Section 4.4 contains a discussion of

 50

how role modelling can address the issues for further work in supporting ABS design raised in

previous chapter, Finally, Section 4.5 summarises the issues discussed throughout the chapter.

4.2 Modelling Social Behaviour Using Roles

As mentioned in Section 2.2.5, roles are representations of behaviour. In this thesis, the interest

is in behaviour in the context of social systems since the view is that ABSs should be aligned

with the human activity systems they support. However, in social systems roles can be used to

refer to different facets of social behaviour at different levels of detail. Therefore, defining roles

to represent social behaviour is not trivial. This section discusses how roles and role

characteristics are defined in the area of sociology. The emphasis of the discussion is placed on

role concepts that would be useful in defining roles, and using role modelling for ABS design

considering the completeness criteria proposed in Section 4.1.

4.2.1 Defining the Term ‘Role’: a Social View

The term ‘role’ has been extensively used to describe social behaviour in the areas of sociology

and social psychology. A role describes behaviour within some social activity context and in

connection with relationships with other roles. In order to be useful in modelling and designing

ABSs a role definition should lie within a context and be focused on the normative aspects of

social behaviour.

4.2.1.1 Social Aspects of Role Definitions

Although the origins of the term “role” can be traced back several centuries, it first appeared

with a meaning close to the one it has today in the theatre where actors “play roles”. Roles have

been broadly used in the area of sociology to model individual behaviour as well as social

system structure and organisation [6, 16], and to provide the theoretic basis for discussing about

system creation and system evolution [6, 15]. There are numerous definitions of the role concept

in sociology, all referring to behaviours of persons in some context. Biddle [15] summarises

some representative definitions of the role concept in sociology as:

- “what the actor does in his relations with others” ([153], p.25);

- “what persons do as occupants of the position” ([142] p.280); and

- “what the actor does … seen in the context of its functional significance” ([153], p.25).

Biddle also provides a similar definition of a role as ”a characteristic behaviour of one or more

persons in a context” ([15] p.58). A comprehensive historical review of the evolution of the

definitions of the role concept in sociology can be found in [196].

 51

Several authors have proposed to start from sociological definitions of the term role and define

roles to represent agent behaviour [122, 201]. Similarly, many authors in the agent systems

research, e.g. [83], view roles as primary sociological concepts that must be redefined in an

operational manner to be useful for modelling behaviour in ABSs. A definition of the term

‘role’ specifically for modelling agent behaviour is presented in [201], where a role is defined as

“...the functional or social part which an agent, embedded in a multi-agent environment, plays

in a (joint) process like problem solving, planning or learning'' thus focusing on operational

aspects. Lind ([122], p. 17) presents a different focus for as a social construct by stating that: “A

role is a collection of expectations towards the behaviour of the inhibitor of a particular

position that allows the members of the society to predict the inhibitors behaviour and to plan

according to their expectations“. Werner [202], on the other hand, limits the concept of role to

purely cognitive states that are determined by the knowledge, the permissions, the

responsibilities and the assessment of the current situational context of the agents. Finally,

Gasser [73] defines the concept of role as a “prototypical type of behaviour”.

Generally, it is agreed that a role corresponds to a position in a social structure. A person or an

agent can be associated with more than one social position. The actual behaviour of a role can

be related to the individual’s own ideas of what is appropriate (role cognition), to other people’s

ideas about what he will do (expectations) or to other people’s ideas about what he should do

(norms) [6], p. 29. In this light, a role may be understood as a set of norms and expectations

assigned to a social position in a particular context, an approach that will be adopted in this

thesis as well.

4.2.1.2 Role Relationship Zones

The context in which roles are defined concerns both the physical environment as well as the

social environment including other roles as well. Therefore, the behaviour represented by a role

can be related to that of other roles to form a “social net of role relationships” [59]. For

example, two roles are related to each other when they interact in some way. Role relationships

have many subjective aspects, for example, they may reflect the need of individual workers for

informal communication in working environments [117]. Therefore, it is necessary to identify

the normative parts of role relationships that can be modelled or formalised. Elliot [59]

distinguishes several “zones” or “levels” at which role relationships can be modelled (Figure

4.1). The work described in this thesis relates essentially to the legal and institutional zone

where the obligations, rights and protocols for required inter-communication among roles are

defined. For example, when a participant in an auction submits a bid to the auction coordinator

this must be done according to a predefined and specific protocol, which leaves no ambiguities

regarding the amount bided and the method of payment. Interactions in the inter-subjective zone

are essentially informal communications [59]. As they do not have the mandatory aspect of a

 52

protocol it is not practical to attempt to support such interactions in an ABS [127]. Furthermore,

the current trends in agent research indicate that agents will always communicate according to

specific communication protocols specified by standardisation bodies, e.g. FIPA [67].

Therefore, modelling role behaviour at the inter-subjective level is outside the scope of this

work.

Figure 4.1: Role relationship zones

4.2.2 Overview of Role Theory

Role concepts have often been used in sociology in an ad-hoc manner. To be practically

applicable in the design of ABSs and fulfil the criteria proposed in Section 4.1 role modelling

should be based on a systematic theory. Role theory is a comprehensive theory for describing

and reasoning about social behaviour using roles. It provides the systematic approach and

formal definitions necessary for the application of role modelling to agent system design.

However, role theory still needs improvement as far as it concerns formalisation of role

relations and assignment of roles to agents.

Role theory [15, 16] is a science concerned with the study of behaviours that are characteristic

of persons within contexts and with various processes that presumably produce, explain or are

affected by those behaviours. Those behaviours are represented with appropriate roles. In this

view, individuals in a society are expected to fulfil certain roles (e.g. father, director, doctor)

that predefine their rights and duties in that society, in the same way that actors play a part. The

behaviour of roles is characterised by authorities (rights) describing things that can be done and

responsibilities (duties) describing things that must be done. For example, directors, help-desk

staff, developers and test engineers are all associated with job descriptions specifying their

R1 R2

Institutional zone

Legal zone

Cultural zone

Inter-subjective zone Subjective zone

 53

responsibilities in a business organisation. Role theory has the advantage of being a complete

science with its own terms and concepts.

Role theoretic terms are intuitively understandable since they are also used in common

language. However, role theoretic concepts lack adequate formalisation, something that is

considered a significant disadvantage [16, 196]. This is particularly problematic if role theory is

to be used for the modelling of artificial societies. In this thesis, this problem is mitigated by

introducing a formal model of role relations and a method for automatic allocation of roles to

agents.

4.2.3 Role Theoretic Concepts

To facilitate subsequent discussions, the basic concepts of role theory are presented in more

detail together with implications about how these concepts can be used for applying role-theory

to ABS design:

• Person: For the sociologist, a person is an entity that exhibits behaviour normally as a

member of a community. A person is a carrier of culture and a representative of the

assumptions and values of the community he/she is a member of. In addition, a person

receives stimulus from the social environment and responds to challenges with behaviours

that are functionally linked to other behaviours for the accomplishment of tasks.

Furthermore, the behaviour of a person is also dependent on the goals the person has, for

example one that seeks to increase his personal income is likely to work overtime. Agents

also try to achieve goals, can carry out tasks and exhibit their behaviour in the context of

ABSs which can be viewed as organised social systems [64, 73, 98, 150, 221]. Therefore,

role theory can be applied to ABS modelling and the person concept can map onto the

concept of autonomous agent. The goals and tasks of a person defined in role theory

correspond to agent goals and tasks as they have been commonly defined in the agent

literature (see also Section 2.2.2).

• Roles: Roles are patterned human behaviours that are the basis for describing the

behaviours of persons in a society. Personal roles that are commonly played by sets of

persons are termed identities. For example, the roles describing the behaviours of the

relatives of a person are identities. Therefore, the behaviour of a person is more or less

known once his/her identity is known. Furthermore, roles can be associated with social

positions (or statuses). In general, a social position is an identity (a characteristic role) that

designates a commonly recognised set of persons. For example, the terms ‘physician’ and

‘university lecturer’ both constitute a social position.

Agent roles should be defined in a similar manner, extended as appropriate to meet all

modelling requirements, i.e. non-functional aspects.

 54

• Role functions: Roles are likely to have characteristic effects, or functions, within the

social system. The effect of role functions has a purpose aligned with the overall goal of the

role. For example, the physician who wears a white coat in the hospital helps others to

recognise him or her quickly and thus follow his or her orders in an emergency. Agent roles

can also have functions from a role theoretic perspective. Those functions can be modelled

as appropriate role characteristics, for example the coat colour could be a characteristic of

the physician role. This approach to modelling role functions is discussed in more detail in

Section 5.2.

• Context: There is a consensus that most role behaviours are contextually bound. For

example, a football match and a church service are contexts and an audience member is a

role describing the behaviour of the audience. Clearly, the audience behaviour, for example

whether to cheer or to sit in solemn silence, depends on the context, stadium or church, the

person has entered. Hence, context affects role definition. The agent roles are defined in the

context of the application domain the ABS is targeting.

• Social Systems: According to role theory, roles are normally imbedded within social

systems and role concepts may easily be used for the analysis of complex social forms. For

example, most factories have a table of organisation that lists the social positions of its

employees. Each of these positions is assigned a job to do, and each exhibits characteristic

role behaviours. The roles of the various positions are specialised and interdependent. In a

production line, for example, performance of several thousand roles may be necessary to

generate an automobile, a vaccine or a computer. In such a context, individuals must learn

to accommodate a specialised role if they are to remain members of the organisation. Social

systems correspond directly to ABSs since ABSs are by definition agent societies.

• Role assignment − Socialisation: According to role theory, roles are assigned to persons

through the sharing of expectations of a particular behaviour in a process termed

socialisation. In other words, those that exhibit the role are stimulated to do so because they

learn what behaviours are expected from them. For example, it is said that physicians wear

white coats in the hospital ward because they have learned that their patients have such

expectations. However, in ABS design role assignment is a characteristic of the approach

followed, e.g. static or dynamic. In the method proposed in this thesis, role assignment is

done statically at design time. Role assignment is further discussed in Section 5.2.7.

• Role differentiation and specialisation: Two or more roles are differentiated if they have

but few behavioural elements in common. Role differentiation can be used not only to

separate performances of persons who occupy different social positions, but also behaviours

 55

of a single person in various contexts. When different persons perform differentiated roles

of the system, this is termed role specialisation.

• Role Integration: Several terms have also been suggested for describing the ways in which

roles in a social system relate together. The general term describing a well ordered social

system is role integration. When a role system is role integrated, this means that its roles fit

well together. There are various ways in which malintegration may be generated.

Performers of different roles may find their duties overlap, that their roles are functionally

interrelated although they have inadequate means of communicating, that they are

competing against one another for scarce resources needed for role performance, or that

differing standards of reward or demand apply to their various roles and so on. Role

integration is associated with role dependency relations, which are discussed further in the

next Section.

4.2.4 Role Dependency Relations

There is a consensus in the sociology literature that mutual dependency relations can be formed

between roles [6, 16]. Those dependencies affect the existence and compatibility of roles both in

the same social system and in the same person. That is some roles can only exist if other roles

exist as well. The role of a “physics teacher” only makes sense if the corresponding role of (at

least one) “physics student” exists in the same social system as well. An example of role

incompatibility is a university examination. The same person cannot be both taking the exam

and invigilating at the same time.

Biddle [16] emphasises that dependency relations between roles can describe particular aspects

of social behaviour. For example, entry to some social positions is governed not by abilities or

desires of the person, but rather by accidents of birth or customs of the society. An example of

this is when women and or persons from ethnic minority groups are denied opportunities for

employment although they are fully qualified. Moreover, positions are sometimes arranged in an

age or achievement-graded sequence such that the person must first achieve membership in a

given position of the sequence before he or she can be considered for elevation to the next

position. For example, those without a bachelor’s degree will not normally be accepted for

postgraduate education in a university.

Dependency relations among roles can be also used to describe problems that may be

encountered in particular behaviours of individual persons [6, 15]. Some roles are difficult to

perform and take great natural ability or years of practice to learn. Some times the person is

subjected to incompatible role expectations (or role conflict) wherein he or she is required to do

two or more things that cannot all be done. In addition, individuals may suffer from role

overload when too much is asked of the person, as may be the case for persons who have to

 56

both work and study at the same time. Furthermore, sometimes the role the person is asked to

perform is inconsistent with his or her needs or basic values. For example, it is not morally

acceptable for militants to release national secrets to other nationals. In addition, the behaviour

of a person can be considered deviant by the society and the person is subject to punishment or

institutionalisation until the problematic roles are replaced. For example, theft is punished in

most modern societies.

Dependency relations among roles are therefore an important instrument for describing

behaviour at both individual and organisational levels. The power of this instrument can be

increased if it is combined with appropriate role selection in the application context of interest,

and with appropriate specification of role characteristics to reflect the application requirements.

For such an approach to work, however, role relations need to be defined within a formal system

to enable reasoning regarding expected agent behaviour. This definition is one of the main

contributions of this thesis and is discussed in Section 5.2.7.

4.2.5 Role Identification and Role Types

A major problem in the field of sociology is the delimitation of roles that occur within a society.

Role theory addresses this issue by considering two broad criteria for role identification [16]: (1)

Roles may be associated with persons or within contexts; and (2) a role may also be defined in

terms of its content or a function that is performed by the role. Furthermore, role theory

considers the following role types that can be used as criteria for social role identification:

• Species roles: Some roles are characteristic of human beings as species. For example,

human beings characteristically walk on two legs, breathe, and ingest food through their

mouths. In the same way, agents communicate in a standard communication language and

are executed in a particular host each time.

• Person-associated roles: One of the simplest ways of defining roles is in terms of

behaviours associated with a specific set of persons. These roles can be: (1) Societal roles,

which are patterns of behaviour that are characteristic of persons who are members of a

given society, such as the English speaking citizens of some country. (2) Positional roles

representing behaviours characteristic of those sharing a commonly recognised identity or

social position, for example, policemen. Finally, (3) Personal roles, which are the

behaviours characteristic of an individual, for example, the role of a known politician in the

political affairs of a country.

• Contextual roles: Roles can be defined in terms of context and various contextual cues may

be associated with certain roles. In particular, roles can be associated with two main types of

contexts: (1) The physical context or setting in which the behaviour takes place. For

 57

example people normally drop their voices when entering a dark room; and (2) the activity

in which roles can occur, for example a football game, or an orchestral concert.

• Functional roles: As noted in Section 4.2.3, roles can accomplish functions. When a role

contributes to two or more distinct functions, it can be partitioned into its functional

components. For example, it is possible to establish those behaviours of the teacher’s role

that contribute to “instruction of pupils” versus those connected with “pupil counselling”.

Those functional components can be considered as separate roles themselves. Functional

roles are used to limit the concept of a role to represent only a limited range of behaviours.

Functional roles can be further specialised in specific domains. For example, they can be

occupational, recreational or economic roles. Such uses illustrate roles that are content-

specific.

• Task-based roles: Some social systems include tasks. For example, in a modern

organisation tasks are often found to be assigned explicitly to each position making up the

complement of positions in the organisation. Task based functional description is a

convenient approach for modelling the normative behaviour of agents in ABSs.

Generally, roles can be identified through several criteria simultaneously. A general approach to

role identification in social systems is to determine the particular role types existing in a social

system and further specify the roles involved considering the context and the functions

associated with the role types [16]. In developing agent applications the system designer is

faced with a similar problem in identifying coherent sets of behaviours that can be grouped

together to form the roles that occur in the problem domain. In this thesis the general role

identification approach suggested in role theory is refined to make it suitable for ABS design.

4.3 Using Roles in Information Systems Modelling

The concept of role has been extensively used in information systems engineering as a primary

construct for building conceptual models. In this section, the ways that roles and role modelling

are used in the areas of business process modelling, distributed systems management and object

oriented software engineering are discussed. This discussion reveals interesting issues that

should be taken into account when applying role modelling to the design of ABSs, particularly

when they are viewed in conjunction with the role theoretic concepts discussed in Section 4.2.3.

4.3.1 Roles in Business Systems Modelling

Roles in business systems have been used to model the behaviour of actors participating in

business processes [115]. The applicability of roles has been demonstrated in many areas where

business process modelling is needed including workflow management [219] and business

process re-engineering [151]. Role concepts have been defined in a manner similar to that of

 58

social roles described in Section 4.2; however they differ in many aspects the most important

being that they focus on modelling only normative parts of business behaviour, namely

behaviour that is exercised in a predefined manner, for instance an auction negotiation.

In the majority of business system modelling approaches, roles are used as a link between other

business modelling concepts. For example, in a typical workflow modelling approach, such as

the one described in [133], roles link tasks and agents. Workflow processes consist of tasks and

each task represents a business activity, for example, producing an electronic insurance quote.

Tasks are associated to roles and roles act as placeholders for agents. Agents that fulfil a role

perform the tasks that are associated with it. The main advantage of using roles as placeholders

for agents is that assignment of agents to roles and of tasks to roles can be done separately.

Therefore, agents can be dynamically assigned to or removed from roles at run-time.

A workflow approach focusing on dependencies between roles is the Actor-Dependency model

proposed by Yu in [217, 218]. The approach uses the term actors to refer to roles, positions and

agents. Agents play roles and occupy positions that cover several roles. Further modelling

concepts include goals tasks and resources. Actors have goals, execute tasks and have access to

resources. Actor dependencies can be based on task dependencies, resource dependencies, or

goal dependencies. An overview of the Actor-Dependency model is given in Figure 4.2.

Figure 4.2: Agent-Position-Role dependencies in the Actor-Dependency model

Bubler [27] suggests that roles should be defined as a set of capabilities the role offers for the

accomplishment of tasks and a set of requirements, which active business objects must fulfil in

order to play a role. A “role resolution” process selects the set of active objects having the

necessary capabilities to fulfil the roles. This process also takes into account predicates

specifying additional constraints.

In a similar manner, Ould [151] defines a role as “a set of activities which, taken together, carry

out a particular responsibility or set of responsibilities” and presents roles as basic concepts in

business process modelling. That approach further introduces the existence of role types and

role instances in business process models, and that these roles are filled or played by actors. In

Agent

Position

Role

occupies

plays

covers

 59

addition, business process roles can be transferred, shared, or distributed between actors. Roles

represent behaviour associated with functional groups, for example a support engineering group

with functional positions such as GUI programmer with rank or job titles manager

with class or types of persons field worker, and with abstractions that correspond to

descriptions of some work activity that can be performed by more than one job title, such as

web page authoring.

It can be observed from the above discussion that a primary difference between role definitions

in sociology and in business systems is that the definitions of roles in business systems focus on

the normative aspects of business behaviour. This view is also adopted in this thesis as this work

aims to support designing operational systems and, therefore, non-normative behaviour is not

relevant. Instead, it is assumed that users of those systems will exhibit non-normative behaviour

(for example, personal socialisation contact) without explicit support from the ABS.

In addition, some approaches, for instance [151], consider dependency relations between actors

in modelling the business system. However, no method that can be used to specify how the

agents should cover the positions and play the roles is given. Bubler [27] does offer some role

resolution process but his role definitions are narrow and he does not consider dependency

relations among roles. Furthermore, he assumes that appropriate objects always exist

somewhere in order to fill in the roles, which is not always the case.

Modelling normative aspects using roles at different levels of abstraction and providing a

systematic mechanism for allocation of roles to agents based on a rigorous model of role

relationships is mandatory for reducing the complexity of ABS design. Therefore, those issues

represent the focus of the work done in this thesis.

4.3.2 Role-Based Access Control in Distributed Systems Management

Many authors consider roles as an appropriate modelling construct to represent access privileges

in distributed computer systems, for instance [126, 170]. Lupu et al., [126] emphasise the use of

managerial roles for distributed systems access control. In that approach a role is defined within

a domain (organization), and the domain has policies that determine authorities and obligations

for its member roles. In particular, a role represents a position within an organization, and it has

responsibilities made up of activities and required interactions with a number of related roles.

Access control roles can be assigned to both human and software agents.

The components of a role according to [126] are shown in Figure 4.3. For each related role, a

role has obligation and authorization policies, concurrency constraints and an interaction

protocol. Authorizations stipulate which roles are under the authority of another role.

Concurrency constraint specifications describe the parallelism and synchronisation between the

 60

activities within and between roles. Conflicts can also occur, and one source is due to overlap in

policies with respect to authorizations and obligations.

Figure 4.3: Role characteristics for distributed systems access control

Policies can be specified at various levels of abstraction, and, according to [126], policies can be

detailed enough to specify the actions which represent the behaviour of a role. If a role has the

proper authority it can delegate its duties or access rights to another role. Policies can also be

propagated to sub-domains of a parent domain. Lupu [127] further identifies different

relationships between roles, including hierarchical, resource sharing, information access,

coordination and contractual. Those relationships are taken into account when specifying access

control constraints.

Role modelling for access control progresses further in the direction of using role relationships

for describing the system behaviour. However, such approaches are limited in the sense that

they focus only on the access privileges of (human or automated) agents. For example, they do

not model proactive, goal-oriented behaviour. In this thesis, role relationships are treated in a

similar manner but the proposed role definition is extended to model sophisticated, both

proactive and reactive, agent behaviour.

4.3.3 Roles in Object Oriented Software engineering

In role-based software engineering some of the weaknesses observed in role based business

system modelling are addressed. The context is taken into account in role definition at low

granularity and role relationships are systematically considered in the role allocation process.

Role

For each related role:

• Obligation and
 Authorization Policies

• Concurrency Constraints
 Specification

• Interaction Protocol
 Specification

• Conflicts

Domain (Organisation)

 61

Figure 4.4: Roles as association names

4.3.3.1 Defining Roles in Object Oriented Software Engineering

Although roles have been associated with many different properties in different application

contexts, the number of substantially different definitions is small. Role definitions can be

classified according to four possible views:

Roles as named places in class relationships. In this case, a role is a name (label), which

uniquely characterises a participant within an association. This type of role definition had been

supported by many early object oriented analysis and design approaches, e.g. OMT [172], and it

is also supported by UML [149]. For example, in Figure 4.4 CourseDetails and TeachedbyInfo

are roles representing the interfaces of the classes Courseoffered and Lecturer in their

association relationship. This type of role definition represents only static aspects of behaviour

and describes only associations. Hence, roles defined in this manner cannot be reused in other

classes. Therefore, a richer role definition is required to represent agent behaviour.

Roles as patterns of interaction among objects. In this view, roles are used to describe patterns

of interaction among objects. A role is characterized by its attributes and the messages it may

receive or send to, other roles. This view has been supported by many early object oriented

methodologies, for example OOram [163]. It is also supported by UML [149], where roles can

act as type specifiers in the scope of a collaboration diagram among objects.

Figure 4.5: Roles as patterns of behaviour

Math 101 : CourseOffered : Faculty

/Student : PersonBob/Teacher : Person

lecturer

given coursefaculty

faculty member

taken course

participant

Lecturer

CourseOffered
1..n

1

+TeachedbyInfo
+Coursedetails

 62

In that case, roles are called classifier roles. For example, Figure 4.5 represents a collaboration

diagram including six association roles (faculty, faculty member, lecturer, given course,

participant, taken course) and two classifier roles (Teacher, Student). The notation used is the

standard UML objectname/role:class syntax. For instance, Bob is an object of type Person that

plays the role Teacher. The role Teacher represents all attributes and all messages sent and

received by instances of class Person (i.e. Bob) that are relevant to the collaboration depicted in

Figure 4.5. This type of role definition has a similar problem as the previous one. That is, roles

are defined in terms of collaborations of particular classes and are therefore not re-usable

elsewhere in the system. This limitation makes the UML role concept clearly not applicable for

designing agent organisations and a more general definition of role is needed.

Roles as a form of generalisation and/or specialisation. This role definition is adopted when

the lifetime of software objects is long and therefore their behaviour needs to be changed

throughout it. In such cases, the view is that objects should obtain different roles throughout

their lifetime as needed. Wong [204] describes an approach concerning object-oriented database

engineering where roles represent generalisations or specialisations of objects. In that approach,

roles can be played by objects or by other roles. Classes can be specified for objects or roles. An

object class encapsulates the persistent properties of an object, while role classes define the

transient properties. Role classes can be optionally restricted in terms of the type (class) of the

object that can play role instances created from that class. The overall object model includes

object classes and role classes linked by two types of relationship. The is_a or subclassing,

which can be only between roles, and the played_by relationship, which can be both between

roles and between roles and objects. In each model an object is the root of a hierarchy and roles

comprise the other nodes. Those relationships are depicted in Figure 4.6, where the object

Person can play a variety of roles. Role definitions as specialisations or generalisations of

behaviour are useful in the sense that they describe different facets of object behaviour.

However, to the author’s knowledge they lack systematic and rigorous methods and that would

allow a large number of roles to be allocated to an object in a partially automated manner.

Roles as separate instances of behaviour joined to an object. These definitions concern

representations of behaviour that cut across the objects [108]. A common name for such

representations is aspects [2, 111]. Examples of such behaviours provided in the literature

include synchronisation, exception handling, monitoring and many others. For instance, many

objects can demonstrate the same exception handling behaviour and hence exception handling

can be considered an aspect. The programming paradigm that adds extra language features to

object oriented programming to support handling of aspects is called Aspect Oriented

Programming (AOP). Research in AOP has produced language constructs and compilers (called

Aspect Weavers) that can take standard class definitions and augment them with appropriate

 63

aspect definitions (programs) to formulate a unified and executable program. Aspects can be

represented by appropriate roles. The view in this work is that such roles should be allocated to

agents based on a formal model of role dependency relationships. To this end, a similar view is

followed in this thesis as well.

Figure 4.6: Object–Role relationships (Wong 1997)

Roles as positions filled by objects. Roles have also been used to describe sets of objects that

occupy the same position in a reoccurring structure of objects [2, 108, 188]. When a number of

roles are part of a reoccurring structure and represent collective behaviour based on interaction

of the objects occupying the positions the roles represent, then they constitute a role model [2].

This view of roles facilitates separation of concern and describes the static and dynamic

properties of a number of entities in a single, coherent model [108]. The main difference

between roles and classes is that classes describe sets of objects that exhibit common

characteristics. Classes stipulate the capabilities of the objects, while the notion of role focuses

on the position and responsibilities of an object within an overall structure or system in common

with the organisational and social (role theoretic) views of role concept described in Section 4.2.

Representing positions and associated behaviours with roles is followed in this thesis as well.

4.3.3.2 Role Properties

Roles are a powerful abstraction and reuse construct which given an appropriate formal basis

can reduce the complexity of agent organisation design. Roles are associated with a number of

characteristics making it possible to represent reoccurring complex behaviour at different levels

of abstraction, as outlined below.

In each role definition, role characteristics represent different facets of social behaviour. For

example, according to Kendal [108], each role has a set of responsibilities within a role model.

A role also has collaborators that are other roles that it interacts with. The services and

Person Employee
played by

Graduate TA RA

Student

played by

is_a
played by

Teaching Staff

is_a

is_a
Faculty

Research Staff

is_a

is_a is_a

 64

activities are accessible through an external interface. Usually there is a distinct interface for

each collaboration path between two interacting entities. Object roles can also be associated

with many other characteristics and a comprehensive review is given in [109].

Figure 4.7: The Bureaucracy pattern represented as a role model (Richle 1997)

Along the lines of role definitions in sociology, a role in software engineering is only defined in

the context of a role model. Furthermore, role assignment is generally dynamic, which means

that an entity can play many roles in its lifetime, and different entities can play the same role

during the course of a given application. In addition, roles can be specialised and synthesised or

composed. Role models are instantiated in applications where software entities play the roles.

Role models can be used to document object-oriented design patterns [2, 116, 167]. A sample

role model representing a design pattern named Bureaucracy is depicted in Figure 4.7. This

pattern reflects the architecture of actual bureaucracies where there is a long chain of

responsibility, a multilevel hierarchical organisation and centralized control. The role model

representation is done using a non-standardised, yet common in many role modelling

approaches [2, 108, 168], notation. The Bureaucracy role model includes six roles, shown with

rounded boxes: ClerkClient, Clerk, Manager, Subordinate, DirectorClient and Director. The

arrows between the roles indicate collaboration and the arrow direction depicts message flow. A

filled circle indicates that more than one entity can play the role at a time. For example, there

can be many entities playing the Subordinate role. In addition, a role can be specialised.

Specialisation can be represented with a triangle, in the same way as class inheritance is

represented in UML. For example, in Figure 4.7 it can be seen that both Manager and

Subordinate specialize Clerk.

Apart from graphical notations for representing role models, systematic documentations of role

model characteristics have been proposed. An example is the Role Responsibility Collaborators

(RRC) cards, which are similar to the textual representations of use cases in object-oriented

modelling [36]. A part of an RRC card for the Bureaucracy role model is shown in Figure 4.8.

ClerkClient
Clerk

Manager Subordinate

DirectorDirectorClient

 65

Figure 4.8: Sample RRC card for the Bureaucracy pattern (Kendal 1999)

4.3.3.3 Role Relationships, Synthesis and Synergy

Roles and role models are considered as first class constructs [2, 108, 116, 168]. Therefore, new

role models can be derived from existing ones using appropriate operations. In particular, roles

and role models can be specialised, aggregated and synthesised to form new roles and role

models. For example, role model synthesis occurs when a number of role models are

instantiated at the same time and software entities must be assigned a number of roles to play.

When synthesised, roles and role models may constrain each other. There is a consensus in the

role modelling community that role models can be synthesised from existing ones in the

following ways [2, 108, 116, 163, 166]:

Specialisation: A new role or role model may be derived (specialised) from one or more base

models. In this case, the derived role must be able to play the base roles. In this sense, role

specialisation is similar to multiple inheritance.

Aggregation: One role or role model may be an aggregate of other roles or role models. In that

case, the behaviour the new role or role model represents is exactly the same as the overall

behaviour represented by the original roles or role models.

Composition: Roles and role models may combine synergistically where the whole is more

than the sum of its parts. Synergy is important in composite patterns and frameworks [108, 166].

Kendal [109] discusses how the Bureaucracy pattern, depicted in Figure 4.7, can be constructed

synergistically out of four other patterns: Composite, Mediator, Observer, and Chain of

Responsibility patterns descriptions of which can be found in [167].

A simple combination of the four design patterns initially results in sixteen roles for the

Bureaucracy pattern, which are the following:

• Chain of Responsibility pattern: Handler Client, Handler, Successor, Predecessor, Tail,

Tail Client.

• Mediator pattern: Mediator, Colleague

Role Model: Bureaucracy

Role: Director Client, Clerk Client
Responsibility: Collaborators:
request and obtain services > Director, Client

Role Model: Bureaucracy
Role: Director
Responsibility: Collaborators:
perform high level representation and management > Subordinates, Client

 66

Figure 4.9: A high level view of the supply chain management role model (Kendal 1999)

• Observer pattern: Observer, Subject

• Composite pattern: NodeClient, Node, Parent, Child, Root, Root Client

However, there are in fact only six roles because the resulting compound pattern is more than a

“sum” of the individual patterns. In other words, aggregation cannot be applied to those four

patterns. This is because there are only certain valid combinations of the original roles and in

addition some roles are merged to form completely new roles. The six resulting roles in the

Bureaucracy pattern are the Director, Director Client, Manager, Subordinate, Clerk and Clerk

Client. The role synergy occurs because, in the Bureaucracy pattern, the same entity must play

more than one role. More examples of role synergy when role models describing design patterns

are synthesised can be found in [109, 167].

In role composition, roles may constrain each other. Two roles may imply each other, meaning

that a single entity must play both roles. Alternatively, two roles may prohibit each other; this

means that the same entity can never play both roles. Examples can be taken from the Supply

Chain role model (Figure 4.9) discussed in [109]. The same entity cannot play the roles Supply

Chain Head (first element) and Supply Chain Tail (last element) since these two roles prohibit

each other. However, an entity that plays the Supply Chain Head must also be a Consumer, so

the Supply Chain Head role implies the Consumer role. Likewise, the Supply Chain Tail role

implies a Supplier role. Such inter-role relations are formally described in the role algebra

discussed in Section 5.2.7.

4.3.4 Roles in ABS Modelling

A number of approaches have used roles to represent behaviour of ABSs. These approaches

extend the conventional role definitions to model the additional sophistication of the agent

behaviour. The emphasis is on modelling goal-based interactions, and organisational settings.

SC Head SC Participant SC Tail

SC Predecessor SC Successor

SupplierConsumer

 67

File Detection
Detector FileNotifier File Modifier

Detector

Detect File
Deletions

Determine
Validity Notify

Invalid File
 Deletion

Detect File
Deletions

Determine
Validity

Invalid File
 Modification

NotifyUser

File Notification AdminNotifier

User

Display

Login Detector

Detect Logins Detect Failed
Logins

Determine
Validity

Login Notifier

Notify
Invalid Login

Failed Login

Figure 4.10: An example MASE role model (DeLoach et., al. 2001)

4.3.4.1 Modelling Goal-Based Interactions Using Roles

In ABS research, roles have been typically used to represent behaviour of interacting parties.

Such a representation typically includes the protocols followed and the tasks carried out when

some interaction takes place. This view of role modelling is followed in this thesis as well.

A typical example where roles are used in this manner is the Multi-Agent System Engineering

(MASE) methodology proposed by Deloach et al [49]. In MASE roles are used to represent the

behaviour of the participants of an interaction process and correspond to the goals of the

participants in that particular process,

Roles in MASE can carry out tasks which are associated with task communication protocols. A

task communication protocol is the protocol followed by a role when interacting to carry out a

particular task. Roles are assumed that are able to carry out tasks concurrently and hence to be

able to communicate with other roles using more than one communication protocol at the same

time.

Role definitions are captured in MASE using role models. Role models can be represented

graphically by the notation depicted in Figure 4.10, which includes information on roles, tasks

and communication protocols.

The same philosophy of roles mainly representing goal-oriented interaction has been adopted in

many ABS modelling approaches, for example [12, 49, 113, 150]. In this thesis, roles are used

to represent interacting parties as well. In addition, the view in this work is that roles can

represent all types of pragmatic behaviour, for example resource consumption and monitoring,

access privileges and social relations. This view of roles is described in Section 5.2.

 68

4.3.4.2 Modelling Organisational Settings Using Roles

Roles have been used in ABS research to describe organisational settings [64, 73, 221]. This is

done by using roles to represent social positions and appropriate role interactions to represent

organisational relationships. Representing organisational settings in this way allows reoccurring

organisational settings (organisational patterns) to be reused. However, this approach cannot be

used to directly represent complex organisational rules. This approach to representing

organisational settings is adopted in the work presented here.

Role-based organisation modelling aims to explicitly model the organisational relationships

between the agents of an agent organisation and their fundamental and recurrent patterns. For

this purpose, the notions of role, interaction and organisational group (or sub-organization [96]

or organisational structure [62] or society [150] for some authors) are used [63].

In this view a role is considered as an abstraction of recurrent social behaviour linked to a status

or a position in a society and interacting with other roles. As a result agents playing those roles

are committed to specific interaction protocols with other agents and their environment. The

notion of role is independent of any particular agent, an agent playing several roles and a role

being played by several agents if needed.

Role interactions define the relationships linking the roles to each other. In this way various

organisational relationships, such as authority relationships like “managed by”, can be

represented by appropriate interactions between suitable roles. For example, an organisation

model including a “master role” and “slave roles” where the former is in charge of

assigning work to the latter and of load balancing their activities implicitly defines a

hierarchical organisational structure and a bureaucratic management regime.

Finally, an organisational group is a set of roles and interactions between these roles

representing a common context and rationale [63]. In particular, an organisational group

describes a topology of roles and a control regime describing organisational relationships

realised by patterns of role interaction. [220]. An example of an organisational group from

human activity systems is health and safety groups. When needed, for example when a fire

alarm exercise takes place, all members of a health and safety group are expected to play

particular health safety roles, such as Rescue_Team_Manager, which are normally irrelevant to

their every day duties in the human organisation.

When defining an organisation, it is necessary to specify organisational rules [221].

Organisational rules refer to various generic constraints, which members of an organisation

have to respect. In particular, organisational rules can be [220]: (1) implicit rules moderating the

interactions of all members, which are defined by generic social conventions. For example, a

clerk cannot contradict or ignore the commands of his manager; and (2) company specific

 69

behavioural constraints on how different roles can be played within different parts of the

company. For example, a clerk belonging to department A cannot assume privileges for those

that are members of department B. In both examples, such global constraints cannot be

expressed in terms of individual roles or individual interaction protocols. Therefore, it is argued

that the only way to achieve representation of such constraints is by explicit constructs

concerning the whole organisation [221].

Organisational settings can be reused in a manner similar to design patterns used in software

engineering. In such cases they can be referred to by the term organisational patterns [220].

The main difference between organisational and design patterns is that the former refer to

commonly used organisational structures in ABSs. Although not currently available, it is

envisaged that catalogues of organisational patterns where designers will be able to recognise in

their MAS the presence of known patterns and re-use definitions from the catalogue will soon

be published [212].

In this thesis, the view also is that organisational settings can be satisfactorily represented by

appropriate roles and their interactions. In addition, the above ideas regarding using roles to

represent organisational patterns are promising. However, existing approaches lack specific

methods and techniques for incorporating organisational rules and organisational patterns in the

design of ABSs [221]. The method for role-based ABS design proposed in Chapter 5 builds

upon these ideas and contributes the formal base necessary for considering organisational

settings and rules in the design in a systematic manner.

4.4 Using Roles for the Design of ABSs

Roles have been used in modelling systems ranging from social behaviour and information

systems. In this section, the role modelling approaches described in previous sections are

compared and their strengths and weaknesses are highlighted. Based on the comparative results,

directions that need to be followed to use role modelling for the design of ABSs are highlighted.

4.4.1 Comparison of Role Modelling Approaches

The discussion in this chapter has revealed a number of strengths and weaknesses that are

pertinent to the use of roles for designing ABSs. These are summarised in this section.

Most approaches consider roles as representations of simple, normative behaviours with the

exception of those from the areas of sociology that use roles to represent sophisticated social

behaviours. Regardless of the complexity and type of represented behaviour, most approaches

define roles within some context and associate them with a number of duties/responsibilities

that need to be fulfilled, and with a number of privileges/capabilities that can be used.

 70

Fulfilment of responsibilities requires carrying out some tasks or functions, possibly via the use

of the privileges that roles have.

Table 4.1: Strengths and weaknesses of role modelling approaches

Role theory systematically describes how roles are identified (created) in a social system, how

their tasks or functions are determined and how they are assigned to persons that perform them.

Therefore, the ideas proposed in role theory for role identification have been adopted in role

modelling approaches in the area of information systems engineering [112]. However, there are

still ambiguities as far as it concerns assigning roles to actors. Role modelling approaches from

information and business systems engineering do not provide systematic methods for allocating

roles to actors.

Assigning roles to actors is highly related to possible role dependency relations. Most

approaches acknowledge that role dependency relations should be taken into account and

discuss the impact of possible inconsistencies to role assignment. However, apart from a few

Role
modelling
approach

Strengths

Weaknesses

Sociology
Role Theory

1. Based on a comprehensive theory,
it describes social role
characteristics, role creation, role
assignment and role dependency
relations

1. It lacks adequate formalisation for
implementation of roles

2. It lacks adequate formalisation for
automated role allocation considering
dependency relations

3. It considers a superset of normative
behaviour

Business
Systems

Modelling

1. It involves simple and intuitive
role definitions

2. There are reported
implementations of role
specifications

1. It has no systematic approach for
identifying roles.

2. Context definitions are too high grain.
3. It lacks adequate formalisation for

automated role allocation considering
dependency relations

Role-Based

Access
Control

1. It provides adequate formalisation
for automated role allocation
considering dependency relations

2. There are reported
implementations of role
specifications

1. It does not model all facets of agent
behaviour

2. It has no systematic approach for
identifying roles.

Object
Oriented
Software

Engineering

1. Provides adequate formalisation
for automated role allocation

2. There are reported
implementations of role
specifications

1. It does not model all facets of agent
behaviour

2. It lacks adequate formalisation for
automated role allocation considering
dependency relations

Agent-based
Systems

Modelling

1. Models all facets of agent
behaviour, i.e. both functional and
organisational behaviour

1. It lacks adequate formalisation for
automated role allocation considering
dependency relations

 71

exceptions [127], role dependency relations are not described in a rigorous manner, which could

be used in role modelling for ABS design.

The strengths and weaknesses of the approaches examined in this chapter are summarised in

Table 4.1. Role theoretic approaches provide comprehensive support for role identification and

assignment of roles to persons, whilst approaches originating from information systems

engineering are geared towards computer-based systems and are thus much more rigid. The

major weaknesses identified in some role modelling approaches are that the role identification

process is not clearly specified and the formalisation of role dependency relations is not

sufficient to allow for automating the role assignment procedure to a certain extent. In this

thesis, an effort is made to adopt the strengths and avoid the weaknesses of current modelling

approaches. This is discussed further in Section 5.2.

4.4.2 Formalising Role Dependency Relations

The majority of the role modelling approaches examined in this chapter consider that various

relations may exist between roles. For example, an examiner cannot be a candidate at the same

time, and therefore appointing these roles to the same person at the same time results in

inconsistency. Such relations are informally taken into account in some role modelling

approaches, for example in the context of object-oriented software engineering (Section 4.3.3).

However, there is a consensus that to be able to use role dependency relations to design role-

based software, they need to be formally described in a rigorous manner [16, 108, 167].

The larger body of work on role dependency relations exists in sociology. It considers

sophisticated dependencies between and across multiple roles. Designing ABSs in a practical

manner requires considering only a sub-set of these inter-role relationships, those concerning

how the roles participating in the relationship can be allocated to the same actor/agent.

Referring back to role relationship zones discussed in Section 4.2.1.2, this thesis is interested in

formalising those relationships of roles assigned to the same agent, which are situated in the

institutional and legal zones (Figure 4.1). Any relationships within the subjective, inter-

subjective and cultural zones will be disregarded. Formalisation of role dependencies is further

discussed in Section 5.2.7.

4.5 Summary

In this chapter, the foundations of a role-based approach for the design of ABSs have been

established. To provide the basis for an appropriate definition of the role concept to be used for

designing agent organisations, the use of role concepts in the areas of sociology, business

systems modelling, software engineering and ABSs has been reviewed. Furthermore, their

 72

strengths and weaknesses have been highlighted, together with issues that need to be considered

in role modelling for ABS design.

Roles in software engineering have been used to represent various concepts including named

places in conceptual relationships, specialisations/generalisations, separate instances joined to

an object and positions filled by objects. Furthermore, roles have interesting properties

transferred from sociology. For example, roles can be aggregated, specialised and synthesised in

various ways. However, no comprehensive methods for assigning roles to objects currently exist

primarily due to lack of adequate formalisation of role dependency relations and other relevant

constraints.

Role definitions in business systems and software engineering are not detailed enough to

represent intelligent agent behaviour. This is addressed in many role-modelling approaches

specifically targeting ABSs. However, no adequate formalisation of role dependency relations is

provided and this impedes the automatic assignment of roles to agents.

In this thesis, role modelling is used as the basis of a method for ABS design, which addresses

the open issues raised in Chapter 2. The method is based on the automatic assignment of roles to

agents whilst observing constraints based on role dependency relations and on role

characteristics. The method is described in detail in Chapter 5.

 73

Chapter 5

The RAMASD Method

This chapter builds on the role modelling foundations defined in the previous chapter and

proposes an ABS Design method called RAMASD (Role Algebraic Multi-Agent System

Design). RAMASD simplifies ABS design because it allows designers to operate at high levels

of abstraction, such as role models, whilst automating the allocation of roles to agents. This is

enabled by the main innovation of this thesis, a formal model of role relationships termed role

algebra.

5.1 Using Role Modelling and Synthesis for ABS Design

Chapter 3 has described a number of open issues in ABS design. A consensus regarding the

most appropriate way to address those issues has not been reached yet. This is due to two main

obstacles that ABS design methods have to overcome: selecting appropriate modelling

abstractions and following a suitable design process. The ABS design method proposed here

addresses these issues by using roles as modelling abstractions, by formalising relations among

roles as far as it concerns allocation of roles to agents and by applying the synthesis concept to

the design process.

In this chapter, a novel method, RAMASD, is proposed. RAMASD aims to provide effective

solutions to these problems and address the issues raised in Chapter 3. The ABS design problem

in RAMASD is viewed as that of allocating roles to agents. RAMASD uses role modelling and

it is based on role theory. The RAMASD role modelling approach is complete in terms of the

definition of completeness of role modelling approaches given in Section 4.1. The RAMASD

design process follows the principles of synthesis. Synthesis involves the construction of sub-

solutions for loosely coupled sub-problems and the integration of these sub-solutions into a

complete solution. Furthermore, RAMASD considers collective behaviour and organisational

settings as first class design constructs and it involves automatic consideration of design

heuristics and non-functional aspects in design. The main innovation of RAMASD is the role

algebra, a formal model of role relations that provides the basis for rigorous and semi-automatic

assignment of roles to agents.

The role algebra, together with details of the role modelling used in RAMASD, is described in

Section 5.2. The role modelling choices in RAMASD are often linked to the underlying process

of ABS design, which uses the principles of synthesis. The principles of synthesis-based design

 74

process are therefore described in Section 5.3. These principles are then fused with role

modelling into the RAMASD design process, described in Sections 5.4. The innovative features

of RAMASD and its compatibility with existing methodologies are discussed in Sections 5.5

and 5.6, respectively. Finally, the chapter is summarised in Section 5.7.

5.2 Role modelling in RAMASD

In Chapter 4, various role role-modelling approaches have been discussed. The discussion

suggested that in order for a role modelling approach to be useful in ABS design, it should be

complete and based on a comprehensive theory. In this section, a role-modelling approach for

ABS design based on role theory is proposed. The suitability of the proposed approach for

addressing the open issues raised in Chapter 2 is discussed in Section 5.5.

5.2.1 Defining Roles and Role Models

In this section, the role concept is defined considering two objectives: to represent the

sophisticated behaviour of agents in a social context and to describe the characteristic properties

of that behaviour so that they can be realised in software implementations. The notion of role

model is used to represent a number of roles interacting for the needs of a common activity.

5.2.1.1 Role Characteristics

Following [108], a role is defined as a position in an ABS associated with a set of

characteristics. Along the lines of role theory [16], roles describe some particular expected

behaviour within some social context. Roles represent a pragmatic view of agent behaviours, for

example an ABS is considered to include a specific number of roles at a given time, each one

consuming system resources and contributing to changing the environment the ABS operates in.

When an entity in a social system realises the behaviour represented by a role then it is said that

the entity plays that role.

Table 5.1: Role characteristics

Role characteristics Description
Role Model Describes the application context in which the role is applicable.

Goals/Responsibilities Refer to what the role aims to achieve within a particular context

Tasks Represent specific tasks the role can carry out.

Capabilities/Privileges Properties that enable/facilitate role behaviour.

Performance variables Describe run-time aspects of role behaviour

 75

In the approach proposed in this thesis each role is associated with five types of characteristics

(Table 5.1): role model, goals/responsibilities, tasks, capabilities/privileges and performance

variables.

Role models represent collections of roles and their interactions. A role model represents the

collective behaviour required to carry out some activity2 in the system. An agent application

normally consists of more than one activity and hence it will involve more than one role model.

Role models that occur frequently in some application domain are called role interaction

patterns. Role models can be used to represent reoccurring complex behaviour based on

multiple points of interaction. Therefore, they are considered as first class design constructs, that

is they are considered as entities that can be instantiated and given identity.

In social systems the behaviour of social entities is affected by the goals the entity tries to

achieve and by the duties the entity has within the social system [16, 108]. In role modelling,

this is represented by defining roles to have various responsibilities or goals that they aim to

achieve. The view in this thesis is that as roles represent behaviours in certain contexts, they are

associated with specific duties that need to be carried out and with goals that need to be

achieved in those contexts.

Role behaviour is externalised by carrying out certain tasks. Tasks correspond to actions that

social entities take towards fulfilling their duties and achieving their goals. In carrying out tasks,

roles normally need to interact with other roles, which are their collaborators. Interaction

normally takes place by direct exchange of messages according to interaction protocols. It must

be noted that not all roles interact with each other in a role model. In the extreme case, there

may be a role model consisting of only one role interacting only with passive resources and the

environment. For example, this is the case when an agent simply handles the temperature valve

of a central heating unit. Such an agent will be playing only one role, that is monitoring the

environment for changes in the temperature, and its only task will be to operate the valve

accordingly.

Capabilities or privileges refer to properties that enable or facilitate a role to achieve its goals

and fulfil its responsibilities. Examples of capabilities/privileges include learning, inferencing

and communicating. This view is similar to the one of role theory where role functions

particular aspects of role behaviour have characteristic effects on the social system in

connection with the goals of roles. The notion of role capabilities is common in the majority of

role modelling approaches discussed in Chapter 4.

2 Activity in this context will represent the whole causal sequence of events and actions caused by one

triggering event, and will correspond to the UML’s concept of “use case”.

 76

Each role characteristic includes a set of attributes. Attributes represent different aspects of a

characteristic property of role behaviour and can take both numeric and non-numeric values. For

example, a characteristic of a role could be its capability to negotiate. The negotiation

characteristic can have many attributes, including the name of negotiation strategy that is

followed and maximum and minimum bid values.

In order for roles pragmatically represent behaviour in an application domain they need to

model issues relevant to non-functional aspects in that domain. Therefore, the above role

definition is extended to include performance variables. Performance variables are parameters

whose value defines the run-time behaviour represented by a role. For example, if the behaviour

represented by a role requires using some resource like memory, the resource capacity can be

modelled by a performance variable. Performance variables can also be defined at an agent

level. In that case, their value is a function of the values of the respective performance variables

of all roles the agent is capable of playing. This allows us to apply design heuristics by

imposing constraints on the values of the agent performance variables that must be observed

when allocating roles to agents. This is illustrated in the example discussed in Section 7.2.

5.2.1.2 Properties of Roles and Role Models

Roles can be specialised in a manner similar to inheritance in object orientation. Furthermore,

simple role models can be composed to form complex role models representing sophisticated

behaviour. Roles are bounded to various constraints in role composition.

Roles can be extended to create specialised roles by a process called role specialisation or

refinement. This view is similar to the one suggested in [2, 16, 108]. Specialised roles represent

additional behaviour on top of the original role behaviour in a manner similar to inheritance in

object-oriented systems. For example, in a university both Student and Member_of_Staff roles

are specialisations of the University_Member role. The behaviours they represent have common

aspects, for example, they can both borrow books from the library.

The task of merging a number of roles into a single composite role is called role composition.

Role composition occurs when roles are allocated to agents. In role composition roles may

semantically constrain each other. For example, two roles may constrain each other in such a

way that a single agent cannot play both roles at the same time. Furthermore, the way that role

characteristics and their attributes are merged may be bound to various constraints. For

example, the resource capacity required by the composite role resulting from the merging of two

roles may be less than the sum of the capacities required by the two individual roles. In this

thesis, constraints among roles with respect to role composition are termed compositional

constraints. Compositional constraints are captured in the role algebra, a formal model of role

relations concerning allocation of roles to agents, which is described in Section 5.2.7.

 77

Figure 5.1: Schematic representation of a role model using UML notation

5.2.2 Representing and Using Role Models

The notation that can be used to represent role models is based on the one used to represent

UML class diagrams. Each role can be represented by a rectangle similar to the one used to

represent classes in UML. Optionally, role rectangles can also contain the names of role

characteristics and the values of role attributes. Interacting roles are linked with association

arrows whose direction represents the flow of information. Specialised roles are linked with

triangled arrows in way similar to the specialisation of classes in UML. The basic UML notation

used to graphically represent role models in this thesis is depicted in Figure 5.1. A more detailed

notation that can be used to represent additional relations among roles is described in Section

5.2.7.3.

5.2.3 Role Model Types

Role models can be used to describe various types of behaviour, including organizational,

functional and non-functional behaviour. By using compositional constraints the way that

different types of behaviour is merged and allocated to agents can be specified.

RAMASD considers the following types of role models:

• Functional role models: They describe behaviour specific to the application domain. For

example, the collective behaviour that carries out negotiation in a B2B e-commerce context

can be described by a functional role model.

• Non-functional role models: They are used to model behaviour that implements non-

functional aspects of the application. For example, to increase security of business-to-

business transactions it could be required that only registered partners should be able to

access the pricing information and any transactions should be carried out using a secure

communications protocol. This could be modelled by representing that non-functional

behaviour by the Registered_Partner and the Secure_Protocol_Trader roles and by

requiring that agents should play those roles in order to be allowed to interact with other

specialisation

collaboration

Role ARole name

Tasks
Capabilities
Collaborators
Performance variables

Goals/Responsibilities

Role C

Role B Role D

 78

agents in the ABS. The innovative way in which RAMASD handles non-functional aspects

is further discussed in Section 5.5.4.

• Organisational role models: They specify organisational patterns, namely reusable

organisational settings that one would like to impose on the agent system. Organisational

roles further specify the agent behaviour. For example, an agent that is not capable of

carrying out a task may request that its peer agents, which are agents at the same level in the

organisational hierarchy [147], carry it out on its behalf. Organisational role models can also

be used to impose organisational rules [220] and to introduce social relations [150] among

agents in a multi-agent system. Those issues are further discussed in Section 5.5.3.

5.2.4 Identification of Roles in the Application Domain

Various criteria have been used for role identification both in social systems and in information

system modelling. To enable the specification of a wide range of application requirements and

domain solutions (patterns), this thesis accepts a wide variety of role identification criteria.

Hence, roles can correspond to social positions as well as to functions and tasks that need to be

carried out in the business organisation, which will be supported by the ABS.

5.2.4.1 Criteria for Role Identification

Considering the discussion about role modelling carried out in Chapter 4, the following criteria

should be used for agent role identification:

Roles as personal behaviours: Along the lines of role theory, particular behaviours are

associated with persons in the social system. For example, there should be a different role for

each user of the ABS, which will be played by agents acting on her behalf. Even when such

representation of humans is not explicitly included in the application requirements, personal

roles can be used to represent the agent behaviour that links the human users with the rest of the

ABS.

Roles as social positions: There is an agreement in social theories and business process

modelling that in a social system there are certain positions that should be directly represented

by roles. Therefore, in the process of identifying roles for ABS modelling any characteristic

social positions should be specified first. Characteristic social positions can be identified based

on knowledge of the social system, for example it has been suggested that open ABSs should

include social positions relevant with law enforcement [47]. The view in this thesis is that such

social positions should be represented by appropriate roles at the early stages of role modelling

of the ABS behaviour.

Roles as service providers: In social systems there are certain functions (services) that are

characteristic of the overall system purpose. Services correspond to self-contained operations

 79

that can carry out a task, conduct a transaction or solve a problem. For example, in an ABS

aiming to support an international business, a characteristic service that the ABS should offer is

that of translating documents in many different languages. Such characteristic functions should

also be identified early in the role modelling process and be represented by appropriate roles.

For instance the translation service mentioned above should be represented by a suitable role

before other roles are sought during the modelling process.

Roles as task carriers: There is a consensus in the role modelling approaches discussed in

Chapter 4 that role behaviour can be described in terms of tasks performed. In line with this

view, possible tasks that need to be carried out in the social system are identified first, for

example via a task-based analysis method [7]. Subsequently, they should be assigned to

appropriate roles. Task assignment is normally done based on well-known heuristics in software

engineering. For example, according to the point of interaction heuristic tasks that require

frequent exchange of information are assigned to the same role (see also [38]). Task-based role

identification is a common practice in the majority of role-modelling approaches, for example in

[108].

5.2.4.2 Goal-Oriented Role Identification

Kendal and Zhao [112] proposed a role identification method, which is based on goals. It begins

with use cases, in a similar manner as they are used in standard object oriented software

engineering. The use cases are identified and structured on the basis of goals following the

technique presented in [36]. The result of the use case analysis is a goal hierarchy tree.

Subsequently, the goal tree is refined in a manner similar to the one applied to class inheritance

trees in object-oriented programming so that repeated goals do not appear in the tree. Finally,

existing role interaction patterns are examined and goals are matched with roles where

appropriate. The remaining goals are assigned to new roles as role responsibilities based on

generic heuristics, for example high coupling and low cohesion.

A small extension to the above role identification method is to combine it with the role

identification criteria introduced in Section 5.2.4.1. This is illustrated in the example described

in Section 5.2.4.3. The phases of the amended goal identification method are then the following

(Figure 5.2):

1. Capture System Goals: Capturing system goals begins by extracting scenarios from the

requirements specification, user stories, or any available source [123]. Goal statements

for each scenario are ascertained by posing the question, “What is the objective of this

scenario?” Goals are identified by determining the purpose of each scenario. For

example, one such goal for an open agent based supporting e-business could be to

 80

monitor and report any confidential information security violations by agents arriving

from other locations.

2. Create Goal cases: In order to record and track the relationships between scenarios and

goals, scenarios are consolidated to use cases according to known use-case management

techniques [36]. Each use case must be related to a particular goal and, therefore, it is

called a goal case. At this stage, if more than one scenario correspond to the same goal,

each scenario and its related goal represent a distinct goal case.

3. Create Goal case tree: There is a consensus in requirements analysis literature that

there are different types of scenarios and goals, as well as hierarchical and other

relationships between them [123]. Therefore, the goal cases identified in the previous

phase are now structured and classified into three classes: main discourse, subordinates,

and extensions. This can be represented by a goal case tree, where the main goal case is

the root and other goal cases are subordinates and extensions of it.

4. Refine Goal tree: To avoid redundancy and duplication repeated goals need to be

removed. This can be done by promoting redundant goals and actions to a high level

tree node, and utilising inheritance to bring the common factors into subordinate nodes.

Following the notation introduced in Kendal and Zhao [112], subordinates within the

main discourse can be indicated with a hierarchical outline format; extensions are

marked with a letter suffix.

Match role
interaction

patterns

Identify new
roles

Capture Goals

Create Goal
Cases

Refine Goal
tree

Create Goal
tree

Figure 5.2: The phases of a goal-oriented role identification method

 81

5. Match role interaction patterns: If a documented role interaction pattern, for example

one found in the role model catalogue maintained at BT labs [109], can be reused in this

application domain then the responsibilities of the role pattern roles are matched with

appropriate goals from the goal tree. Those goals are then marked as ‘assigned to roles’.

6. Identify new roles: When assigning goals to roles from existing role interaction patterns

are not applicable. Goals can be assigned to roles according to the criteria suggested in

Section 5.2.4.1. In particular, new role identification consists of four steps:

i. Introduce a new role for each type of user in the system. For example, the goals

pertinent to the behaviour of the system administrators in an e-business system

should be represented as responsibilities of the e-business system administrator

role. This practice makes the modelling of user-related system behaviour

intuitively clear. Furthermore, it is in accordance with the common view that the

units of analysis used to represent the problem should be semantically aligned with

the constructs used in the solution [96]. Hence, since users are part of the resulting

system it is necessary that certain roles should closely represent their behaviour.

ii. Introduce a new role for each social position in the system. For example, in an e-

business system some sort of legal authority could be required. That legal authority

should be able to take legal action (open an appropriate case) when required. Such

an authority should be represented by a separate role in the system assigned with

appropriate law enforcement responsibilities.

iii. Introduce a new role for each distinct service (function) in the system. A service in

this context is considered a system operation (function), which can carry out tasks

and solve problems but, in contrast to tasks, it does not have a specific notion of

completion. It only involves the notion of interruption, which happens when the

service is not provided any more. An example of such a role in an e-business

security system could be the role that regularly monitors currency fluctuations and

modifies product prices accordingly. According to the above definition, the

behaviour of this role represents a service since it may carry out many price

updates but it does not ever complete.

iv. Introduce a role for each related group of tasks in the system. Goals are achieved

by tasks. Tasks can be either primitive tasks or composite tasks consisting of

subtasks. At this step the tasks corresponding to the remaining goals of the goal

tree are grouped and assigned to appropriate roles following heuristic guidelines.

For example, each role should have high cohesion and coupling or

 82

interdependencies across roles should be minimized. Some interdependencies will,

of course, be required, these become the collaborations in the role model.

This goal-based role identification method is used in the examples throughout this thesis.

5.2.4.3 Role Identification for an e-Business Security System

The above role identification method is demonstrated in an example involving an e-business

security system. In this simplistic example, the system is required to monitor security violations

in an e-business system, to notify a system administrator and automatically take legal action

against the intruders. For simplicity, only illegal resource accesses and system file intrusions are

considered as system violations. For the needs of the example, system requirements are

informally the following:

• The system is responsible for dealing with host violations, in particular resource access

violations and system file intrusions. The system administrator is notified of suspected or

attempted intrusions.

Figure 5.3: Goal cases for an e-business security protection system

1. To detect and notify system administration of host violations. The system is responsible for dealing
with host violations.

1.1 To detect and notify system administration of system file violations. The system is responsible for
dealing with system file intrusions.

1.1.1 To determine if system files have been deleted or modified. It is necessary to validate the date, time
and existence of system files periodically, every few minutes. When a file is not found or a new
version appears, this is a violation.

1.1.2 To detect an attempt at system file violation. When a user tries to modify or delete a system file, this
is a violation.

1.1.3 To notify system administration of system file violations. The system administration needs to be
notified of system file violations.

1.1.3a. To ensure that system administration receives notification of a violation. The system administrator
may not be available to receive a notification. For example, this can be due to a network failure.

1.2 To detect and notify system administration of login violations. The system is responsible for dealing
with login violations.

1.2.1 To determine if an invalid user tries to login. A user tries to login when he or she does not have a
valid account. If this occurs once or twice in a short period of time, it is not a violation. Three or more
attempts is a violation.

1.2.2 To notify system administration of login violations. The system administration needs to be notified of
login violations.

1.2.2a. To ensure that system administration receives notification of a violation. The system administrator
may not be available to receive a notification. This can be due to a network failure or the fact that the
administrator is performing another task. The report needs to be stored and resent after a delay.

1.3 To monitor and record system violations. Monitoring should be constant and any system violations
should be properly recorded.

1.4 To take legal action against intruders. Any security violations must automatically launch and for
legal action process.

1.5 To increase security measures as required. Any repetitive security violations need appropriate action
to be taken by the system administrator who will increase security measures.

Note: Goal cases 1.1.3 and 1.2.2 are duplicates of the same goal “Notify System Administrator.” The

conditional extensions of 1.1.3a and 1.2.2a are also the same. These can be treated as instances of the
same class, and hierarchical relationships can be represented with inheritance in the goal tree.

 83

Figure 5.4: Goal hierarchy tree and role identification for an e-business security system

• It is necessary to validate the date, time and existence of system files periodically, every few

minutes. When a file is not found or a new version appears or a user tries to modify or

delete a system file, the system administrator needs to be notified.

• A user tries to access a resource (i.e. a database) for which he does not have appropriate

privileges.

The possible goal cases of this example are documented in Figure 5.3. A sample refined goal

case tree is shown in Figure 5.4. Assuming that no role interaction patterns can be reused, goals

are assigned to roles in the following order:

1. The human actor involved in this system is the system administrator. Therefore, a

Sys_Admin role is introduced. The system administrator is responsible for taking

security measures once system security violations have been reported. Part of the tasks

relevant to this duty of the system administrator can be automated and carried out by the

ABS. This is represented in the requirements by Goal 1.5. Sys_Admin models the

behaviour of the system administrator that is carried out by the ABS and therefore, it is

naturally assigned the responsibility to achieve Goal 1.5.

2. The system also includes a social position involving taking legal action against system

security violators. This corresponds to Goal 1.4. This social position is modelled with

the Legal_Rep role which has the responsibility to achieve Goal 1.4, namely to

automatically open a legal action case once a security violation has been reported.

1. To detect and notify re host violations

1.1 To detect and notify any system file violations 1.2 To detect and notify any login violations

1.1.1 To determine if
system files are
deleted or modified

1.1.3, 1.2.2 To
notify sys admin

1.2.1 To determine if an
invalid user tries to access

1.1.3a, 1.2.2a To
ensure sys
admin is notified

1.1.2 To
detect attempt
at system file
violation

1.4 To take legal action
against intruders that
violate system

Detector Detector
Notifier

Monitor
Legal Rep

1.3 To monitor and record
system violations

resources

1.5 To increase security
measures as required

Sys Admin

 84

NotifierSys Admin Detector

Monitor Legal Rep

Person

Social positionFunction

Task-based Task-based

Role Collaboration

Figure 5.5: Identified roles for the e-business security system

3. To increase system protection the e-business security system constantly monitors for

reports on system violations. When a system violation is reported then it is recorded for

analysis and future prevention. This system function corresponds to Goal 1.3 and it is

represented by the Monitor role.

4. The remaining goals correspond to tasks that may need to be carried out in the system.

Goals 1.1.3, 1.2.2, 1.1.3a and 1.2.2a are similar in that they all involve contacting the

system administrator and providing system security violation information. Therefore,

they are all represented as responsibilities of the same role, the Notifier role. In the same

way, Goals 1.1.1, 1.1.2 and 1.2.1 all involve detecting some system security violation

and therefore they are modelled as the responsibilities of the Detector role.

The resulting role model comprising the identified roles is depicted graphically in Figure 5.5.

5.2.5 Management of the Role Modelling Process

Role modelling is considered to be an informal process carried out completely by human

designers. Furthermore, the view in this thesis is that role modelling should definitely be

completed before the design and deployment of the ABS.

As this role modelling method aims at supporting the design of ABSs, role modelling is

expected to be carried out by ABS designers. It is to be carried out manually since the process

of role identification is largely based on the approach followed in representing user

requirements. Some degree of automation in role identification could be achieved, however, if

requirements are described in a formal manner, for example in some formal specification

language such as the one proposed in [80]. The criteria for role identification introduced in

Section 5.2.4 could then be formally represented in the requirements specification language

 85

constructs and the role identification process could be automated. In that case, the focus of the

efforts of the designer would be the formal description of system requirements. In this thesis,

informal requirements specification methods are assumed. For example, in Section 5.2.4.2

application requirements were specified using textual descriptions and use-cases. Therefore, in

this thesis role identification is considered a completely informal step in the overall design

process.

In the proposed role modelling method, role modelling should be completed before the ABS

design phase. The premise for this is that, although the ABS behaviour may be dynamic, the

application requirements are fixed and hence, appropriate role modelling can be completed

before design. This is similar to static approaches to ABS engineering discussed in Chapter 2

and in particular to [157, 177], where the ABS behaviour is modelled, verified and evaluated

before actual system deployment aiming to reduce consumption of system resources due to

reorganisation and increase system stability. Considering dynamically changing application

requirements is an issue that is increasingly reported as important in engineering agent-based

applications. For example, to engineer ABSs to support dynamically evolving business [19].

This issue is the basis of an interesting direction of possible future research and it is further

discussed in Section 9.4.

5.2.6 Consistency of Role-Based Specifications

As discussed in Chapter 4, describing agent behaviour in terms of roles that agents play can lead

to a number of inconsistencies because roles can be related with each other in several ways. In

the proposed role modelling method inconsistencies that may be caused by assigning roles to

agents are systematically modelled considering formalised relations among roles.

The type of inconsistency in role specification considered here is due to incompatibilities

between particular roles played by the same agent, which result in problems in role allocation as

discussed in Section 4.2.4. For example, in most civilised societies a policeman cannot also be a

judge. These two roles cannot coexist. Another example is when an academic is also a private

consultant and this may lead to conflict of interest and time. The modelling approach proposed

in this thesis is able to capture such cases. It formalises a set of basic relations among roles

using a formal model discussed below.

5.2.7 Rigorous Role Assignment Using Role Algebra

Role relations can be instrumental in describing agent behaviour in a systematic manner. In

particular, a formal definition of role relations as far as it concerns assignment of roles to agents

can be used for automating the role assignment process whilst avoiding inconsistencies in

specifying agent behaviour.

 86

Using role theory [15] and case studies of human activity systems, for example [187], six basic

role relations have been identified. These role relations are formally defined here in a model

called role algebra. Using the six relations from the role algebra, constraints driving the

assignment of roles to agents can be specified to serve as an input to a semi-automated agent

design process. In this section, the role relations are formally defined and their meaning is

informally described by intuitive examples. Subsequently, a formal description of the semantics

of the role relations is given using a two-sorted algebra.

5.2.7.1 Relations in the Role Algebra

Let R be a set of roles. For any r1, r2 ∈ R, the following binary relationships may hold:

1. Equals (eq) This means that r1 and r2 describe exactly the same behaviour. For

example, the terms Advisor and Supervisor can be used to refer to people supervising

PhD students. When two roles are equal, an agent playing the first role also plays the

second at the same time. The relation Equals ⊆ R×R is an equivalence relation since it

is reflexive, symmetric and transitive:

a) ∀ r : R (r eq r)

b) ∀ (r1, r2) : R×R (r1 eq r2 ⇒ r2 eq r1)

c) ∀ (r1, r2, r3) : R×R×R ((r1 eq r2) ∧ (r2 eq r3) ⇒ (r1 eq r3))

2. Excludes (not) This means that r1 and r2 cannot be assigned to the same agent

simultaneously. For example, in a conference reviewing agent system, an agent should

not be playing the roles of Paper_Author and Paper_Reviewer at the same time.

Furthermore, a role cannot exclude itself if it could then no agent would ever play it.

Therefore, the relation Excludes ⊆ R×R is anti-reflexive and symmetric:

d) ∀ r : R (¬(r not r))

e) ∀ (r1, r2) : R×R (r1 not r2 ⇒ r2 not r1)

3. Contains (in) This means that a role is a sub-case/specialisation of another role.

Therefore, the behaviour the first role represents completely includes the behaviour of

the second role. For example, a role representing Manager behaviour completely

contains the behaviour of the Employee role. When two roles are composed such that

the first contains the second, the resulting role is the first role. Therefore, the relation

Contains ⊆ R×R is reflexive and transitive:

f) ∀ r : R (r in r)

g) ∀ (r1, r2, r3) : R×R×R ((r1 in r2) ∧ (r2 in r3) ⇒ (r1 in r3))

 87

4. Requires (and) The Requires relation can be used to describe that when an agent is

assigned a particular role, then it must also be assigned some other specific role as well.

This is particularly applicable in cases where agents need to conform to general rules or

play organisational roles. For example, in a university application context, in order for

an agent to be a Library_Borrower it must be a University_Member as well. Although

the behaviour of a Library_Borrower could be modelled as part of the behaviour of a

University_Member, this would not be convenient since this behaviour could not be

reused in other application domains where being a Library_Borrower is possible for

everyone. Furthermore, each role requires itself. Intuitively, the roles that some role r

requires are also required by all other roles that require r. Therefore, the relation

Requires ⊆ R×R is reflexive, and transitive:

a) ∀ r : R (r and r)

b) ∀ (r1, r2, r3) : R×R×R ((r1 and r2) ∧ (r2 and r3) ⇒ (r1 and r3))

5. Addswith (add) The Addswith relation can be used to express that the behaviours

two roles represent do not interfere in any way. For example, the Student and the

Football_Player roles describe non-excluding and non-overlapping behaviours. Hence,

these roles can be assigned to the same agent without any problems. The relation

Addswith ⊆ R×R is reflexive and symmetric:

a) ∀ r : R (¬(r add r))

b) ∀ (r1, r2) : R×R ((r1 add r2) ⇒ (r2 add r1))

6. Mergeswith (merge) The Mergeswith relation can be used to express that the

behaviours of two roles overlap to some extent or that different behaviour occurs when

two roles are put together. For example, a Student can also be a Staff_Member. This

refers to cases where PhD students start teaching before they complete their PhD.

Although members of staff, these persons cannot access certain information (e.g. future

exam papers) or have full staff privileges due to their student status. Also, their salaries

are different. In cases like this, although the two roles can be assigned to the same

agent, the characteristics of the composed role are not exactly the characteristics of the

two individual roles put together. The relation Mergeswith ⊆ R×R is symmetric:

a) ∀ (r1, r2) : R×R ((r1 merge r2) ⇒ (r2 merge r1))

 88

Figure 5.6: Semantics of the role algebra

5.2.7.2 Semantics of the Role Algebra

To describe the semantics of role relations an agent organization is represented by a two-sorted

algebra (Figure 5.6). The algebra includes two sorts, A representing agents and R representing

roles and two auxiliary relations, Has and Plays representing role allocation.

Let Has: A → R be a relation mapping agents to roles. The term “has” means that a role has

been allocated to an agent by some role allocation procedure or tool. It is possible for an agent

to have roles that do not contribute to defining the agent behaviour. For example, this happens

when roles merge with other roles. For each a ∈ A, let a.has be the set of roles that the agent a

maps in the relation Has. In other words, a.has denotes the relational image of the singleton {a}

⊆ A in the relation Has.

Let Plays: A → R be a relation mapping agents to roles again. The term “plays” means that the

behaviour a role represents is actively demonstrated by the agent, for example the role does not

merge with other roles that are also played by the agent. For each a ∈ A, let a.plays denote the

set of roles that the agent a maps to in the relation Plays. In other words, a.plays denotes the

relational image of the singleton {a} ⊆ A in the relation Plays.

By definition, all agents must have the roles they play:

∀ a : A, r : R ⋅ (r ∈ a.plays ⇒ r ∈ a.has)

The meaning of the relations between roles introduced in Section 5.2.7.1 can now be described

as follows:

• Equals An agent has and plays equal roles at the same time.

has plays

A R

AGENT ORGANISATION

a1

a2

a3

r1

r2

r3
r4

r5

 89

∀ a : A, (r1, r2) : R×R ⋅ (r1 eq r2 ⇔ ((r1 ∈ a.has ⇔ r2 ∈ a.has) ∧ (r1 ∈ a.plays ⇔ r2 ∈

a.plays)))

• Excludes Excluded roles cannot be assigned to the same agent.

∀ a : A, (r1, r2) : R×R ⋅ (r1 not r2 ⇔ ¬(r1 ∈ a.has ∧ r2 ∈ a.has))

• Contains Contained roles must be assigned and played by the same agent as their

containers.

∀ a : A, (r1, r2) : R×R ⋅ (r1 in r2 ⇔ ((r2 ∈ a.has ⇒ r1 ∈ a.has) ∧ (r2 ∈ a.plays ⇒ r1 ∈

a.plays)))

• Requires Required roles must be played by the same agent as the roles that require them.

∀ a : A, (r1, r2) : R×R ⋅ (r1 and r2 ⇔ (r1 ∈ a.plays ⇒ r2 ∈ a.plays))

• AddsWith There is no constraint in having or playing roles that add together.

∀ a : A, (r1, r2) : R×R ⋅ (r1 add r2 ⇔ (r1 ∈ a.has ⇒ ((r2 ∈ a.has ∨ r2 ∉ a.has) ∧ (r2 ∈

a.plays ∨ r2 ∉ a.plays))))

• MergesWith When two roles merge only the unique role that results from their merge is

played by an agent.

∀ a : A, (r1, r2) : R×R ⋅ (r1 merge r2 ⇔ ∃1 r3 : R ⋅((r1 ∈ a.has ∧ r2 ∈ a.has) ⇒ (r1 ∉ a.plays ∧

r2 ∉ a.plays ∧ r3 ∈ a.has)))

For example, let us assume that roles r2 and r3 merge resulting to role r4. Based on the above

semantic definition, if an agent has r2 and r3 then it must also have r4 and it must not play r2

and r3 (the agent may or may not play r4 depending on the relations of r4 with the other roles

the agent has). The example of a Mergeswith relation between roles r2, r3, and r4, assigned

to agent a2, is depicted in Figure 5.6. The fact that agent a2 has all three r2, r3, and r4 is

represented by a dotted line corresponding to the relation Has. The fact that agent a2 can

possibly play r4 but it can definitely not play r2 and r3, is represented by a solid line

corresponding to the relation Plays.

Using the above semantic axioms, it is trivial to verify that the properties of role relations

introduced in Section 5.2.7.1 hold.

Finally, relations between more than two roles can be defined in a similar manner. In that case, a

predicate notation is more convenient to represent role relations. For example, when three roles

r1, r2, and r3 merge to r4 this can be noted by merge(r1, r2, r3, r4). It is beyond the scope of this

thesis to provide formal definitions of relations among roles with arity greater than two.

 90

mergeswith

mergesto*

*rolename can be ommited when obvious

excludes

equals

contains

requires

rolename

notation
type

relation
interactingnon-interacting

addswith

 rolename

Figure 5.7: Graphical notation for the relations of the role algebra

5.2.7.3 Graphical Representation of Role Relations

The relations of the role algebra can be represented graphically by extending the notation

introduced in Section 5.2.2. To show both role interactions and role relations on the same

diagram a notation for representing role relations was introduced, and when the roles are both

related and interacting the linking line is amended with solid arrowheads at both ends. Since the

containment relation describes role specialisation, the same graphical notation can be used for

both. Furthermore, in the case of interacting roles that are simply related with the addswith

relation, the notation is the same as the one used in Section 5.2.2 for interacting roles. The

proposed notation is summarised in Figure 5.7 and it is used throughout the thesis.

5.3 Applying the Synthesis Concept to ABS Design

Synthesis is a well-known problem solving concept in traditional engineering disciplines and it

is widely applied to design, for example [132, 134]. Given a clear definition of the overall

problem and the possible solutions to it, synthesis employs a process of systematic selection of a

solution from a number of alternatives. In ABS design, the problem is producing an ABS

system satisfying the application requirements and the possible solutions are possible ABSs that

can fulfil them. Therefore, it is argued in this thesis that synthesis is applicable in ABS design.

5.3.1 Synthesis in Traditional Engineering

The term ‘synthesis’ in engineering disciplines refers to an approach in which a problem

specification is transformed to a solution by decomposing the initial problem into loosely

 91

coupled sub-problems. The approach involves a problem-solving process in which sub-

problems are independently solved and integrated into an overall solution, while various

constraints within and among sub-solutions are observed [4, 174]. Problem-solving consists of

searching among solution alternatives in the corresponding solution domain and selecting

appropriate solutions based on explicit quality criteria. It is often useful to apply the synthesis

approach iteratively at different levels of abstraction. For example, the designer may initially

consider only a small number of design constraints and progressively increase this number upon

obtaining satisfactory design results.

A synthesis problem solving process typically contains multiple cycles (Figure 5.8), where a

synthesis cycle corresponds to a transition (transformation) from one synthesis state to another.

A synthesis state can be formally defined as a tuple consisting of a problem specification part

and a problem solution part [134]. The problem specification part defines the set of sub-

problems that still need to be solved. The problem solution part represents the tentative design

solution to a number of synthesis sub-problems. After each synthesis state transformation a sub-

problem is solved and its solution is included in the solution part. Furthermore, new sub-

problems can be added to the problem specification part of the new synthesis state if required.

Initially, the problem solution part is empty and the problem specification part includes the

initial problem requirements.

Figure 5.8: The synthesis problem solving process

Each synthesis cycle involves a number of synthesis steps. A synthesis step refers to a specific

part of the transformation corresponding to a synthesis cycle. Each synthesis cycle includes

steps for searching and selecting solutions to sub-problems based on quality criteria and for

sub-problems
that still need
to be solved

tentative problem
solutions

synthesis cycle

cycles involve a
number of steps

problem
specification

problem
solution

state 1

problem
specification

problem
solution

state 2

problem
specification

problem
solution

state n

…

synthesis cycle

 92

evaluating whether the currently selected solutions are consistent with the initial problem

requirements and any additional synthesis constraints.

The sequence of the synthesis cycles, results in a terminal state [194]. A synthesis state is

terminal in either of two cases: the specification part is fully satisfied by the solution part (there

is an overall solution) or neither the solution nor the specification can be modified. The former

is a successful overall solution while the latter is an unsuccessful one.

The final synthesis solution must have achieved a set of objective metrics, while satisfying a set

of constraints. Constraints may be imposed within and among the sub-solutions. Ideally, all

objective metrics should be met to the maximum extent to provide optimal solutions. In

practice, however, this is very difficult to achieve since the search of the problem solution space

is an NP-complete problem [134]. Therefore, sub-optimal but consistent solutions are often

considered satisfactory [43, 161]. However, even when sub-optimal solutions are sought, the

search of problem solution space can still become intractable due to the large number of entities

and their relations that need to be considered in large synthesis problems.

To address the above difficulties, the synthesis process is often performed iteratively at different

levels of abstraction [161]. For example, Gajski et al. [71] propose a synthesis approach for the

design of digital signal processing systems, which can be applied at four increasing levels of

abstraction: circuit synthesis, logic synthesis, register-transfer synthesis and system synthesis.

There is a consensus in the literature that applying synthesis at higher levels of abstraction

reduces the number of entities and relations that have to be considered, resulting to tractable

search of the design solution space [71, 132, 194]. In addition, smaller numbers of entities and

relations are easier to understand by humans. This facilitates evaluation of the various design

alternatives by the designers in synthesis-based design. The only disadvantage is that higher-

level abstractions implicitly reduce the number of possible alternatives. This is normally not a

problem since the design solution space of a synthesis process performed at high abstraction

level is normally large enough to be of practical use [194]. However, when this is not the case,

sophisticated algorithms involving multiple search phases that combine synthesis results from

different abstraction levels can be used, for example the one described in [88].

5.3.2 A Synthesis-Based Design Process Model

The synthesis concept has been applied to solve design problems in many areas of computing

including hardware configurations [11], real-time software [164] and software architectures

[194]. Some characteristics of the synthesis-based design approach are observable as common

in all cases. Based on those common characteristics, a generic synthesis-based design process

model can be identified including the following phases (Figure 5.9):

 93

Figure 5.9: A generic synthesis-based design process model

1. Application requirements specification: This phase involves specifying the application

requirements. This can be done using well-known requirements analysis techniques

such as use-cases [94], scenarios [118] and formal specification languages [80]. Each

requirements analysis approach has strengths and weaknesses. For example, use-cases

provide a more precise and broader perspective of the requirements by specifying the

external behaviour of the system from different user perspectives. Scenarios are

instances of use-cases and they define the dynamic view and the possible evolution of

the system. Finally, formal specification languages are particularly suitable for safety

critical systems that need rigorous specifications. In principle, any requirements

specification technique can be used. However, the requirements analysis technique used

should allow grouping of requirements to individual modules [194]. This would

facilitate both the formulation of the overall synthesis problem and the identification of

individual sub-problems.

2. Synthesis problem formulation: In this phase, the overall synthesis problem is

formulated and the solution domain is identified. This normally requires a formal

specification of a) the design problem using mathematical formalisms [190] or a formal

specification language [131], and b) any constraints arising out of the application

requirements. At the design of an ATM switch [120] for example, the overall system

Application
requirements
specification

Synthesis
problem

formulation

Synthesis
sub-problem
identification

Synthesis
problem
solution

Synthesis
problem

refinement

recursion iteration

 94

level architecture of the switch is described by a high-level model and all the possible

configurations of different parts (the design solution domain) are specified. At this

point, some objective metrics for a solution to be satisfactory are also specified. For

example, in the Formal Synthesis Hardware Design methodology proposed in [11], the

overall design goal as well as two objective metrics, the subgoaling function and the

validation function, are specified in this phase. These metrics are considered by the

design space exploration algorithm to determine when acceptable solutions are found.

3. Synthesis problem refinement based on the solution domain knowledge. The synthesis

problem can be further refined when the solution domain is taken into account. This

allows specification of additional constraints to prevent unnecessary examination of

inappropriate solution alternatives. For example, considering domain specific

architectural features in ATM switch design was found to reduce the design time by

15% [120]. In software design, synthesis problem refinement should be based on

knowledge of the software application domain [194]. For example, based on the

standard security pattern where data access is only possible where necessary [171], the

software components supporting auction participants cannot be supporting an auction

coordinator at the same time since auction bidders should not be allowed access to the

details of other auction bidders. Such knowledge can be used to refine synthesis-based

software design problems even when the application of the particular security pattern is

not explicitly included in the software requirements.

4. Synthesis sub-problem identification: Having specified the synthesis problem an

important phase is the partitioning of the overall problem to sub-problems, which can be

solved separately. For example, in the ATM switch design approach proposed in [120]

the overall ATM switch design problem is partitioned to a number of sub-problems,

each one corresponding to the design of a different ATM module. Each module is

represented by a different VHDL process and the respective design sub-problem is

solved separately. Partitioning of the problem is done in such a way so that there is clear

benefit regarding the latency of the resulting designed system.

Generally, the way that the design problem is partitioned into sub-problems affects the

time required to find an overall solution. Therefore, in many cases, for example in

[131], the partitioning method is the starting point for an optimised design space

exploration algorithm.

5. Deriving the problem solution: At this point the problem solving process is initiated and

it is followed until it reaches a terminal state. Deriving the synthesis problem solution is

intrinsically difficult since it often requires exploration of an extensively large design

 95

space which makes the search process intractable. Therefore, developing an efficient

algorithm for searching among alternatives and selecting a suitable design solution is an

issue of major concern in synthesis-based design approaches [33, 58].

In many approaches the search for an appropriate overall solution involves iteration and

recursion [194]. Iteration refers to repeating the phases of the synthesis process in order to

improve the synthesis results. In particular, iteration involves a new problem definition possibly

with a more satisfactory solution. For example, many synthesis-based embedded system design

approaches, for instance the one described in [144], iteratively change the problem specification

so that more functionality is carried out by software given that performance objectives are met.

Recursion refers to repeating the partitioning and search phases of a synthesis process for a

lower abstraction level. This involves repeatedly decomposing the overall problem into sub-

problems and searching for an appropriate solution considering more problem specification

details. For example, in [190] more system specification details are considered in search if the

synthesis results are unsatisfactory. Generally, to obtain satisfactory solutions a number of

recursions and iterations are required.

This synthesis-based design process model is the basis of the process to ABS design proposed in

this thesis. This is further discussed in Section 5.4.

5.4 The RAMASD Design Process

This section introduces the RAMASD design process, which realizes the synthesis design

process model described in Section 5.3.2. The process includes five phases, some of which are

automated using the role algebra.

Consider domain
specific and
general heuristics

recursion

iteration

Search among
alternatives

Identify role patterns
Indentify new roles
based on heuristic rules

Requirements
gathering and

analysis

Role
identification

Role
specification

Solution
selection

Role model
refinement

Using known
methodologies
i.e. use cases and
goal-based analysis

Specify role constraints
and role characteristics

1.

2.

3.4.

5.

Figure 5.10: Schematic representation of the RAMASD design process

 96

The manual and automatic steps of the semi-automatic method to role-based agent organisation

design are the following (Figure 5.10):

1. Specify application requirements: The ABS design is initiated with the requirements

analysis phase in which the basic goal is to understand the stakeholder requirements.

The well-known requirements analysis techniques such as textual requirements

specifications, use-cases [94] and even formal requirements specification languages

[80] can be used. In all cases, however, requirements should be specified in such a way

to assist role identification, which follows in the next stage.

2. Identify roles and role models: There are many ways to carry out role-based analysis

and a systematic role modelling method was proposed in Section 5.2. Typically, role

identification approaches start from use cases and for each use case identify roles and

their interactions [2]. Many role interaction patterns can be used directly from existing

role pattern libraries like the one documented at BT [108]. Selection or definition of

appropriate role models is a manual step that must be carried out by the agent system

designers.

3. Specify relevant role characteristics and compositional constraints: This is an

automatic step since role characteristics and inter-role relations are expected to be

stored in a role model library. After the designer selects existing role models, role

characteristics and role compositional constraints are automatically retrieved.

4. Refine role models: The agent system designer is expected manually specify role

characteristics and role relations for any new role models he or she defines. These new

role models should be stored in the role model library. At this stage, additional

characteristics of existing role models, for example performance variables, should also

be specified. Furthermore, at this step various domain specific and general design

heuristics are specified as constraints on the performance variables of roles and agents.

5. Assign roles to agents: Performing the search among various alternatives and allocating

roles to agents can be done automatically. However, at this point the process may

continue to a next recursion or iteration cycle depending on the results obtained.

Iteration and recursion possibilities make the design of the agent organisation an

interactive process where routine tasks are automated and humans carry out tasks

requiring experience and creative decisions.

 97

5.5 The Innovative Features of RAMASD

RAMASD uses role models as primary constructs for representing agent-behaviour, and this

underpins the way in which it addresses the open issues of ABS design (see Chapter 2). This

section presents these features of RAMASD in detail.

5.5.1 The Philosophy of the RAMASD Approach

The main concepts of RAMASD are role modelling, the role algebra and synthesis. Role models

are used to represent behaviour based on multiple points of interaction; the role algebra

formalises relations among roles and the synthesis concept allows for a systematic process for

finding appropriate design solutions. Those concepts are instrumental in addressing the open

issues raised in Chapter 2.

Role relations, as defined in role algebra, restrict the way that roles can be allocated to agents.

The agent organisation design problem is thus transformed to a synthesis problem that must be

solved for roles to be allocated to agent types. The problem can be constrained further by

including constraints based on general design heuristics. These constraints are expressed on the

performance variables of the agents. For example, the system designer should be able to define

the maximum number of roles that an agent could play, or an upper limit to the resource

capacity that an agent would require. Furthermore, application specific heuristics could also be

specified. For example, roles requiring access to similar resources could be assigned to the same

agent.

From a synthesis point of view, allocation of each individual role model to agent types

constitutes a separate synthesis sub-problem. Achieving a feasible allocation of all role models

thus involves merging solutions of synthesis sub problems to formulate the overall synthesis

problem solution. Such a modular approach facilitates exploration of the large design solution

space and enables discovery of feasible design solutions.

5.5.2 Reusing Collective Behaviour

RAMASD models collective behaviour explicitly using role models. The role algebra provides

the formal underpinnings for rigorous pattern composition and hence effective pattern use.

5.5.2.1 Representing and Using Patterns of Behaviour

Patterns refer to solutions to documented problems, usually accompanied by a description of the

context, which specifies where those solutions are applicable [41]. In RAMASD, patterns are

used in the same way to refer to reoccurring behaviour in ABSs. Modelling design patterns

using roles integrates both the static and dynamic aspects of the pattern in one model.

Furthermore, it facilitates combining functional, non-functional and organisational behaviour.

 98

LecturerStudent

Library User

Library staff

UMIST member

Staff Library UserStudent Library User

mergesto

mergesto

mergeswith

addswith

mergesto

mergesto
mergeswith

interacts

containscontains

interactsinteracts

addswith
(interacting)

mergesto
(non-interacting)

mergeswith
(non-interacting)

Figure 5.11: An example of collective behaviour reuse in RAMASD

To effectively use patterns in software design a pattern composition technique is required in

addition to methods for selecting suitable patterns [214]. In this respect, RAMASD supports

effective use of patterns since patterns are represented by role models that can be systematically

composed based on the role algebra.

5.5.2.2 An Example of Behaviour Reuse

An example of how common behaviour can be reused in RAMASD is given in Figure 5.11. The

example considers an ABS to support the operations of a university. Members of staff as well as

students are also members of the university community and have access to the library. However,

they have different access to library resources, for example, members of staff can borrow books

for one year without any need for renewal whilst students borrow books for only one month.

In existing ABS design approaches which use roles, this would be difficult to represent and it

could be generally done in two ways:

a) An obvious way to do that would be to manually introduce separate roles for each possible

library use, i.e. StudentLibraryUser and StaffLibraryUser. However, the basic collective

behaviour corresponding to the interaction of a library user would be repeated twice.

Furthermore, a new role would be required every time some modifications to the original

role were required.

 99

Author

 submit papers :

PC Member

 Assign papers to reviewers :

Reviewer

 Review papers :

PC Chair

-Examine abstracts :
 Partition papers :
 Collect reviews :
 Make decisions :

DB

 Paper database :retrieve abstracts

retrieve papers

submit papers

accept/reject papers
[at least two reviews required]

receive reviews

 assign papers
[not own paper]

allocate papers

Role Collaboration

Figure 5.12: RAMASD roles for the conference management system example

b) Another way would be to modify the role LibraryStaff so that it would provide different

access privileges to LibraryUsers that are Lecturers to those which are Students. Such a

solution would result in making different assumptions for the LibraryStaff role at a low

level of detail and hence increasing the complexity of the specification. Furthermore, it

completely lacks generality. For example, if the library roles were to be used to design ABS

supporting a community library then different low level assumptions would need to be done

again.

RAMASD offers an innovative way to handle such cases, which is introducing an appropriate

merging relationships between the related roles. For each combination of roles that result in a

different joint behaviour, a third role can be introduced. However, instead of the designer

having to specify the differences in behaviour manually each time, this can be done

automatically by the role allocation algorithm. For example, when an agent plays both Lecturer

and LibraryUser then in effect it will be playing the StaffLibraryUser role. However, the

designer does not need to explicitly include the StaffLibraryUser role in the design. If the roles

and their merging relationships had been previously specified and stored in some storage area,

the role allocation algorithm should be able to include StaffLibraryUser in the design

automatically.

In a similar manner, more combinations of the relations included in RAMASD can be used to

simplify modelling of complex behaviours. For example, frequently used roles can be

specialised and roles can exclude or require other roles. It is expected that an ABS designer will

 100

specify a number of relations among certain roles in an application domain and then reuse them

as required.

5.5.3 Representing Organisational Settings

Representing organisational settings using roles has been widely used in the ABS systems

research community. RAMASD represents organisational settings by appropriate organisational

roles and by constraints based on inter-role relations and on role characteristics. This approach

enables effective representation of both organisational patterns and organisational rules.

In a manner similar to other methods, organisational behaviour in RAMASD can be modelled

by appropriate roles. The view is that assigning agents to play organisational roles will result to

imposing organisational settings to the ABS. In order for organisational roles to be able to affect

the agent behaviour, appropriate merging relationships between organisational and functional

roles need to be specified. This is where RAMASD radically differs from existing approaches,

for example [64].

To illustrate the above concepts, the conference management example discussed in [221] is

used (Figure 5.12). The example involves designing an ABS to support management of

conference paper reviewing processes. The conference system operates in the following phases:

submission, review, decision, and final paper collection. During the submission phase, authors

submit papers and are given a paper submission number. After the deadline for submissions has

passed, the Conference Chair examines the abstracts of the submitted papers and delegates them

to appropriate committee members for review. The committee members either contact referees

and ask them to review a number of the papers, or they review them themselves if applicable.

After the reviews are complete, recommendations are made to the conference chair who for

each paper decides whether to accept or reject it. After the decisions are made, authors are

notified of the decisions and are asked to produce a final version of their paper if it was

accepted. Finally, all final copies are collected and printed in the conference proceedings.

The conference management system is an open system, and therefore there could be cases

where agents could attempt to display opportunistic behaviours, that would benefit their owner

to the detriment of the system as a whole. Such behaviours could include reviewing ones own

paper or unfair allocation of work between reviewers. In [221] a number of example

organisational rules are described aiming to prevent such situations. They include:

• Each reviewer must not review the same paper more than once.

• A paper author must not review his own paper.

• Two reviews are needed before a paper is accepted or rejected.

 101

Figure 5.13: Enforcing organisational rules by appropriate merging of roles

Such rules are described in [221] using first order temporal logic. However, there is no actual

description of how such rules would be mapped to analysis and design constructs. The

traditional way of enforcing those rules would be to interweave the organizational rules into the

individual roles. For example, the only place to check that at least two reviews were completed

before the decision to accept or reject a paper was made is in the PC Chair role itself. This has

two main weaknesses: Firstly, the role would require complex changes and it would not be

directly reusable in other applications, and secondly this type of modelling would not assure that

a newly arrived agent claiming that it plays the role would actually observe the organisational

rules. For this reason it has been suggested that organisational rule enforcement should be done

outside the ABS [150]. To the author’s knowledge, the latest advance in this direction is by

explicitly modelling organisational tasks and requiring application roles to execute them [48].

However, the linking of application roles to organisational tasks is done at a low level of

abstraction involving increased complexity and there is no systematic technique to reuse such

linkage.

In RAMASD, this issue is addressed by merging application roles with organisational roles. For

example, in Figure 5.13 the role Reviewer is merged with the role Organisation resulting to the

Org Reviewer role. The Organisation role represents behaviour conforming to particular

organisational rules, which in this example refers to using the Monitor role as an intermediary

for all interactions. Therefore, Org Reviewer has the same functionality as Reviewer with the

difference that all interactions with the PC Member and PC Chair roles are carried out via the

PC Chair

 Collect reviews :

Org PC Chair
 Collect reviews :

Organisation

Reviewer

 Review papers :

Org Reviewer
 Review papers :

Monitor

 Monitor #reviews :

receive reviews

send reviews receive reviews

merges
merges merges

merges

addswith
(interacting)

mergesto
(non-interacting)

 102

Monitor role. In this way, the Monitor role monitors if the organisational rules are observed or

not and can take appropriate actions if required. The resulting system is depicted in Figure 5.14.

Author

 submit papers :

Org PC Member

 Assign papers to reviewers :

Org Reviewer

 Review papers :

Org PC Chair

 Partition papers :
 Collect papers :
 Make decisions :

-Examine Abstracts :

DB

 Paper database :

Monitor

 Monitor #reviews :
 Monitor Decision :
 Monitor reviewers :

retrieve abstracts

retrieve papers

submit papers

assign papers

accept/reject papers

collect reviews

Role Collaboration

Figure 5.14: An example of modelling organisational rules using roles

5.5.4 Considering Non-Functional Aspects

Any software design effort should take into account non-functional aspects. In this work, non-

functional aspects are represented in role models. This is done by introducing appropriate role

models that contribute towards achieving certain non-functional qualities and by modelling non-

functional requirements as quantitative constraints on certain agent characteristics. Agent

characteristics are associated with the respective characteristics of the roles played by the agent.

As mentioned in Section 3.3.4, approaches to considering non-functional aspects in software

design can be product oriented or process oriented, where the former focus on considering non-

functional aspects throughout the design process and the latter on evaluating whether the

resulting software product meets quantitative non-functional constraints.

Process-oriented approaches originated from the fact that non-functional aspects cannot always

be described in a quantitative manner. For example, an ABS can be required to have “high

security” and “good performance”. Furthermore, there is the issue of conflict in non-functional

requirements. It can be inefficient to complete a design of software architecture only to find that

non-functional constraints are not satisfied. Therefore, the process-oriented view aims at

addressing such issues early in the design process.

 103

Figure 5.15: Extended actor diagram for an e-cultural system (aft Giorgini et al., 2001)

An example of ABS engineering methodology, where non-functional aspects are treated in a

process-oriented manner, is Tropos [23]. In Tropos, appropriate Actors3, with special behaviour

aiming to ensure fulfilment of non-functional requirements, are inserted in the conceptual

models representing system activities (use cases) in the early design stages. Actors can

contribute either positively or negatively with respect to the value of some non-functional

aspect. The view in Tropos is that in this way, conflicts in contradicting non-functional aspects

will be resolved as early as possible in the ABS engineering process. An example of a Tropos

model where new actors are inserted is depicted in Figure 5.15, where actors are represented by

circles. The example refers to the design of an ABS supporting provision of e-cultural services,

for instance information about festival dates and theatre ticket booking. In the example given,

the actors Service Broker and Resource Broker were inserted to increase the system

extensibility. The new actors act as brokers for services and resources.

The problem with the approach followed in Tropos is that the solutions given cannot be directly

reused in other applications. The inserted non-functional Actors are specific to each conceptual

model. Furthermore, to the author’s knowledge. there is currently no support from Tropos to

automatically insert non-functional actors to the conceptual models. Hence, designers have to

follow the design process step by step and introduce new actors as and when required.

3 Actors in Tropos are concepts quite similar to roles in the information systems engineering

context described in Chapter 4.

 104

DF Registrant

 Provide service :

FIPA Directory Facilitator

DF Customer

 Request service :

merges

e-culture request

 Request e-culture info :

 DF Service request

 Request e-culture info :

e- culture provision

 Provide e-culture info :

 DF Service Provision

 Provide e-culture info :
merges merges

merges

interacts

interacts interacts

interacts interacts

addswith
(interacting)

mergesto
(non-interacting)

Figure 5.16: Using the FIPA directory facilitator role model for e-culture service brokering

The above weaknesses are addressed in RAMASD by considering non-functional roles. For

example, in FIPA standards brokering is done by the Directory Facilitator [67]. This can be

represented by a role model including the Directory Facilitator, DF Customer and DF

Registrant roles. For an application domain, for example the e-culture domain, in order to be

able to use the DF role model appropriate merging relationships should be specified. This is

depicted in Figure 5.16 where the e-culture request merges with DF Customer and e-culture

provision merges with DF Registrant. In this way, the designer needs to specify the above roles

and their merging relationships only once and store them in a role model storage space. Then,

whenever brokering is required, the designer would simply designate the use of the DF role

model (in addition to the e-culture application model). Based on the merging relationships the

appropriate SF Service Request and SF Service Provision roles would be also automatically

retrieved from the role model storage space. Furthermore, allocation of roles to agents could be

done automatically. In this way, both non-functional solutions are reused. This saves the

designer from having to repeat design steps and to go into details, that is they are taken into

account in an automatic manner leading to reduced design complexity.

Product oriented approaches involve evaluating design models, such as software architectures

[114]. Generally, the idea is that for a non-functional parameter of interest, for example

availability, to build models of software architectures that could possibly used to deliver the

 105

system application functionality and reason about the suitability of these architectures for that

particular performance parameter and application context. RAMASD supports a similar, yet

relatively limited, view of quantitative modelling of non-functional aspects via the use of

performance variables (see also Section 5.2.1.1). Performance variables can be used to represent

various non-functional aspects including performance, availability and modifiability. The idea

of performance variables is that certain non-functional aspects can be modelled as role

characteristics. For example, in a PDA ABS the User Interface, Personal Profiler and

Document Handler roles may be involved (Figure 5.17). Personal Profiler is associated with an

amount of memory where the profile of the user is stored and document handler is associated

with a database containing user documents. It is assumed the memory an agent will be

associated with is equal to the some of the amounts of memory associated with the roles the

agent plays. As PDAs normally have limited amount of memory, in allocating roles to agent

components it needs to be specified that the memory of each agent should be less than a

particular threshold. This constraint would then drive allocation of roles to agent types.

Document Handler

 Memory : : = 3000

User Interface

Personal Profiler

 Memory : : = 300

interacts interacts

Role Collaboration

Figure 5.17: A personal assistant role model

5.5.5 Considering Design Heuristics

Design heuristics are instrumental in software design. In RAMASD design heuristics can be

described either as constraints between roles or between agent and role characteristics.

In designing software architectures general design rules often need to be applied. Examples are

low coupling and high cohesion [118]. Those heuristics assist in designing more understandable

and efficient software architectures. Furthermore, several design heuristics concerning

specifically the design of ABSs have been proposed. For example, in role-based design all roles

requiring access to the same resource should be allocated to the same agent [38].

As mentioned previously, another heuristic proposed in [38] is The Sphere of Responsibility

heuristic. According to this heuristic each agent should be responsible for controlling a number

of resources or providing a number of services. This area of control is known as the agent's

 106

Sphere of Responsibility. Therefore, when considering what agents will exist the developer will

need to consider how the application domain will be partitioned. To illustrate this heuristic, in

[38] they provide an example concerning a trading scenario involving four roles: User Interface

for entering user preferences, Negotiator for carrying out the negotiation with traders,

Accountant for settling payments and Trade Consultant for provision of trading expertise. In the

examples given, two areas of responsibility were identified, one concerning the whole company

and one concerning particular trading sectors. This is illustrated in Figure 5.18 where the

presence of 4 trader agents, each with their own local sphere of responsibility, is assumed. Each

trader agent will use the local computing resources to provide personalised user interaction and

trading expertise. The negotiation and settlement activities have been centralised and placed in

the company sphere, where they will be available to the whole company.

Trader
 - Interface
 - Know ledge

Trader
Sphere of

Responsibility

Trader
Sphere of

Responsibility

Trader
Sphere of

Responsibility

Company
Sphere of

Responsibility

- Negotiation
- Settlement

Figure 5.18: Spheres of responsibility (Collins et al. 1999)

In RAMASD such heuristics could be enforced by appropriate relations among roles. In the

above example, the sphere of responsibility heuristic could be enforced by the introduction of

two utility roles representing the two identified spheres of responsibility: Company-wide and

Trader-specific. Those two roles exclude each other. Subsequently, any other role belonging to

each of the two spheres of responsibility should require the appropriate utility role, for example,

User Interface should require Trader–specific. In this way, a) an automatic allocation of roles to

agents is possible by an appropriate algorithm, for instance the one described in Section 6.5, and

b) the same role model can be reused to design other ABSs and the heuristic will be applied

without any further effort from the designer. This example is depicted in Figure 5.19.

Similar results could be achieved by modelling each sphere of responsibility by an appropriate

performance variable. For example, SphereOfResponsibility, which would be taking values of

only 0 and 1. In this case, the heuristic could be enforced by requiring that the

SphereOfResponsibility variable of every agent to be 0 or 1. This approach, however, would

require to define how the values of the agent SphereOfResponsibility variables would be

 107

obtained from the values of the respective variables of the roles played by the agents. This is not

a trivial issue and, therefore, such specifications are outside the scope of RAMASD as discussed

in Section 9.3.

Negotiator

 Conduct negotiations :

Company-wide

Accountant

 Settle Payments :

requires

User Interface

 Gather user preferences :

Trade Consultant

 Provide trade knowledge :
Trader-specifc

excludes

requires

requires requires

addswith
(interacting)

excludes
(non-interacting)

requires
(non-interacting)

Figure 5.19: Specifying the spheres of responsibility heuristic using role relations

5.6 Using RAMASD with Existing Methodologies

An important advantage of the RAMASD method is that it can be used in conjunction with

existing ABS engineering methodologies. The degree of compatibility between RAMASD and

existing methodologies is high or low depending on whether they use the role concept for

modelling the agent-behaviour.

High compatibility exists when the methodologies include the role concept as is the case with

the majority of informal approaches, for example MESSAGE/UML, SODA, Gaia and Zeus.

RAMASD can be used after the analysis stage to drive the design of the agent components. This

requires formulating the role allocation problem in RAMASD, including the definition of

constraints on roles and role characteristics and the possible introduction of additional role

models to represent organisational and non-functional aspects. After role allocation, the

remaining phases of each existing methodology can be followed. For example in SODA the

topological model could be created and considered after designing the agent components using

RAMASD.

 108

The compatibility of RAMASD is low in methodologies where the role concept is not included,

for example DESIRE. In such cases, RAMASD can still be useful but an additional role

modelling phase would be required. For example, in DESIRE the tasks that would need to be

carried out by the agents should be analysed according to some task analysis method, such as

the one described in [32], and grouped to roles following general heuristics [109]. Subsequently,

additional roles to represent organisational and non-functional aspects should be introduced as

required and role allocation could take place. Finally, the tasks associated with each agent

component could be determined from the roles allocated to it and the rest of the DESIRE

methodology (task and component specification, code generation) could be applied normally.

5.7 Summary

Current methodologies for ABS engineering do not adequately support the transformation of

analysis knowledge to design decisions that take place when designing ABSs, requiring the

designers to manually address the complexity of the design problem. This makes designing

large, real world, ABSs a tiresome and error-prone exercise.

To address these concerns, the RAMASD design method was introduced. RAMASD reduces

design complexity by enabling designers to work at a high level of abstraction and by semi-

automating the design process. RAMASD models agent behaviour using roles and it views ABS

design as a problem of allocating roles to appropriate agents. Design requirements are

represented by appropriate roles and design constraints on roles and role characteristics. Two

innovative ideas behind RAMASD are to enable high-level design by defining the role concept

so that it can represent a rich set of agent behavioural aspects and to use the synthesis concept to

enable semi-automation of the design process. Those two ideas were fundamentally

supplemented by the main innovation of RAMASD, the role algebra. The role algebra is a

formal model of role relations concerning allocation of roles to agents. The semantics of this

model are described using a two-sorted algebra. The role algebra supports both high-level

design, enabling specification of design constraints at the role level, and semi-automation of the

design process by enabling automatic role allocation after role selection has been made.

RAMASD enables reuse of organisational design knowledge by allowing designers to specify

and retrieve relevant role models, and to manipulate them using the role algebra. Similarly, non-

functional aspects and design heuristics can be described using roles and constraints on role

characteristics and taken into account on role allocation.

Finally, RAMASD can be used in conjunction with a number of existing ABS engineering

methodologies that make use of the role concept.

 109

Chapter 6

Implementation of RAMASD

To test the applicability of RAMASD, it has been integrated into the Zeus agent building

toolkit. A number of new toolkit components have been developed to implement the following

extensions: a) a role model editor b) a specification language to specify design constraints and

c) a set of algorithms to allocate roles to agents.

6.1 Extending Zeus to Support RAMASD

The Zeus agent-building toolkit was selected as the basis for the tool to support RAMASD since

it already supported role modelling. It also provided a user friendly environment for ABS design

and deployment and it had a modular architecture, which was easy to extend. To provide

support for the RAMASD method, a number of new components interacting with the existing

ones were developed. These components enable the designer to create, edit, store and retrieve

role models, to specify appropriate design constraints and to automatically generate and deploy

the ABS in the form of Java source code. The developed tool is referred to as the RAMASD-

Zeus ABS design tool.

A high level overview of the RAMASD-Zeus is given in Figure 6.1. A main goal of this tool is

to support ABS designers to represent previous design knowledge using role modelling and to

place this knowledge in a repository, the role model library. The repository would then be used

by subsequent ABS designers who wish to reuse subsystems or to modify and rebuild legacy

systems using agent technology. To support role allocation steps in RAMASD, the tool uses

appropriate algorithms to search for feasible solutions satisfying the design constraints. Finally,

the resulting designs can be used to generate template systems linked to libraries of domain-

specific implementation code.

The RAMASD-Zeus ABS design tool consists of three components:

• The main designer GUI. This provides editors for manipulating role models and design

constraints and interfacing the role model library for storing and retrieving role models.

Specification of design constraints is done in a simple specification language, the Role

Constraint Language (RCL). Users of the RAMASD-Zeus tool can either use a user-friendly

Java-based front-end to RCL or they can write RCL statements directly in a constraint

specification file.

 110

DESIGNER GUI

CONSTRAINT
PROBLEM SOLVER

JAVA CODE
GENERATOR

Agent-based
software engineer

Deployed
agents

Object-based
legacy systems

developer

Role Model Library

Figure 6.1: Conceptual view of the extended Zeus ABS design tool

• The constraint problem solver. This component implements a special purpose heuristic

algorithm and various standard constraint problem solving algorithms for allocating roles to

agents.

• The Java agent generator. This component provides algorithms for determining the agent

characteristics based on the roles that have been allocated to the agents and for generating

Java code for the deployment of the ABS.

As discussed in Chapter 5, the design of an ABS using RAMASD generally involves a number

of iterations. The process of using the exstended Zeus toolkit in conjuction with RAMASD can

be described as follows: Legacy systems developers can use the tool to describe well-known

design solutions (patterns) in an application domain in the form of role models. Those models

are stored in a role model library. ABS engineers retrieve a number of role patterns from the

role model library and customise them to suit the particular application being developed.

Furthermore, they may introduce new role models as appropriate and store them in the role

model library for future use. The next step is to specify any design constraints concerning

desirable functional, non-functional and organisational aspects of the designed ABS. This is

done using the role constraints editor, which is part of the extensions added to the Zeus agent

building tool. Alternatively, constraints can be specified directly in a constraint specification

text file. Subsequently, the constraint problem solver component searches for feasible

allocations of roles to agents and notifies the engineers accordingly. If a solution is found, and it

is considered appropriate, then the engineers launch the deployment step which involves

 111

generating Java code from the Java code generation component. If a solution is not possible

with the current specification, the designer can modify some of the problem parameters and

request a new search to be made. This can be repeated until a satisfactory allocation of roles to

agent types is done.

The remainder of this chapter is organised as follows: Section 6.2 summarises the Zeus agent

building toolkit main components. In Section 6.3, the extensions done to the AgentGenerator

component are described and the way that RAMASD can be applied using the extended

AgentGenerator is illustrated. The specification of design constraints is done using a simple

specification language which is described in Section 6.4. The algorithm used for allocation of

roles to agents is described in Section. 6.5 and the chapter concludes in Section 6.6.

6.2 The Zeus Agent Building Toolkit

The innate difficulty of constructing multi-agent systems has motivated agent developers to

move away from developing point solutions to point problems in favour of developing

methodologies and toolkits for building distributed multi-agent systems. This philosophy led to

the development of the ZEUS Agent Building Toolkit [147] (downloadable from

http://more.btexact.com/projects/agents/zeus/), which facilitates the rapid development of

collaborative agent applications through the provision of a library of agent-level components

and an environment to support the agent building process.

The ZEUS toolkit provides a set of components, written in the Java programming language, that

can be categorised into three functional groups: an agent component library, an agent building

tool and a suite of utility agents. Details of the Zeus Toolkit components are found in Appendix

B.1.

6.3 Extending Zeus to Support RAMASD

To provide software support for RAMASD, it was decided to extend the Zeus ABS

development methodology and software toolkit. RAMASD was integrated with the existing

Zeus methodology amending the design and realisation stages. To provide appropriate software

support, the existing Visual Agent Creator and the Code Generator components were extended

and new components were developed.

6.3.1 The Extended Zeus Agent Development Methodology

The primary extension to the Zeus ABS development methodology described in Appendix

A.6 proposed in this thesis is to use RAMASD to semi-automate the design process and to

enable designers to work at a high level of abstraction. This spanned the design and the

realisation stages of the initial methodology.

 112

Figure 6.2: The extended Zeus agent development methodology

As can be seen in Figure 6.2, the design phase involves selecting appropriate role models,

customising them for the application on hand and allocating them to agents. In the extended

Zeus agent system development process, these steps are all done according to the RAMASD

method, that is role allocation is done automatically by the Zeus tool.

The realisation phase is modified only as far as it concerns the agent creation stage. Agent

definition is done automatically based on the roles each agent plays. This is because the agent

tasks, resources and goals are defined by the respective tasks, resources and goals of the roles

the agent plays. This is the case for the coordination protocols, the negotiation strategies and the

organisational relationships of the agent as well.

In particular, the following steps need to be taken during the extended Zeus design phase:

• Role model specification. The role models that will be used are specified. This involves

instantiation of reusable role interaction patterns and definition of role models specific to

the application under development.

• Role configuration. The characteristics of each role, for example the resources it requires

and the tasks it is able to perform, are specified. At this stage any performance parameters

are also defined.

• Task definition. Tasks are defined in detail. This is done in a similar manner to that in the

original Zeus agent design phase.

Domain
Analysis

Design Realisation

Role Modelling

Implem--
entations

Runtime
Support

Identification of
Ontology, Roles,
Tasks/services &
Agent types

Agent Definition,
-System

Configuration

Visualisation
 Debugging

Development

Phase

Activities

Problems
 Solutions

- Ontology creation
- Agent creation
- Task Agent
 configuration
- Utility Agent
 configuration
- Code generation

- Role model selection
- Role instantiation
- Agent type definition

AAggeennttss –– RRoolleess –– GGooaallss –– TTaasskkss

- Task Description

RAMASD
extensions

 113

Figure 6.3: The extended Zeus Agent Generator component

• Role collaborators: The collaborators of each role are specified.

• Role behavioural protocols: The protocols used by a role to interact with other roles are

specified.

• Role compositional constraints: The constraints that must be observed when a role is

composed with other roles are specified. At this stage the performance parameters are

assigned some value.

6.3.2 The Extended Zeus Visual Agent Creator Component

To provide support for the extended agent development process the Zeus Agent Generator and

Code Generator components were extended. This required creating the Role Constraint Editor

and Role Allocation sub-components and modifying the functionality of the existing ones where

necessary.

The Zeus Agent Generator is the main component of the Visual Agent Creator tool. It provides

links to all other Zeus components. For each application, the designer specifies a project

including information about agents, tasks and Java code generation parameters. Project

 114

definitions can be automatically translated to the Zeus Frame based Language4 and saved on

disk. The Zeus Agent Generator component and the Zeus Frame based Language were extended

to provide support for roles and role patterns (Figure 6.3).

Figure 6.4: The role model and role definition editors

The Zeus Agent Generator component was extended to provide a suite of integrated sub-

components that support specification of roles and role models in the extended Zeus ABS

4 The Zeus Frame-based language is a simple specification language in many aspects similar to XML. It

has been introduced in Zeus before the release of XML. It was decided to use it in this project because its

use is tightly linked with most parts of the Zeus Java class hierarchy and replacing it would require

substantial effort which was outside the scope of a PhD project. There is currently ongoing work aiming

to streamline Zeus knowledge representation mechanisms, which will replace this language with XML

 115

design approach and allocation of roles to agent types. To facilitate ease of use, the editors have

been designed to enable users to interactively edit roles agents by visually specifying their

attributes. The current suite of editors includes:

• Role Model and Role Definition Editors: This is where the designer specifies role models

and role characteristics (Figure 6.4). The role model editor allows for specifying role model

characteristics. This involves specifying the name of the role model and the roles it

comprises. Furthermore, the role model editor provides an interface to the role model

library. The role model library is a component where role interaction patterns can be edited,

automatically translated to some extension of the Zeus frame-based language and stored on

disk. The role model library component aims at providing assistance in reusing design

knowledge.

The role editor allows for specifying the tasks, initial resources (facts), and the planning

length of each role. Furthermore, within role editor the collaborators of each role can be

specified. Finally, role algebraic constraints can be introduced from this point by invoking

the Role Constraints Editor described below.

Figure 6.5: The Role Constraints Editor component

• A Role Constraints Editor (Figure 6.5) provides a graphical interface for specifying inter-

role constraints. The designer is able to select role relations and available role names from

appropriate pop-up menus. Constraint specifications can be stored and retrieved from

constraint files (in the Zeus frame-based language format. Constraints are described in RCL,

a simple constraint language which is described in more detail in Section 6.4. RCL is based

 116

on the role algebra introduced. RCL provides a convenient user interface where designers

can edit and manipulate various types of constraints in RCL. When an RCL specification is

retrieved, a check for consistency is done using an RCL interpreter component.

Figure 6.6: The Role Allocation component

• A Role Allocation Component (Figure 6.6) allows the designer to experiment with different

role models and design constraints until a satisfactory design has been reached. The role

allocation component formulates and solves a constraint satisfaction problem based on

compositional constraints. Currently, the search algorithm described in Section 6.5 and

three known search algorithms for constraint satisfaction problem solving have been

implemented: simple backtracking, simple backmarking and forward checking. Those

algorithms are executed with interfacing the Java Constraint Library [14]. In the current

version of the role allocator component, the designer is able to specify the number of agents

that need to be produced, the search algorithm that will be applied, to see detailed messages

of the search process and automatically proceed to generating Java code for the designed

agents.

In the case that no feasible solution is found, then the designer can try a different search

algorithm or they can go back to the role model definition and role constraint editors and

 117

change details on role characteristics and the various role constraints, in line with the

synthesis-based semi-automatic process discussed in Section 5.4.

The above extensions were implemented on the Zeus agent building toolkit version 1.2.0 using

JDK1.3. The JavaCC parser generator [95] was used for the extensions to the Zeus frame-based

language and RCL. Furthermore, the Java constraint Library [14]. was used for the three search

algorithms as mentioned above.

6.4 The RCL Constraint Language

After identifying roles in the application domain and modelling non-functional aspects using

well-known role interaction patterns, the next step is to model the remaining functional and non-

functional aspects using constraints on roles and agent and role characteristics. This can be done

using Role Constraint Language (RCL). RCL is a simple declarative specification language that

was introduced to represent design constraints on roles and agent and role characteristics. The

RCL syntax is simple and intuitive in order to facilitate the specification of constraints among

roles. The underlying RCL semantic model is based on the algebraic semantics of the role

algebra presented in Section 5.2.7. The basic concepts of RCL will be illustrated using the

specification of the design constraints presented in Figure 6.7.

An RCL specification contains sections corresponding to role definitions, role constraints and

general constraints. In the role definitions section, the names of the roles that will be considered

in the multi-agent system design are specified. More than one role name can be specified in the

same specification statement. Furthermore, it is possible to associate role characteristics, for

example role collaborators and performance variables, with role names. This is illustrated in

Figure 6.7 where it is specified by specifying that the role Employee has associated the integer

performance variable database and the string performance variable negotiation. At the same

point, any role characteristics are assigned values. The syntax for referring to the characteristics

of each role is similar to that of common programming languages, using a ‘.’ to link the role

name and the role characteristic name.

In the role constraints section any constraints between roles are specified in prefix form. For

example, the fact that the Manager role contains the Employee role is denoted by

in(manager, employee). In this way, using appropriate constraints between roles the

way that different roles should be allocated to agent types can be specified. For example, the

Excludes relation is used to specify that an agent that is Customer cannot also be Employee.

In the general constraints section generic constraints concerning role characteristics are

described. For example, in Figure 6.7 it is specified that all agents should have a database less

than or equal to 15. In this project, it has been assumed that all agents have the same

 118

characteristics as all roles that are assigned to them, and that the respective values are given by

simple models. For example, in Figure 6.7 it is assumed that the value of the agent performance

variables equals to the sum of the values of the respective values of the roles allocated to the

agent. Hence, restricting the values of the agent performance variables affects allocation of roles

to agents.

Figure 6.7: Parts of an RCL specification

The EBNF syntax of the RCL language is described in Appendix C.

6.5 Allocating Roles to Agents

The search for a feasible allocation of roles to agents can be done using various algorithms. In

this section, a simple custom algorithm that can be used to allocate roles to agents is described.

The algorithm aims to minimise the number of agent types produced. Therefore, it tries to

allocate as many roles to an agent type as possible before moving to the next one. Merging roles

are processed first and the algorithm moves to the remaining roles only when all roles that are

 /* ROLE DEFINITIONS */

/* defining the roles involved in the application domain */

Role customer, manager;

Role employee {

 int database;

 string negotiation = “exponential decay”;

}

 employee.database = 10;

/* ROLE CONSTRAINTS */

/* specifying any inter-role constraints */

not(customer, employee);

in(manager, employee);

/* GENERAL CONSTRAINTS */

/* specifying any constraints on role characteristics */

Constraint Y {

 forall a:Agent {

 a.database <= 15

 }

}

 119

involved in a Mergeswith constraint have been allocated to an agent type. All roles are allocated

to an agent type at least once. An overview of the algorithm is given in Figure 6.8.

Figure 6.8: A simple search algorithm for allocating roles to agent types

The algorithm starts with an empty agent type and randomly allocates it with a group of

merging roles which are roles involved in a Mergeswith relation. Then, it checks whether those

merging roles are involved in any other role constraints. If they are, then the additional roles

involved in those role constraints are also allocated to the agent type. Subsequently, the

algorithm checks whether the agent type is consistent, which involves examining whether all

constraints concerning the roles so far allocated to the agent type are satisfied.

If those role constraints are satisfied, the next step is to check whether any general constraints

concerning role characteristics of this agent type are also satisfied. If this check is succesfull, the

roles involved are considered part of this agent type and the two steps above are repeated for as

long as there are still merging roles to allocate. If allocating any further merging roles to the

agent type results in constraints that are not satisfied, then a new agent type is created and the

process is repeated. If there are constraints that are not satisfied and the agent type was initially

empty, the algorithm stops with an error message.

1. Create a new agent type t.

2. While there are remaining unprocessed merging

relationships:

a. Create agent type t’ = t.

b. Allocate roles ri involved in a merging

relationship m to agent type t’.

c. If t’ is consistent for some allocation

combination of ri to t’:

i. Check any constraints on the performance

variables of agent type t’.

ii. If they are satisfied:

1. t = t’.

2. Goto step 2.

d. If agent type t is empty then error.

3. While there are remaining unallocated roles:

a. Create agent type t’ = t.

b. Allocate a role r to the agent type t’.

 120

When all merging roles are finished and there are still roles available, then the algorithm

attempts to allocate the remaining roles to the current agent type. In case of failure, a new agent

type is created and the process continues until all available roles have been allocated to agent

types.

This is a simple and intuitive algorithm, which is currently used as a base line for comparisons

in our ongoing research about role allocation algorithms. The algorithm has been shown to work

reasonably well for case study examples involving approximately 40 roles and having, on

average, 10 merging role constraints, 20 other role constraints and 2 general constraints.

However, the algorithm becomes inefficient when the total number of roles increases, the

number of merging role constraints decreases or the total number of constraints increases. As

described in Section 9.4, detailed exploration of possible search algorithms is outside the scope

of this thesis but could be the subject of future work.

6.6 Summary – Conclusions

In this chapter the implementation details of integrating the RAMASD approach in the Zeus

agent building tool were described. The main components developed were the role model editor

and the role allocator component. These were accompanied by RCL, a specification language to

specify design constraints, and a set of algorithms to allocate roles to agents. The extended Zeus

agent building tool was used to test the applicability of the RAMASD method in the case

studies described in Chapter 7.

 121

Chapter 7

Case Studies: Mobile Workforce Support and

COVISINT

This chapter demonstrates the application of RAMASD to the design of ABSs for two case

studies. It presents the role models and the design constraints elicited from the respective

application domains and it gives an overview of the results obtained. The results demonstrate

that it is feasible to apply RAMASD in real-world applications.

7.1 Applying RAMASD to Real World Cases

In the previous chapters, the use of formal algebraic relations among roles as a discipline for

driving allocation of roles to agents has been discussed. The discussion was followed by a

presentation of RAMASD, a semi-automatic approach for systematically selecting roles and

allocating them to agent types. In this chapter, the RASMASD approach is applied to two case

studies and the empirical results and observations are presented.

The purpose of this exercise is twofold. Firstly, it is to demonstrate that it is plausible to apply

the RAMASD method to non-trivial real-world applications. The second is to provide evidence

that will enable a satisfactory evaluation of the utility of the RAMASD method, which is done

in Chapter 7.

The first case study concerns support of BT’s mobile workforce. BT has about 25,000 mobile

workers performing about 150,000 repair tasks everyday across the UK. BT is very much

interested in appropriate technology enabling mobile workers to deliver high productivity and

quality of service while lowering the operational costs. Support for BT’s mobile workforce has

many dimensions including travel management, teamwork coordination and work knowledge

management. These three dimensions were considered in the first case study. This case study

demonstrates how RAMASD handles quantitative non-functional aspects and design heuristics.

The second case study concerns COVISINT, a B2B electronic marketplace (B2B Exchange)

concerning the automotive industry. COVISINT offers support for supply chain management,

collaboration among automotive market business parties, procurement, quality control and

corporate financial processes. This case study was selected to demonstrate how RAMASD

handles qualitative non-functional aspects and organisational settings.

 122

Figure 7.1: A high level view of the mobile workforce coordination case study

The remainder of the chapter is organised as follows: Section 7.2 provides an overview of the

mobile workforce coordination application and it discusses the results of applying RAMASD in

that application context. Similarly, Section 7.3 describes the application of RAMASD to the

COVISINT case study. Finally, Section 7.4 concludes the chapter.

7.2 Mobile Workforce Support

Coordination of a mobile workforce is an issue of major concern in contemporary business

organisations [28, 117, 175]. A typical example of a mobile workforce support problem is that

of supporting repair engineers of telecommunication companies, such as British

Telecommunications. In this section, the use of RAMASD is demonstrated based on a subset of

the requirements for an ABS to support telecommunication field engineers.

7.2.1 The Mobile Workforce Support Problem

The aim is to build an agent system that would assist field engineers to carry out their work.

Among the issues involved in such a system are those of Travel Management, Teamwork

Coordination, and Knowledge Management [187, 199].

Provision of service to business and residential customers, network maintenance and fault repair

are core activities of large telecommunications and IT companies. For example, British

Telecommunications (BT) employs more than 20,000 field engineers across the UK to maintain

networks, repair faults, and provide service to customers. Such companies are faced with a the

Call Centre

Field Engineer

Repair work
request

Selection of a Field Engineer based
on personal preferences and repair
task requirements

Travel to repair location
Guidance (Route planning)
Information (Traffic)

Location Info
DB

Expertise
DB

Plan-route

Find-relevant-information

Estimate-route-cost

Traffic Info

Repair tasks
DB

Customer

A

 Find-relevant-information

Find-expert

Repair fault
Exchange information
(Expert, Technical)
Update (Experience)

Repair task
assignment and
transfer to repair

location
Repair task
completion

Update-knowledge

 123

challenge of improving customer service across a diverse and broadening product range while

achieving improved productivity and attendant cost savings. This requires effective computer

support for the distributed workforce.

The key issues that need to be addressed regarding the supporting of mobile workforce are

allocating the appropriate repair tasks to engineers at the appropriate time, assisting them in

travelling to the fault location, enabling engineers to reuse past knowledge obtained through

experience and storing new knowledge for later use. Travel management is about support to

mobile workers moving from one repair task location to another. It involves finding the position

of each worker, obtaining relevant travel information, planning the route to the next repair task

location and allocating travel resources as required. Teamwork coordination is about allocating

and coordinating the execution of repair tasks in a decentralised manner, taking into account the

personal preferences and working practices of the mobile workers. Work knowledge

management concerns storage and dissemination of expert work knowledge.

An overview of a repair scenario is depicted in Figure 7.1. The customer contacts the call centre

and reports a fault in their telephone line and requests a repair. The repair request is logged and

a search is done for a suitable field engineer to carry out the repair. This search takes into

account the preferences of the engineer as well as their current location. Upon task assignment,

detailed traffic information is obtained and a suitable travel route is recommended to the

engineer aiming to minimise the transfer time. Subsequently, the engineer either completes the

repair or consults a colleague or an appropriate knowledge base for assistance in difficult cases.

Any new knowledge obtained through experience is added in this knowledge base.

7.2.2 Role Identification

In order to model the above scenario in terms of roles, the first thing to do is to start from use

cases (see Section 5.2.1). For the purpose of the telephone repair request scenario, the following

use cases are considered:

• Teamwork coordination: In this activity the customer places a request for a telephone

repair. This request is placed in a pool of repair request tasks and it is eventually allocated

to some mobile field engineer who will be responsible for its execution.

• Travel management: This involves providing up to date travel information to the field

engineer including their current exact location, an optimal plan of the route to the next

telephone repair task, as well as traffic information and managerial policy regarding

travelling.

• Work knowledge management: Work knowledge management deals with maintaining and

storing expertise for complex telephone repair tasks.

 124

Teamwork coordination

Travel Management

Knowledge Management

1. To coordinate teamwork

1.1. To assist workers in
work coordination, i.e.
receive work tasks and
maintain schedule

1.2 To manage work i.e.
grant day offs, confirm
task assignment and
monitor workflow

1. To provide work
travel information i.e.
worktask location and
optimal travel route

2. To maintain and store
travel information from
various travel resources
i.e. traffic databases

2. To assist workers in
non-technical work
problems

3. To maintain and
manage a work pool of
customer requests

4. To assist customers in
placing their requests
and receiving service

5. To maintain and
manage a database of
business rules

1. To search and obtain
assistance from experts
regarding complex work
tasks

2. To maintain and
manage a knowledge
base of expertise about
complex work tasks

Figure 7.2: Use case goals for the telephone repair service teams case study

Each use case has a number of high-level goals depicted in Figure 7.2. The behaviour leading to

achieving these goals can be modelled by appropriate roles. Hence, the following roles can be

identified (Figure 7.3):

1. Employee: This role describes generic behaviour of the members of the customer

service teams. An example of this type of behaviour is accessing common team

resources including work practice announcements and business news.

2. Coordinator: The Coordinator role describes the behaviour required to coordinate the

work of a field engineer. This includes bidding for and obtaining repair work tasks from

a work pool, negotiating with other workers and the team manager as required and

scheduling and rescheduling work task execution.

3. Manager: The Manager role models the behaviour of the team manager. This includes

confirming task allocation, monitoring work and ensuring that business rules are

followed.

4. Mentor: The mentor role provides assistance to field engineers for non-technical issues.

 125

Mentor

TravelInfoBase

 memory :

Coordinator

Manager

Brulebase

 memory :

Employee

Workpool

 memory :

Customer

TravelManager

 KnowledgeFinder

KnowledgeBase

 memory :

Role Collaboration

Figure 7.3: Role models for the telephone repair service teams case study

5. WorkPool: The WorkPool role maintains a pool of telephone repair requests. Customers

interact with this role to place requests and engineers interact with this role to select

tasks to undertake.

6. Customer: The Customer role models the behaviour of a customer. In involves placing

telephone repair requests, receiving relevant information and arranging appointments

with field engineers.

7. Brulebase: This role maintains a database of business rules. It interacts with Manager

providing information about the current work policy of the business.

8. TravelManager: The TravelManager role provides travel information to the field

engineer including current location, traffic information and optimal route to next

telephone repair task.

9. TravelInfoBase: This role store travel information from various travel resources i.e.

GPS and traffic databases.

10. KnowledgeFinder: This role searches for experts and obtains assistance regarding

complex work tasks.

11. KnowledgeBase: The KnowledgeBase role maintains and manages a database of

expertise about telephone repair tasks.

 126

Figure 7.4: Compositional constraints for the telephone repair service teams case study

7.2.3 Specifying Design Constraints

In Figure 7.4, compositional constraints for the roles described in Section 7.2.2 are specified in

RCL. Apart from the application specific constraints, it includes constraints representing non-

functional aspects and design heuristics.

In the telephone repair service teams example, roles that directly manipulate databases require

access to some storage space. This is modelled by the performance variable memory. The

memory requirements of each role are different. For example, TravelInfoBase and

KnowledgeBase require twice as much memory as WorkPool and Brulebase. The memory

requirement is an example of how non-functional aspects can be quantitatively modelled in

RAMASD.

 /* ROLE DEFINITIONS */

Ro employee, coordinator, mentor,

 customer, travelmanager,

 knowledgefinder;

Role workpool, brulebase, workerassistant,

 travelinfobase, knowledgebase {

 int memory;

}

 workpool.memory = 1;

 brulebase.memory = 1;

 travelinfobase.memory = 2;

 knowledgebase.memory = 2;

 workerassistant.memory = 2;

Role manager {

 collaborators = {Coordinator,

 Brulebase};

 protocols = {contracting};

}

/* ROLE CONSTRAINTS */

in(employee, coordinator);

in(employee, manager);

not(customer, employee);

not(customer, travelinfobase);

not(customer, knowledgebase);

not(manager, coordinator);

and(mentor, employee);

and(travelmanager,

 knowledgefinder)

merge(coordinator, travelmanager,

knowledgefinder,

workerassistant);

/* GENERAL CONSTRAINTS */

Constraint Y {

 forall a:Agent {

 a.memory <= 2

 }

 127

Part of the definition of the characteristics of the Manager role is shown in more detail in Figure

7.4. The collaborators of the Manager role are the Coordinator and Brulebase roles and its

interaction protocol is the Contract Net. The Employee role is contained in both Manager and

Coordinator roles. Furthermore, a Manager cannot coexist with Mentor or Coordinator and for

security purposes a Customer cannot coexist with Employee, TravelInfoBase or

KnowledgeBase. In order for an agent to be Mentor it must also be an Employee.

Furthermore, it is assumed that the point of interaction heuristic [38] needs to be applied in this

example. According to this heuristic, common points of interaction should be allocated to the

same agent. In the example considered, one such point of interaction is where the field

engineer’s personal assistant interacts with travel information sources to obtain Travel

information and with the knowledge base to obtain expertise information about repair tasks.

Therefore, it is required to have both these interactions carried out by the same agent. This can

be specified in RAMASD as a requirement constraint between the roles TravelManager and

KnowledgeFinder (Figure 7.4).

When an agent plays all three Coordinator, TravelManager and KnowledgeFinder roles,

overheads in synchronising results from the three different activities travel management,

teamwork coordination and knowledge management may occur. This is modelled as a merge

of the Coordinator, TravelManager and KnowledgeFinder to the WorkerAssistant role. The

WorkerAssistant role requires some memory to store intermediate synchronisation results as

specified in Figure 7.4.

7.2.4 Design Results

The application of the algorithm described in Section 6.5 to this design problem is

straightforward. The algorithm starts from the sole merge(coordinator,

travelmanager, knowledgefinder, workerassistant) constraint and creates

an agent type owing those four roles.

Since coordinator contains employee, the employee role is also allocated to this agent

type. The algorithm then checks the rest of the constraints included in this RCL specification

and in this example they are all satisfied. Subsequently, the general constraint a.memory <=

2 is also found to be satisfied since a.memory = workerassistant.memory = 2.

As there are no merging constraints left, the algorithm then attempts to allocate the remaining

roles to the same agent type. Along this line, the mentor role is allocated to the current agent

type as well. However, allocation of further roles is not possible since it would result in

violation of certain constraints. More specifically, allocation of customer or manager is

prohibited since they cannot coexist with employee and coordinator respectively.

 128

Figure 7.5: Snapshot of the extended Zeus toolkit for the mobile workforce case study

Furthermore, allocation of either brulebase or workpool roles would result to this agent

type having a total amount of memory equal to 3, thus violating the memory constraint requiring

that each agent type should have memory less than or equal to 2. The same reason does not

allow allocation of travelinfobase and knowledgebase as this would result in the

agent type having a memory of 4.

The algorithm then proceeds to create a second agent type and starts allocating the remaining

roles to it. The first role to be placed in this new agent type is manager. Since manager

requires employee, the employee role is allocated as well. Subsequently, the brulebase

and workpool roles are allocated and all constraints are satisfied. These are all the roles that

are allocated to this agent type as allocation of further roles is not possible. customer cannot

coexist with employee and allocation of either travelinfobase or knowledgebase

would result to the agent type having a memory of 4.

The algorithm then creates a new agent type and places customer in it. customer

explicitly cannot coexist with neither travelinfobase or knowledgebase and hence, a

new agent type is created initially containing the travelinfobase role. Allocation of

knowledgebase to this agent type is prohibited since this would result in it having a memory

of 4. Therefore, knowledgebase is placed on a fifth agent type and the algorithm ends.

A snapshot of the role allocation to agent types in the extended Zeus toolkit is shown in Figure

7.5

 129

has plays

memory 2

Knowledge
Base

Agent Type 5

Knowledge
Base

Coordinator
Employee

Travel
Manager
Knowledge
Finder
Worker
Assistant

has plays

memory 2

Agent Type 1

Employee
Worker
Assistant

has plays

memory 2

Agent Type 2

Employee Employee
Manager Manager
Brulebase Brulebase
Workpool Workpool
Mentor Mentor

has plays

memory 0

Customer

Agent Type 3

Customer

has plays

memory 2

TravelInfo
Base

Agent Type 4

TravelInfo
Base

Figure 7.6: Agent types for the telephone repair service teams case study

The resulting agent types for the mobile workforce case study are presented in Figure 7.6.

7.3 Example: An Automotive Industry B2B Exchange

To further illustrate the use of RAMASD, an example extracted from a large case study

concerning an automotive industry B2B exchange is considered. The example is based on a

simple B2B e-commerce model involving three business phases: quotation, negotiation and

order fulfilment.

7.3.1 Case Study Overview

Automotive industry B2B exchanges are electronic business service providers offering a variety

of services including business directories, auctions, supply-chain management and asset re-

deployment and disposal [140]. The idea of such efforts is to bring companies from the

automotive industry together and enable them to carry out their business in a more cost-effective

and convenient manner using Internet technology. Automotive industry manufacturers are able

to interact with their suppliers without having the burden of to interface different information

technology systems. In addition to effectively transacting with their customers, suppliers are

also able to consolidate their efforts, thus maximising their enterprise capability and the ability

to pursue more business opportunities. In addition, all parties benefit from utility applications

 130

available to B2B exchange participants, for example corporate services and customer

relationship management software [57].

A representative example of an automotive industry B2B exchange is COVISINT

(COllaboration, VIsion and INTegration) [42], which was initiated by DaimlerChrysler, Ford,

and General Motors to create an optimised digital supply chain for the automotive industry.

Additional drivers for the creation of COVISINT were the expected cost savings and the

improved product life cycle management based on sophisticated software support. Currently,

fourteen key players from the automotive industry have joined COVISINT together with two

technology partners, Commerce-One and Oracle. COVISINT offers support for supply chain

management, collaboration among automotive market business parties, procurement, quality

control and corporate financial processes. The functionality offered by COVISINT is the basis

for the case study considered in this thesis.

An important issue in business-to-business transactions is the underlying e-commerce model.

For example, the standard Consumer Buying Behaviour (CBB) model [82], includes six stages:

Need Identification, Product Brokering, Merchant Brokering, Negotiation, Purchase and

Delivery, and Product Service and Evaluation. In the Need Identification phase the customer

conceptualises the need for a product or service. In the Product Brokering and Merchant

Brokering phases the customer decides which product or service is needed and selects a suitable

supplier or service provider. In the Purchase and Delivery phase the product is delivered or the

service provided, and in the Product Service and Evaluation phase the customer advocates

his/her satisfaction of the process, products or services provided.

To illustrate the application of RAMASD in this case study, a simple B2B e-commerce model is

considered by abstracting from [82] and [53]. The B2B e-commerce model used in this case

study includes three phases:

• Quotation Phase: In this phase, potential trading parties discover each other and quotations

for automotive manufacturing industry parts and supporting services are issued.

• Auction/Negotiation Phase: An auction is established by potential buyers of the automotive

industry. Subsequently, buyers and sellers negotiate and reach agreements regarding

supplying products and providing services. Those agreements are examined by

representatives of an appropriate inspection body, for example the Federal Trade

Commission, as far as it concerns legal, ethical and social issues, and appropriate action is

taken where required.

• Fulfilment Phase: In this phase, the contracts agreed in the negotiation phase are executed.

For example, the shipping orders of purchased products are submitted to the appropriate

departments and the provision of hired services commences. This phase includes all

 131

communication events relevant with gathering customer input about the quality of the

products received and the services provided.

Auction Phase

Fulfilment Phase

Quotation Phase

A.1 To operate the e-marketplace

A.11 To assist auction
initiators and auction
bidders in carrying out
the auction

A.12 To administrate
and monitor the auction
in legal, financial, and
ethical aspects

F.1 To finalise and settle
the terms of the order
and to submit it to
suppliers for fulfilment

F.2 To fulfil submitted
orders by acknowledging
them and arranging
dispatch of the relevant
parts

A.2 To store general
auction regulations and
legislation used to assess
the auction operations

A.3 To enable potential
suppliers to participate
by granting access to
auction operations

A.4 To create auctions
and invite participants
based on their status,
and auction history

A.5 To participate in
the auction and submit
bids based on a suitable
negotiation strategy

Q1. To invite auction
participants based on
supplier information
about automotive parts

Q2. To search for
information about the
demand of each part and
to register in auctions

Figure 7.7: Use case goals for an automotive industry B2B exchange case study

The complete automotive industry case study is large and, therefore, for the needs of this

chapter, it is assumed that it is only needed to design an ABS to support routine automotive

manufacturing supply-chain management tasks. In the example scenario, automotive industry

manufacturers first identify their needs for automotive manufacturing parts and services using

their proprietary, possibly legacy systems. Subsequently, they search product catalogues and

business directories for suitable potential suppliers and service providers. For example, it is

common for car manufactures to outsource the manufacturing of seats and exhausts and the re-

deployment or disposal of used assets to specialised companies to reduce costs and to increase

focus on their main tasks. When a potential buyer identifies some suitable potential suppliers or

service providers then they initiate an auction and invites them to participate. Invited trading

partners conduct the auction and the potential buyer may accept or reject the outcome based on

whether their personal business goals are satisfied. An inspection body representative checks the

 132

auction process and outcome and on receiving approval then the signed contracts are ready for

execution. Finally, the suppliers and service providers fulfil their contracts by confirming

shipping of the relevant products and starting provision of the relevant services.

7.3.2 Role Identification

In order to model the above system in terms of roles, the first thing to do is to identify the roles

involved in the case study example using the role identification technique described in Section

5.2.4. For the purpose of the automotive industry example, three use cases each corresponding

to a phase of the simple B2B e-commerce model described in Section 7.3.1 are considered:

• Trading partner discovery and request for quotation (Quotation Phase): This activity

involves extensive information exchange among potential trading partners. Each side must

sift through large amounts of data for relevant information to make decisions, proposals and

counter-proposals. The outcome of this activity is a number of potential suppliers and/or

service providers for each potential buyer.

• Auction Initiation, Negotiation and Monitoring (Auction/Negotiation Phase): This involves

initiation and establishment of an auction from each potential buyer, negotiation between

the trading parties and monitoring of the auction process and results from some external

inspection body.

• Order Fulfilment (Fulfilment Phase): In this activity, all interaction regarding execution of

contracts, shipment of products and provision of services takes place.

Each use case has a number of high-level goals depicted in Figure 7.7. The behaviour leading to

achieving these goals can be modelled by appropriate roles. Hence, the following roles can be

identified (Figure 7.8):

1. Potential_Buyer (goal Q1): This role describes generic behaviour of the automotive

industry manufacturers that are interested in purchasing manufacturing parts, sourcing

some of their business processes or selecting collaborators for co-design projects

regarding sophisticated automotive manufacturing parts. Potential buyers communicate

with various potential suppliers or service providers and request quotations and relevant

information. A number of suppliers that have submitted attractive quotations are invited

to participate in an auction.

2. Potential_Trader (goal Q2): Potential traders are suppliers or service providers that

communicate with potential buyers providing them with quotations and further

information. Potential traders also communicate with each other attempting to establish

coalitions and submit more attractive offers to potential buyers.

 133

Auction
Coordinator

database

Auction
Operator

Invited Auction
Participant

Legislation
Interface

database

Auction
Inspector

Auction BidderAuction Initiator

Auction
ParticipantPotential Buyer Auction Buyer

Auction TraderPotential Trader

Role Collaboration Role Specialisation

Figure 7.8: Role models for the automotive industry B2B exchange case study

3. Auction_Operator (goal A1): This role describes generic behaviour of the members of

the auction operation support groups. An example of this type of behaviour is accessing

common auction information including bidding history and trading participants status.

4. Auction_Coordinator (goal A11): The B2B Auction Coordinator role describes the

behaviour required to coordinate the operation of an auction. This includes informing

the trading parties about the auction regulations, providing information about the

participants’ profiles and gathering statistical data of bidding histories. Furthermore, the

performance of auction participants and the efficiency of the auction mechanisms is also

monitored.

5. Auction_Inspector (goal A12): The Auction_Inspector role ensures the smooth operation

of the auctioning process. The Auction_Inspector accesses the auction data gathered by

the Auction_Coordinator role and verifies that the process followed is legitimate. This

is achieved by comparing auction process data with the auction rules and regulations

obtained by communicating with the Legislation_Interface role, defined below.

 134

6. Legislation_Interface (goal A2): This role maintains a database of rules and legislation

that govern the auction operations. Auction inspectors interact with this role and submit

queries regarding auction procedures receiving answers in various data formats.

7. Invited_Auction_Participant (goal A3): This is a utility role providing access to auction

operations to selected suppliers and service providers. This involves authorisation codes

to participate in the auction business and access to profiles of other participants and

historical auction data.

8. Auction_Initiator (goal A4): The Auction Initiator role is responsible for initiating and

running the auction. Its duties include selecting the auction type, bid limits and starting

price. Subsequently, it participates in the negotiation with auction bidders by accepting

bids and finally establishing a product purchasing or service provision agreement.

9. Auction_Bidder (goal A5): This role participates in the auction and submits bids aiming

to achieve a business contract at a beneficial price.

10. Auction_Buyer (goal F1): Auction_Buyers are active in the order fulfilment phase and

they interact with suppliers and service providers to finalise the details of product

shipment and start of service provision. They also ensure receipt of products and

smooth utilisation of the contracted services by interacting with inventory and

proprietary workflow management software.

11. Auction_Trader (goal F2): This role is also active at the order fulfilment phase and it

interacts with buyers to confirm receipt of shipped parts and prompt initiation of agreed

services. Its responsibilities include notifying the shipping departments to execute

shipment orders, informing the service departments to start provision of the contracted

services and interacting with the logistics and accounting departments to ensure that

appropriate payment is received.

12. Auction_Participant: As noted in [2] it is good practice in role modelling to extract any

common behaviour from a number of roles and model it separately in a new role. From

the roles identified above, Auction_Initiator, Auction_Bidder, Potential_Buyer,

Potential_Trader, Auction_Buyer and Auction_Trader have some behaviour in

common. They all represent automotive industry parties that interact within the B2B

exchange environment. This common behaviour is modelled by a separate role, which

facilitates understanding of the resulting role models and specifying necessary

constraints among roles.

 135

7.3.3 Qualitative Modelling of Non-Functional Aspects

In the case study, two non-functional aspects are qualitatively modelled and taken into account

when designing the multi-agent system: security and privacy. The adopted security strategy that

is implemented in the designed multi-agent system distributes access to different information

sources and to different software agents. Privacy is ensured by intermediation of trading

interactions.

7.3.3.1 Security Issues

Creating effective e-business software security strategies and infrastructures is currently one of

the biggest challenges in the e-business software industry. IDC predicts that the U.S.

information security services market will grow from $2.8 billion in 1999 to over $8.2 billion in

2004 [89].

Common B2B software security requirements include identification/authentication of users to

enter the system, authorisation to enable them to access the permitted software functionality,

user accountability, administration and, most importantly, asset protection. Security strategies

typically balance the degree of support to each requirement according to the general policies of

the business. For example, higher access privileges to users results in lower software system

security.

A security strategy initially requires high level recognition of the business security concerns,

which can be described as simple statements. Examples of high level security concerns include

monitoring all user activity, ensuring no access to unneeded data and promoting security

awareness among employees. Based on high level descriptions of security concerns more

specific descriptions of security policies are introduced. Security policies are meant to address

security issues when implementing business requirements. Examples of security policies are to

use out of band communication when responding to an incident alert, to employ encrypted data

exchange techniques, and to maintain a central transaction log server. Security policies lead to

specific security actions. For example, disable telnet and ftp in all externally accessible

computers, validate html form data both on client and server side and create an extra

authorisation level for particularly sensitive and important data.

There have been many approaches to classifying security strategies for possible reuse. For

example, a common approach is to apply the limited view security strategy discussed by [216].

According to the limited view strategy, users see only what they are allowed to access. Another

typical strategy to strengthen the security of a distributed application is to provide a secure

access layer combining both application and low-level, network security [171, 216].

 136

Based on those two security strategies, it is considered that not only agents should exchange

information using secure protocols and over a secure communication medium, but also agents

should not have access to information resources relevant to the operation of incompatible roles.

The reason is that agents are highly flexible and configurable software components that can alter

their behaviour on run-time. For example, the goals of the Auction_Coordinator role could lead

to attempts to modify an auction legislation database, if it had access to it. In the example

considered a very simple security policy for role based access control forbids the access of any

agent to more than one database, where a database will refer to the set of all data sources

relevant to a single role.

7.3.3.2 Privacy Issues

Consumers and organisations that do business over the Internet want assurance that their

transactions remain private and no outside parties can access sensitive personal data. This is

particularly true in the emerging automotive industry business-to-business models that include

vendors and external partners early in the business process, from product design through

delivery and support. Competitors sometimes cooperate to complement each other’s

capabilities. For example, in the defence automotive sector multiple manufacturers collaborate

on contracts because of size, complexity and the need for specialised services. Furthermore, one

manufacturer may team up with a supplier that is also collaborating with its competitors. For

example, an automotive supplier producing seats might be working with several competing auto

manufacturers on future designs. As an organisation increases the size of its network, the variety

of its markets, inputs and outputs increases [138] which also increases its needs for privacy.

Although the technology exists to ensure privacy in personal and business communications and

data, many companies that acquire private data from customers do not apply the necessary

privacy practices. Therefore, software design solutions ensuring privacy among trading parties

are required. It has been suggested that to support privacy internet-based software should be

based on a centralised data model and that non-public information should be disseminated to

interacting parties by a trusted third party [3]. Intermediation has been successfully used in

many application domains to enforce privacy, including electronic stock markets [105],

manufacturing [181] and mobile workforce management [199].

Intermediation can be modelled by the mediator role interaction pattern 5 (Figure 7.9). This

pattern involves three roles:

5 More information about the use of the mediator role interaction pattern can be found in “Kendall, E. A.

Agent Analysis and Design with Role Models. Volume 1: Overview, Martlesham Heath, UK: BT Exact

Technologies, (January 1999), unpublished internal BT report”.

 137

 Intermediary

ResponderInitiator

Role
Collaboration

Figure 7.9: The mediator pattern

1. Initiator: This role is active in the order fulfilment phase and it interacts with buyers to

confirm receipt of shipped parts and prompt initiation of agreed services. Its

responsibilities include notifying the shipping departments to execute shipment orders,

informing the service departments to start provision of the contracted services and

interacting with the logistics and accounting departments to ensure that appropriate

payment is received.

2. Intermediary: The Intermediary role has access to all relevant information of both

interacting parties. However, the intermediary does not just filter and selectively

communicate information to initiators and responders. In addition, intermediaries can

reduce the costs of many information-intensive tasks by integrating customer-based

functionality with privacy and security issues,. For example, the intermediary can

maintain a database of previous interactions among the same or relevant participants

and can provide aggregated results considering any privacy limitations.

3. Responder: The Responder role is similar to the Initiator role with the difference that

the Responder role responds and continues an interaction that was previously started by

the Initiator role.

7.3.4 Organisational Settings

There is the requirement in an electronic market place that all transactions are logged for future

inspection when needed. This is a general rule of business organisation that needs to be

observed6. Transactions can be of different types for example, bids, and purchase orders. The

transaction logging behaviour can be represented by an organisational role, which in this case

6 The difference between organisational requirements and application requirements is subtle as

organisational requirements can be considered as application requirements and vice versa. A rule of

thumb is to classify requirements as organisational if they could be valid in other software applications

the business organisation needs for its operation. Logging transactions is a requirement that can be the

case in all software concerning the business operations and hence it can be modelled as an organisational

rule.

 138

study is the Transaction_logger role. The Transaction_logger role simply logs on

communication messages to some appropriate database. Hence, each agent in the electronic

marketplace that is involved in transactions should be able to play this role. This is modelled

with appropriate design constraints as described in Section 7.3.6.

Auction
Coordinator

(Intermediary)
database

Auction
Operator

Invited Auction
Participant

Legislation
Interface

database

Auction
Inspector

Auction Bidder
(Responder)

Auction Initiator
(Initiator)

Auction
Participant

Potential Buyer
(Initiator)

Auction Buyer
(Initiator)

Broker
(Intermediary)

database

Quotation Handler
(Intermediary)

Role Collaboration Role Specialisation

Auction Trader
(responder)

Potential Trader
(Responder)

database

Figure 7.10: Updated role models based on the mediator pattern

7.3.5 Role Composition

When the mediator pattern is considered with the roles identified in Section 7.3.2, role

composition takes place. The resulting role models include the mediator pattern. The differences

are depicted in Figure 7.10, which describes the resulting role models. Some roles remain the

same and some roles are replaced with new roles based on a Mergeswith relationship. The new

roles are named by combining the names of the roles that contributed to their creation. The role-

pairs Potential_Buyer - Potential_Trader, Auction_Initiator – Auction_Bidder and

Auction_Trader – Auction_Buyer are replaced as the new roles interact only through

 139

intermediaries. Furthermore, the new roles can inform the intermediaries about their privacy

requirements and make use of the utility services, for example statistic analyses, provided by the

intermediaries. The Auction-Coordinator role is also replaced and the new role acts both as an

Intermediary and Auction_Coordinator.

Two new roles are needed at this stage:

1. Quotation Handler: This role provides a means to enhance the communication between

potential buyers and potential suppliers. Apart from intermediation, Quotation_Handler

offers various services to both parties, for example electronic document management

and analysis of data gathered throughout similar automotive sourcing requests for

quotation. The role has access to a central repository of service sourcing documentation,

and product price lists.

2. Broker: This role intermediates between buyers and suppliers or service providers in the

fulfilment phase. It provides the functionality for many utility tasks including bill of

materials, order management, shipping management and returns and status tracking.

The role maintains a database of order fulfilment critical information, such as inventory

levels, usage history and patterns, receipts and other relevant information to help

eliminate excess inventory and premium transportation charges.

7.3.6 Specifying Design Constraints

To illustrate the compositional constraints for the roles identified in Sections 7.3.2 and 7.3.3 and

7.3.5, a number of those constraints is presented written in RCL in Figure 7.11. Role names

have been abbreviated for clarity. Some important aspects of the RCL specification of those

constraints are described in more detail here.

As can be seen from Figure 7.11, the Legislation_Interface, Auction_Coordinator,

Quotation_Handler and Broker roles have associated the integer performance variable

database. This represent a proportion of the amount of actual storage space required by those

roles.

To model the requirements discussed in the previous sections, several containment constraints

are needed. For example, an a_coordinator contains the a_operator role written

in(a_coordinator, a_operator). The number of exclusion constraints, for example,

an agent that is Auction_Coordinator cannot also be Auction_Inspector, is also significant. The

Excludes relation is also used to specify that interacting roles in the request for quotation,

auction negotiation and order fulfilment processes should be played by different agents.

 140

Figure 7.11: Compositional constraints for the B2B exchange case study

In order for an agent to be an Auction_Bidder and participate in an auction, it must have been

previously invited by Auction_Initiator. This is modelled using the Requires relation to specify

that the Auction_Bidder role must be played together with the Invited_Auction_Participant role.

Furthermore, the changes in the behaviour of roles when the mediator pattern is applied are

modelled using the Mergeswith relation. For example, an Auction_Coordinator merges with the

Intermediary role resulting in the Auction_Coordinator_Intermediary role, which combines the

behaviour of both Auction_Coordinator and Intermediary roles.

For security reasons, neither Auction_Coordinator nor Auction_Participant can coexist with the

Legislation_Interface role. For the same reason, Auction_Coordinator cannot coexist with

 /* ROLE DEFINITIONS */

Role a_operator, a_participant,

 a_inspector, a_coordinator,

 a_initiator, a_initiator_i,

 a_bidder, a_bidder_r,

 p_buyer, p_buyer_i,

 p_trader, p_trader_r,

 a_buyer, a_buyer_i,

 a_trader, a_trader_r,

 ia_participant;

Role l_interface, a_coordinator,

 q_handler, broker {

 int database;

}

 l_interface.database = 1;

 a_coordinator.database = 1;

 q_handler.database = 1;

 broker.database = 1;

/* ROLE CONSTRAINTS */

in(a_coordinator, a_operator);

in(a_inspector, a_operator);

in(a_initiator, a_participant);

in(a_bidder, a_participant);

in(p_buyer, a_participant);

in(p_trader, a_participant);

in(a_buyer, a_participant);

in(a_trader, a_participant);

merge(a_coordinator, intermediary,

 a_coordinator_int);

merge(p_buyer, initiator, p_buyer_i);

merge(a_initiator, initiator,

 a_initiator_i);

merge(a_buyer, initiator, a_buyer_i);

merge(p_trader, responder, p_trader_r);

merge(a_bidder, responder, a_bidder_r);

merge(a_trader, responder, a_trader_r);

not(a_participant, a_operator);

not(l_interface, a_coordinator);

not(l_interface, a_participant);

not(a_coordinator, a_inspector);

not(a_coordinator, a_participant);

not(q_handler, a_participant);

not(q_handler, a_inspector);

not(broker, a_participant);

not(broker, a_inspector);

not(a_initiator, a_bidder);

not(p_buyer, p_trader);

not(a_buyer, a_trader);

/* GENERAL CONSTRAINTS */

Constraint Y {

 forall a:Agent {

 a.database <= 1

 }

}

 141

Auction_Inspector and Auction_Coordinator, Quotation_Handler and Broker cannot coexist

with Auction_Participant. Those constraints are also specified using the Excludes relation.

Further constraints are specified on agent and role characteristics. For example, to increase

security it would be desirable for the agents to have access to not more than one information

source. This is modelled by constraining the database performance variable to be at most one

for all agent types. The value of the database variable of an agent type is equal to the sum of the

values of the database variables of the roles the agent plays. In this calculation, only roles that

have the database variable defined are considered. For example, assuming that an agent plays

the Quotation_Handler, the Auction_Coordinator and the Auction_Operator roles, then the

agent is automatically associated with the performance variable database since at least one of

the roles it plays is associated with this variable.

The value of the agent database variable would be two since the values of the

Auction_Coordinator and Quotation_Handler database variables are one each and the

Auction_Operator role is not associated with a database variable.

7.3.7 Role Allocation Results

In this section an application of the algorithm to the RCL specification described in Section 6.5

is presented. The results of the role allocation are summarised in Figure 7.12. It is assumed that

the algorithm starts randomly from the merge(a_coordinator, intermediary,

a_coordinator_int) constraint. Those three roles are allocated to the first agent type.

Since a_coordinator contains a_operator, the a_operator role is also allocated to

this agent type. All constraints involving the allocated roles so far are satisfied. Subsequently, a

check of the general constraint a.database <= 1 is done and it is successful since

a.database = a_coordinator_int.database = 1. The next step is to attempt to

allocate roles from the merge(p_buyer, initiator, p_buyer_i) constraint. The

role p_buyer contains a_participant and hence an attempt to also allocate

a_participant is made. However, a_coordinator excludes a_participant and

therefore this allocation attempt fails. Subsequent attempts to allocate roles participating in the

remaining merging constraints fail for the same reason.

The algorithm then proceeds to create a second agent type. In the second agent type, roles

involved in the next three merging constraints are successfully allocated. Since p_buyer,

a_initiator and a_buyer contain a_participant, the a_participant role is

also allocated to this agent type and the general constraint is satisfied. The series of successful

allocation steps is interrupted when the algorithm attempts to allocate roles from the

merge(p_trader, responder, p_trader_r) constraint. The reason is that a

 142

p_buyer cannot be a p_trader in the auction type considered, which is specified in Figure

7.11 using an Excludes relation.

The next step is to create a third agent type where the roles involved in the remaining merging

constraints are successfully allocated. Since p_trader, a_bidder and a_trader

contain a_participant, the a_participant role is also allocated to this agent type. The

ia_participant role is also allocated because a_bidder requires ia_participant.

As there are no merging constraints left, the algorithm then attempts to allocate the remaining

roles. This attempt fails for this agent type since q_handler, broker, a_operator and

l_interface cannot coexist with a_participant, as specified in Figure 7.12.

A fourth agent type is therefore created and the q_handler role is randomly allocated to it.

The algorithm fails to allocate l_interface to this agent type since, as explicitly specified in

Figure 7, q_handler cannot coexist with l_interface. The algorithm also fails to allocate

a_inspector since in that case it would have to also allocate a_operator, contained by

a_inspector, which is excluded by q_handler. Finally, broker cannot be allocated

since in that case the agent database value would be two and the general constraint would be

violated.

has plays

database 1

Agent Type 5

intermediary
a_coord

a_coord_int

has plays

database 1

Agent Type 1

has plays

database 0

Agent Type 2

p_buyer
a_initiator
a_buyer
initiator
p_buyer_i

has plays

database 0

Agent Type 3

has plays

database 1

q_handler

Agent Type 4

q_handler

has plays

database 1

broker

Agent Type 5

broker

a_coord_int

a_initiator_i
a_buyer_i
a_partcpnt

p_trader
a_bidder
a_trader
responder
p_trader_r
a_bidder_r
a_trader_r
a_partcpnt
ia_partcpnt

p_trader_r
a_bidder_r
a_trader_r

l_interface
a_inspector
a_operator

p_buyer_i
a_initiator_i
a_buyer_i

l_interface
a_inspector

Figure 7.12: Agent types for the B2B exchange case study

 143

Figure 7.13: Snapshot of the extended Zeus toolkit for the B2B exchange case study

This leads to creating a fifth agent type where the l_interface and a_inspector roles

are successfully allocated. Since a_inspector contains a_operator, the a_operator

role is also allocated to this agent type. However, the broker role cannot be allocated since it

cannot coexist with a_inspector as specified in Figure 7.12.

Finally, a sixth agent type containing the remaining role broker is created and the algorithm

ends with success.

A snapshot of the role allocation using the extended Zeus toolkit is shown in Figure 7.13.

7.4 Summary – Conclusions

In this chapter the RAMASD method and its applicability were demonstrated in two case

studies drawn from real world applications, Mobile Workforce Support and B2B Electronic

marketplace management. The first case study included the demonstration of how RAMASD

handles quantitative modelling of non-functional aspects and design heuristics and the second

one provided an example of how non-functional aspects and organisational aspects can be

handled qualitatively.

 144

 145

Chapter 8

Evaluation of RAMASD

This chapter assesses the value of RAMASD with respect to design complexity, highlighting its

advantages in comparison with other ABS design methods. It discusses how RAMASD

addresses the open issues identified in Section 3.3, and reports on lessons learned from applying

RAMASD in the case studies discussed in Chapter 7. It then uses the evaluation framework

proposed in Section 3.1 to compare RAMASD with a representative selection of ABS design

methods. Finally, it provides a detailed analysis of how RAMASD and a representative ABS

design method, Gaia, differ in dealing with the mobile workforce case study.

The contents of this chapter are as follows. The approach followed in selecting the case studies

and the evaluation methodology applied are discussed in Section 8.1. Subsequently, a

framework-based comparison between RAMASD and existing ABS design methods is

described in Section 8.2. The results of the detailed comparison between RAMASD and Gaia

are described in Section 8.3, followed by a discussion regarding the novel aspects and the

applicability of RAMASD in real world applications in Section 8.4. Finally, Section 8.5

concludes the chapter.

8.1 Selecting an Evaluation Approach

Evaluation of software engineering methods can be done based on descriptive analysis or

experimentation in a manner similar to the one applied in general science. In this thesis, a two-

stage approach has been selected. At the first stage, the value of RAMASD as compared with

other ABS design methods has been assessed using an evaluation framework. At the second

stage, RAMASD is directly compared with Gaia, a representative ABS design method. In both

stages the comparisons are based on the case studies described in Chapter 7. The case studies

were selected from business domains and the test scenarios were chosen so that they would

cover all issues (design heuristics, organisational settings and both qualitative and quantitative

non functional aspects) that RAMASD supports.

8.1.1 Approaches to Evaluating Software Engineering Methods

A software engineering method can be evaluated using either descriptive evaluation or

evaluation by experimentation [223]. Descriptive evaluation involves assessing the method

based on descriptions of its characteristics. Evaluation by experimentation involves examining

results from experiments where the method has been applied to develop software products.

 146

Descriptive evaluation approaches involve arguing for or against certain characteristics of the

evaluated method without actually applying it. This is useful to identify weaknesses in existing

software engineering methods, for example when desirable features are not supported.

Descriptive evaluation can be focused on interviewing the software engineers that use the

method, such as in [195], on examining the characteristics of the method based on an evaluation

framework (such as in [137]) or on carrying out uniform comparisons of the evaluated method

with other methods using a meta-model (such as in [86]).

Evaluation by experimentation refers to applying the method and the subsequent collection of

data on either the process followed or on the software artefact produced. Experimentation can

be observational, historical or controlled [223]. Observational experimentation methods collect

relevant data as the software projects develop, whilst historical methods collect data from

projects that have already been completed. Controlled methods collect multiple instances of the

same data and compare them using qualitative and statistical methods. For example, controlled

experimentation data can be collected by developing a software product both with and without

using the evaluated method.

8.1.2 Evaluating RAMASD

The value of RAMASD was assessed by a combination of descriptive and experimental

evaluation. This involved using an evaluation framework to carry out a comparison between

RAMASD and a number of ABS design methods and performing a detailed comparison

between RAMASD and Gaia, a representative ABS design method. Both evaluation tasks have

been based on the results of the case studes described in Chapter 7.

Using an evaluation framework to compare RAMASD with other similar methods was

considered as the most suitable alternative. It was not practical to evaluate it based on interviews

of software engineering professionals since RAMASD is still at the experimental stage.

Furthermore, RAMASD involves some unique characteristics, such as the role algebra, which

make it difficult to represent by a generalised meta-model, Therefore, it was decided to use the

evaluation framework introduced in Section 3.1 to carry out a framework-based evaluation of

RAMASD. Framework-based evaluation has the important advantage of allowing the evaluation

of a number of methods against multiple criteria, which was considered particularly suitable for

comparing RAMASD with other methods with respect to reducing design complexity. This is

further discussed in Section 8.2.2.

The value of RAMASD was demonstrated by a detailed comparison between RAMASD and

Gaia, a well-known ABS design method was carried out in the context of the mobile workforce

case study. This enabled demonstrating the RAMASD value by highlighting the Gaia

weaknesses when applied to this case study.

 147

8.1.3 Selecting Case Studies and Test Scenarios

RAMASD targets primarily business-oriented application domains and this was the basis for

selecting the case studies to use for the evaluation. Furthermore, the test scenarios were selected

so that all issues currently supported by RAMASD would be demonstrated.

The main use of agent technology in business domains is using agents as personal assistants to

users, augmenting their abilities and acting on their behalf. Therefore, the first case study

selected was one involving supporting mobile workforce where agents primarily aim to assist

users and extend their abilities. In this case, there is frequent interaction between agents and

their users. The second case study involves an electronic marketplace where agents aim to act

on behalf of their users interacting therefore less frequently with them.

Furthermore, the test scenarios were selected to demonstrate the main features of RAMASD in

the way of reducing design complexity: support for organisational aspects, design heuristics and

both qualitative and quantitative non-functional aspects.

8.2 Framework-Based Evaluation

RAMASD was developed to address the weaknesses of ABS design methods concerning design

complexity. These weaknesses were discussed in Chapter 3 using a specially constructed

evaluation framework. This evaluation framework is now applied to (a) shape a discussion of

how RAMASD addresses those weaknesses using results from Chapter 7 and (b) to compare

RAMASD against the rest of the ABS design methods.

8.2.1 Main Features of RAMASD

There is a consensus in the literature that reducing design complexity involves enabling the

designer to work at a high level of abstraction and to semi-automate the design process.

RAMASD supports designers in both aspects by encapsulating complex behaviour in the role

definition, by formalising role relations in the role algrebra and by providing a semi-automatic

design process based on the synthesis concept. The main features of RAMASD, which address

the challenges identified in Section 3.3 are discussed here.

Design heuristics: RAMASD supports design heuristics by representing them as constraints on

roles and between agent and role characteristics. In the example considered in Section 7.2.3, the

point of interaction heuristic was applied to require that both travel information and knowledge

expertise retrieval interactions should be carried out by the same agent. This was specified as a

requirement constraint between the roles TravelManager and KnowledgeFinder.

Organisational settings: RAMASD addresses this issue by explicitly modelling and

considering organisational settings using organisational roles, which can then be constrained

 148

using the role algebra. In most cases, organisational roles will be merging with application roles

resulting in different behaviours for the agents playing them. This has been illustrated in the

example given in Section 5.5.3. However, there can be cases where organisational roles will

simply constrain the existence of other roles. This has been demonstrated in the COVISINT

case study (Section 7.3.2) where the Transaction_Logger role is a requirement for all agents

playing the Auction_Participant role. It is also possible to model organisational rules as

constraints on agent and role characteristics in a manner similar to non-functional qualities;

however, explicitly using organisational roles results to easier to understand role models and

therefore it should be preferred.

Collective behaviour: RAMASD addresses this issue by adopting a role modelling approach

where collective behaviour is represented by role models. This is similar to what is done in

other areas, for example pattern-oriented programming. However, RAMASD goes one step

further since it allows for automatic composition of role models based on constraints described

in the role algebra. To the author’s knowledge this has not been applied in ABSs design

elsewhere. Representing collective behaviour with role models has been illustrated in both case

studies described in Chapter 7.

Non-functional aspects: Non-functional aspects are supported in RAMASD in both

quantitative and qualitative manner. This has been illustrated by the memory requirement in the

mobile workforce case study and by the privacy and security requirements in the COVICINT

case study. To the author’s knowledge, this is the only method for designing ABSs where both

quantitative and qualitative non-functional aspects are considered in the same design model.

Automating the design process: RAMASD automates certain steps in the design process, for

example using the algorithm introduced in Chapter 6. The algorithm was demonstrated step by

step in the case studies design results (Sections 7.2.4 and 7.3.7 respectively). RAMASD

attempts to mitigate the intractability problem in automatic software design using a process

based on the synthesis concept. Part of the process steps are carried out by the designer and part

are carried out automatically. Each role model allocation is considered as a separate synthesis

sub-problem and the allocation of all role models is the solution to the overall synthesis

problem7. The synthesis concept has been applied in many areas of software engineering, for

example in the design of embedded systems [164]. However, to the author’s knowledge it has

never been previously applied to role allocation for the design of ABSs. Using synthesis reduces

design complexity since the designer has to handle fewer design issues in an ad-hoc manner.

7 As mentioned in Section 5.3, the solution to the overall synthesis problem consists of the combination of

the solutions to synthesis sub-problems.

 149

Working on different abstraction levels: The ABS designer can work at three different

abstraction levels: The role characteristic level where he specifies the characteristics of new

roles and introduces constraints between agent and role characteristics, the role level where he

specifies new roles and introduces inter-role constraints and the role model level where he

selects new role models to reuse from the role model library. In this way, after the designer has

designed a number of ABSs and has obtained access to predefined role libraries he will be

mostly operating at the role model level having to manually handle minimum design

complexity. In the case studies in Chapter 7, all three abstraction levels were demonstrated.

Similar approaches based on systematically gluing conceptual models together exist in the area

of pattern languages [54, 215]. However, to the author’s knowledge none of those approaches

allows representation of complex behaviour, for example, non-functional aspects and

organisational settings. RAMASD is unique in this respect.

Another issue that is worth highlighting is that it also possible to reuse existing ABS

architectures that have been found suitable for some application domains, for example the

PROSA reference architecture [213], by representing them as role models, stored in the role

model library together with application and organisational role models, and requiring them to be

included in the role allocation process. In this way, known design solutions can be combined

with application functionality without the designer having to go into details about how this can

be achieved at the design level.

Based on the above discussion, it can be argued that RAMASD adequately addresses the issues

raised in Chapter 3.

8.2.2 Comparing RAMASD With Other Methods

RAMASD has addressed all issues raised in Section 3.2 and hence it can be considered superior

to existing ABS design methods in regards to reducing design complexity. To illustrate this, the

evaluation framework proposed in Section 3.1 is used. Based on the discussion carried out in

Section 8.2.1, it can be argued that RAMASD performs well with respect to all perspectives of

the evaluation framework. The comparison results are summarised in Table 8.1.

Regarding the Concepts perspective, RAMASD generally does not target a specific agent

architecture nor does it produce specific agent types. In the context of this thesis, RAMASD has

been integrated with the Zeus agent building toolkit and hence the implemented tool produces

only Zeus agents bounded by the Zeus agent architecture. However, RAMASD could be very

well implemented in other toolkits, for example JADE [13] without any need to modify the

method itself. Furthermore, RAMASD obviously has the design phase of the ABS engineering

life-cycle in its scope as it was developed to be a design method. Finally, as demonstrated in the

mobile workforce case study (Section 7.2.3), RAMASD provides adequate support for design

 150

heuristics which can be represented by appropriate design constraints.

Table 8.1: Comparing RAMASD with other ABS design methods

As far as it concerns the Models perspective, RAMASD does support organisational settings as

first class design constructs by means of organisational role models and constraints on

organisational role characteristics. Role models are also used for the representation of collective

behaviour. Furthermore, non-functional aspects are supported in both qualitative and

quantitative manner using non-functional role models and constraints on role characteristics.

In the Process perspective, RAMASD allows designing in both bottom-up and top-down

fashion. Bottom-up design in RAMASD is similar to the one done in [111]. A number of role

models are selected and design progresses upwards. The extension done from RAMASD in this

respect is that the role algebra allows automatic composition of role models. The role algebra

also enables top-down design since high level organisational settings can be represented by role

models and seamlessly combined with other role models using the role algebra. This is not

R
A

PP
ID

D
E

SI
R

E

G
ai

a

M
E

SS
A

G
E

T
ro

po
s

Z
eu

s

K
A

R
M

A

R
A

M
A

SD

Concept definition ≤≥ <> >< >< <> <> >< ><
Design in scope − √ √ − √ √ √ √
Heuristics support − − − − − − √ √

Concepts

Organisational settings − − − − − √ √ √
Collective behaviour − − − − − √ √ √
Non-functional aspects − − − − √ − − √

Models

Design perspective ↓ ↓ ↓ ↕ ↓ ↑ ↓ ↕
Support for reuse − √ − − − √ − √
Design automation − − − − − − √ √

Process

Generality ○ ∅ ∅ ⊕ ⊕ ∅ ⊕ ⊕

Complexity handling − √ − − − − √ √
Tool support − √ − √ − √ √ √

Pragmatics

Legend

○ - low
∅ - medium
⊕ - high

 ≤≥ - limited
 <> - bounded
 >< - open

↑ - bottom-up
↓ - top-down
↕ - both

√ - yes
− - no

 151

possible in existing ABS design methods. Furthermore, RAMASD explicitly supports reuse by

means of role interaction patterns. In particular, enabling systematic reuse of design knowledge

based on the role algebra is one of the main innovations of RAMASD. Finally, the role algebra

is the basis for automating certain design steps.

Regarding the Pragmatics perspective, RAMASD is characterised as having high generality

since it can be used to design all currently known types of ABSs. As discussed in Section 8.2.1

RAMASD enables work at different levels of abstraction. Finally, RAMASD has tool support

currently in the form of integration in the Zeus agent building toolkit.

Consequently, RAMASD supports all aspects considered in the evaluation framework of

Section 3.1 and hence RAMASD can be considered superior in that respect to the other methods

used in the comparison.

8.3 Comparison of RAMASD and Gaia

The previous section demonstrates that RAMASD is superior to current ABS design methods in

regards to reducing design complexity. In this section, this is exemplified in a greater level of

detail by highlighting possible drawbacks of applying Gaia, a baseline ABS engineering

method, to the case studies examples described in Chapter 7. Gaia was selected because (a) it is

informal and uses role modelling, (b) It has been applied to a considerable number of research

projects and (c) it has been used as a base line method in similar assessments, for instance [222].

8.3.1 Overview of Gaia

As discussed in more detail in Appendix A.3, Gaia [209] involves two analysis models, role

model and interaction model, and three design models, agent model, services model and

acquaintance model. In this section, the steps required to design an ABS using Gaia are briefly

described.

Role identification: To evaluate how Gaia supports the design of ABSs, it is required to

consider how roles are identified in the application domain. In Gaia, roles are viewed as abstract

descriptions of the agents expected functions in the ABS. Therefore, identifying the main

functions in a business system is the basis for role identification. In particular, Gaia considers

that in business application domains there is often an one-to-one mapping between departments

and roles. Roles in a system will typically correspond to:

• Individuals, either within an organisation or acting independently,

• Departments within the organisation; or

• Organisations themselves.

 152

Based on the above all actors in the mobile workforce case study example correspond to distinct

roles. This is further discussed in Section 8.3.2.

Role specification: For each of the identified roles, the associated permissions, protocols and

responsibilities need to be specified. For example, protocols in Gaia refer to the patterns of

interaction that occur in the system between the various roles. Along this line, a protocol may

correspond to the interaction of an agent playing the role of Buyer, submitting bids to another

agent in the role of Seller.

Role interactions: After selecting roles and specifying the role characteristics then role

interactions are captured in Gaia in the interaction model. The interaction model follows very

naturally from the definition of the roles. It basically amounts to specifying which protocols

involve which role pairings and what information is exchanged during the execution of the

protocol.

Assigning roles to agents: Having completed the analysis phase, the first step of the design

phase of Gaia is to assign roles to agents. This is done by the designer in an ad-hoc manner.

Creating the service model: Agent services in Gaia are functions the agents can perform and

they can be based on responsibilities, activities and permissions of more than one roles that

agents play. The service model in Gaia specifies which services the agents must implement to

enable all the roles the agent has to play to be fulfilled. This amounts to transforming the

abstract activities that the roles have to perform (as identified in the analysis phase) into more

coherent blocks of computational activity. This is done manually by the designer. In the current

version of RAMASD there is no notion of agent services.

Creating the acquaintance model: The last design model in Gaia is the acquaintance model.

This model simply identifies the communication pathways that exist between agents, provides a

check of whether the structure of the interactions in the system are poorly organised. When the

agent organisation closely resembles its real world counterpart, as in this example, then there are

no obvious bottlenecks.

8.3.2 Applying Gaia in the Mobile Workforce Case Study

In this section, the Gaia method is applied to the example concerning the mobile workforce case

study which was described in Chapter 7. The aim of this exercise is to provide more concrete

examples of the Gaia limitations as compared to RAMASD with respect to design complexity.

 153

Table 8.2: The role schema for the REPAIR_WORKER role

Based on the role identification guidelines applicable in Gaia (described in the previous section)

the behaviours in the the mobile workforce case study can be modelled with five roles8:

REPAIR_WORKER, MANAGER, CUSTOMER_HANDLER, TRAVEL_DEPT and

EXPERTISE_KNOWLEDGE. The first three roles correspond to persons in the business

organisation and the last two correspond to departments, the Transportation & Logistics and the

Education & Development departments. The details of the role schemata for the above roles are

summarised in Table 8.2, Table 8.3 and Table 8.4. The specification of the role characteristics

has been done using the Gaia method and notation as described in [209].

Applying Gaia to the mobile workforce case study results to identifying less roles than are

identified when using RAMASD. Gaia roles are of higher granularity. For example, the

REPAIR_WORKER role assumes the behaviours of the Coordinator, Employee, Mentor,

8 Roles names in Gaia are written in capital letters. This convention is also followed in this section. Roles

identified using Gaia are written in capitals and roles identified in RAMASD throughout this thesis are

written in italics.

Role Schema: REPAIR_WORKER

Description: Describes the behaviour of field engineers

Protocols and
Activities

Pull_repair_tasks, negotiate_work_tasks, schedule_work_tasks,
provide_mentoring_services, receive_work_practice_info,
searches_for_travel_info, searches_for expert_knowledge

Permissions Reads submitted repair task requests from the workpool database

Reads travel information from the Travel Information database

Reads expertise knowledge from expertise knowledge base

Responsibilities

 Liveness REPAIR_WORKER = SCHEDULE_REPAIR || PERFORM_REPAIR ||
OTHER

SCHEDULE_REPAIR = {Pull_repair_tasks, negotiate_work_tasks,
schedule_work_tasks}ω

PERFORM_REPAIR = {execute_work_tasks}

OTHER = {provide_mentoring_services || receive_work_practice_info}

 Safety Tasks_pulled = 0 ⇒ Tasks_scheduled = 0

Memory >= 4

 154

TravelInfoFinder and KnowledgeFinder roles. The MANAGER role also includes the behaviour

of the Brulebase role. Hence, to accurately represent the system behaviour, Gaia roles have to

be associated with sophisticated responsibilities, activities and permissions are assigned to the

Gaia roles. The memory requirements of each role can be represented as Safety constraints.

According to the Gaia method, it is most likely that each role corresponds to an agent type. It is

up to the designer to change this correspondence, for example to assign more than one role to an

agent type aiming to achieve better run-time performance, but this has to be done in an ad-hoc

manner, resulting to increased design complexity. For the case study example, a standard role

allocation is to assume that each role identified using Gaia corresponds to a separate agent type.

Table 8.3: Role schemata for the MANAGER and CUSTOMER_HANDLER roles

Role Schema: MANAGER

Description: It represents the behaviour of the team manager including confirming task
allocation, monitoring work and ensuring that business rules are followed.

Protocols and
Activities

Monitor_task_execution, confirm_task_allocation,
receive_work_practice_info, update_business_rule_data

Permissions Reads/writes business rules from the business rule database

Responsibilities

 Liveness MANAGER = {Monitor_task_execution || confirm_task_allocation ||
receive_work_practice_info || update_business_rule_data}

 Safety Memory >= 2

Role Schema: CUSTOMER_HANDLER

Description: Receives a repair request from the customer and interacts with other roles to
arrange for a field engineer to visit customer and carry out the repair

Protocols and
Activities

Collect_repair_requests, Update_workpool_data

Permissions Writes submitted repair task requests to the workpool database

Responsibilities

 Liveness CUSTOMER_HANDLER = {Collect_repair_requests ||
update_workpool_data}

 Safety Memory >= 4

 155

Table 8.4: Role schemata for the TRAVEL_DEPT and EXPERTISE_KNOWLEDGE roles

8.3.3 Limitations of Gaia

The discussion carried out in Section 8.3.1 and the application of Gaia to the mobile workforce

case study described in the Section 8.3.2 highlight a number of Gaia weaknesses which result in

increased design complexity:

1. Insufficient role identification: Role identification in Gaia does not cover all possibilities of

representing behaviours using roles. For example, the Gaia view of roles does not consider

roles being played by machines, something which often occurs. Furthermore, there is no

indication as to how such roles could be identified by the designer, for example how to

identify possible roles associated with an individual in an organisation. This requires the

designer to identify roles in an ad-hoc manner involving high complexity.

2. High role granularity: Role identification in Gaia results in roles of higher granularity than

that in RAMASD. This reduces the possibility of reusing Gaia roles in other applications

Role Schema: TRAVEL_DEPT

Description: Store travel information from various resources, i.e. GPS and Traffic
databases

Protocols and
Activities

Update_travel_data

Permissions Writes travel information in the travel database

Responsibilities

 Liveness TRAVEL_DEPT = {update_travel_data}

 Safety Memory >= 2

Role Schema: EXPERTISE_KNOWLEDGE

Description: Maintains and manages a database of expertise about telephone repair tasks

Protocols and
Activities

Update_expertise_knowledge_data

Permissions Writes submitted experitse knowledge about repair tasks requests to the
expertise knowedge base.

Responsibilities

 Liveness EXPERTISE_KNOWLEDGE = { Update_expertise_knowledge_data }

 Safety Memory >= 2

 156

and hence increases design complexity. Furthermore, as Gaia roles correspond mainly to

individuals in organisations the same role is more likely to interact with different roles in

different application contexts and hence the need for explicit specification of new

interaction protocols is higher. This results in high design complexity for the designers.

3. Low model reusability: Gaia models are more difficult to be reused than those of RAMASD.

For example, a Gaia interaction model includes all roles involved in a particular application.

A different application is unlikely to include exactly the same interacting roles and hence

the existing interaction model cannot be reused. Having to redefine conceptual models for

each ABS design increases design complexity.

4. Low abstraction level: RAMASD allows designers to reason at the role model level while

Gaia only allows work at the role level. For example, the Travel Management role model

described in Section 7.2.2 can be reused without explicitly referring to the characteristics of

the TravelManager and TravelInfoBase roles it includes. In RAMASD, focusing on role

characteristics would be needed only when roles had to be customised to better represent

particular application requirements. In contrast, Gaia requires the designer to explicitly

specify certain role characteristics, such as role interactions, even when the same role is

used in the design of more than one ABS. For example, the TRAVEL_DEPT role is likely

to interact with different roles when reused in different applications since it represents the

generic function of travel information provision. This is another factor that increases the

Gaia design complexity.

5. Lack of support for role specialisation: Role modelling in Gaia does not support

specialisation/inheritance. In the mobile workforce case study the behaviour of the

REPAIR_WORKER role overlaps to a certain extent with the behaviour of the MANAGER

role. For example, they both have the activity receive_work_practice_info, which

refers to receiving information about common work practices and business news. Having to

describe roles from the beginning even when part of the role behaviour occurs in more than

one roles increases design complexity.

6. Lack of definition of role relationships: The REPAIR_WORKER role is an implicit merging

of the Coordinator, Travel_Manager and Knowledge_Finder roles identified in Section

7.2.2 using RAMASD. The designer is therefore required to reason about this merging in an

ad-hoc manner. Any increase in the memory required to store intermediate results as a result

of this merging needs to be implicitly taken into account. In this example, this is done by

specifying it as a Safety constraint for the REPAIR_WORKER role schema.

7. Lack of support for design heuristics: The point of interaction heuristic, which in Section

7.2.2 requires Travel_Manager to be collocated with Knowledge_Finder, cannot be

 157

explicitly observed when applying Gaia. In the role modelling done in this section, it

happens that the point of interaction heuristic is implicitly observed since the behaviours

corresponding to the Travel_Manager and Knowledge_Finder roles are included in the

REPAIR_WORKER role. In general, however, this is not the case and the designer has to

apply design heuristics in an ad-hoc manner.

8. Inefficient support for non-functional aspects: As for the non-functional aspect of memory,

it is taken into account in the design of the agent types only in an ad-hoc manner. For

example, the memory of the REPAIR_WORKER role should be manually calculated to be

equals to 4 (see Table 8.4). However, this would prevent the designer from selecting a

feasible role allocation in the design stage. This is because the requirement that the memory

of each agent should be less that or equal to 2 can not be satisfied in any role allocation.

After realising this problem, the designer would be expected to manually modify the

identified roles, for example to represent the REPAIR_WORKER behaviour using two

roles, and reattempt the design. This iteration is similar to the iterations that can occur when

applying RAMASD. However, the main difference is that there is no explicit way in Gaia to

specify design constraints. The safety and liveness constraints attached to roles in Gaia aim

to assist in the specification of the behaviour represented by roles and are used in the

specification of the agent services once roles have been allocated to agent types. However,

there is no systematic way to specify constraints that would drive design decisions. The

designer must realise, represent and apply design constraints in an ad-hoc manner.

Obviously, this increases the complexity that the designer must handle.

9. Lack of automatic support: This is a major difference between RAMASD and Gaia as the

design decisions in Gaia are done by the designer in a completely ad-hoc manner while in

RAMASD there is automatic support. This requires the designer to handle high design

complexity.

In summary, Gaia includes a restricted role identification method and it does not support

reasoning using role models impeding thus representations of goal-oriented behaviour at a high

abstraction level. Furthermore, the Gaia conceptual models are not suitable for reuse in different

ABS designs. In addition Gaia does not support role specialisation and it does not formally take

role relationships into account. Finally, Gaia, although systematic, does not provide any support

to the designers to automatically carry out a number of the design steps, whilst taking into

account non-functional aspects and design heuristics. Therefore, it is concluded that Gaia

involves higher design complexity than RAMASD.

 158

8.4 Discussion

The value of RAMASD as compared to other ABS design methods with respect to design

complexity has been discussed in Sections 8.2 and 8.3. This section examines RAMASD in the

context of real world applications and discusses its novel aspects.

8.4.1 Real World Applicability of RAMASD

This section reports on the suitability of RAMASD for the design of ABSs for real world

applications. RAMASD can generally be applied in various application domains. However,

preliminary results show that RAMASD cannot scale to a satisfactory level at present.

8.4.1.1 The Generality of RAMASD

RAMASD has been successfully applied in case studies concerning supporting business systems

(see Chapter 7). Furthermore, there are no restrictions in applying RAMASD in other domains

as well. RAMASD could even be used to design non-agent based software but in that case roles

should be defined in a different manner.

RAMASD is based on the concept of role as representation of behaviour. This is instrumental in

designing ABSs supporting human activity systems, for example roles can be directly used to

represent behaviours in both the business system and the ABS increasing the semantic

alignment between the two systems. This makes the design requirements easier to understand

and hence reduces the design complexity.

Role modelling can be used for modelling other types of systems involving autonomous

behaviour as well. For example, roles have been used to describe behaviour of machines in

manufacturing systems [69]. Consequently, RAMASD could be used to design ABSs in general.

The role modelling technique described in Section 5.2 should be sufficient to represent all agent

behaviours using appropriate roles.

RAMASD can be used for the design of traditional object oriented systems modelled using the

role modelling paradigm, for example in a manner similar to the one found in the OORam

object-oriented software engineering methodology [163]. Roles could be identified according to

the traditional object-oriented approach and constraints on role playing by objects could be done

based on the role algebra. However, the role definition should be modified in that case to reflect

the non-autonomous behaviour of objects, for example that communication is done by remote

method invocation and not by message passing.

 159

8.4.1.2 The Scalability of RAMASD

In the experiments carried out in the context of the case studies RAMASD was found to not

scale well for large numbers of roles and role characteristics. Due to time limitations, however,

these issues were left for further research.

As far as it concerns scalability, RAMASD has currently only been tested with the simple

baseline algorithm described in Section 6.5, The algorithm has worked well for simple examples

involving approximately 40 roles and having on average 10 merging role constraints, 20 other

role constraints and 2 general constraints. However, the algorithm becomes inefficient when the

total number of roles increases, the number of merging role constraints decreases or the total

number of constraints increases.

The search algorithm of RAMASD could be further improved in many respects. However, time

limitations would not allow deep examination of this issue in the context of this PhD project.

Therefore, this issue was left for future research (see also Section 9.4),

8.4.2 Novel Aspects of RAMASD

This section provides a critique of the philosophy and the concepts underlying RAMASD. The

way that RAMASD addresses the open issues raised in Chapter 3 is justified and the merits of

the main contribution, the role algebra are discussed.

8.4.2.1 The Innovative Features of RAMASD

RAMASD has a number of innovative features which make possible to explicitly take a number

of design issues into account, for example design heuristics, organisational settings and non-

functional aspects. These features include using performance variables to represent quantitative

aspects and role models to represent various behavioural aspects qualitatively.

Extended role definition: In RAMASD, roles are representations of complex behaviour and

not simple behavioural abstractions as they are elsewhere, for example in information systems

engineering. The closest role definition is the one given by Kendal in [110] where roles are also

considered as able to plan, have goals, and interact with other roles to achieve them. However,

the role definition given by Kendal does not allow for modelling pragmatic aspects. For

example, the need for a role to access some resource cannot be modelled using Kendal’s role

definition.

Performance variables: RAMASD offers a way to quantitatively model behavioural aspects at

the role level via performance variables. In this way, pragmatic behaviour as well as abstract

properties can be represented. For example, performance variables can represent required

memory, as is done in Chapter 7, or they can represent non-functional issues like security levels.

Modelling constructs similar to performance variables have been used in other role-based

 160

approaches to ABSs engineering. For example, in Gaia [209] such variables are used to

represent safety and liveness properties of roles. However, the variables in such approaches

primarily aim to enable verification of whether the resulting agents satisfy the safety and

particular properties and to the author’s knowledge they are not used for allocating roles to

agents. The main reason for this is that such approaches do not include any systematic methods

to handle the hard search problems resulting from complex safety and liveness properties.

RAMASD on the other hand, considers only constraints based on simple properties described

by performance variables. The simplicity in constraint specification has the advantage that it is

less hard to search for design solution satisfying the constraints. To demonstrate this RAMASD

provides a simple algorithm that is guaranteed to find a solution if one exists. The author

believes that this can be shown more clearly by applying efficient known search algorithms to

the role allocation problem.

Specialised role models: RAMASD can represent various aspects like organisational settings

and qualitative non-functional aspects by specialised role models. This approach is widely

applied in the area of pattern languages. However, apart from a few exceptions, e.g. [108, 167]

the synergy of different behaviours represented by role models is not explicitly considered and

to the author’s knowledge the role synergy has not been formalised elsewhere.

Representing special behaviours by role models reduces design complexity as the designer does

not have to explicitly reason about how considering special behaviours in the system would alter

the behaviour of each individual agent. For example, to enforce a number of particular

organisational rules on the ABS it will be enough for the designer to request that certain role

models be considered in the design solution (see also Section 5.5.3). Given that such models

already exist in the role model library, the designer does not have to consider how

organisational role models combine with application role models and about what roles will be

allocated to each agent. Non-functional aspects can be represented by role models in a similar

manner. RAMASD enforces organisational as well as non-functional requirements in a reusable

manner and at a high level of abstraction. The whole approach is based on the formalisation of

role relations, done by the role algebra, which is critically discussed in the next section.

8.4.2.2 The Role Algebra

The role algebra is the enabling mechanism for the various behaviours represented by roles to

be combined in a systematic and rigorous manner. The primary benefit of the role algebra is that

it enables designers to reason at the role level when describing behavioural constraints and have

to define less constraints on role characteristics. This contributes towards both working at a high

level of abstraction and automating certain steps of the design process.

 161

Formalising the relations among roles provides a convenient way to specify design constraints

at the role level. This results to less number of design constraints and hence it is more likely for

a search algorithm to find a satisfactory solution. Furthermore, constraints based on role

relations can increase the speed of the search algorithms when they are checked before

constraints specified on agent and role characteristics.

The role algebra is instrumental for enabling work at a high level of abstraction. Based on the

role algebra, RAMASD takes the proliferating view that role models should be used as first

class design constructs one step further by considering that not only role models but also

relations among roles can be used to describe collective behaviour. This view emphasises the

fact that the overall behaviour of social entities depends both on the behaviours the entities

demonstrate in particular contexts, but also on the interrelations of those behaviours (see also

Section 4.2).

8.5 Summary

This chapter provided an assessment of the value of RAMASD with respect to reducing

complexity in ABS design. To select an appropriate evaluation strategy, a number of methods

suitable for evaluating software engineering methodologies have been considered. The result

was to select a combination of descriptive and experimental evaluation as the most suitable for

assessing the value of RAMASD with respect to reducing ABS design complexity.

Overall, RAMASD was shown to be superior to existing ABS design methods in several

aspects. RAMASD addresses the design complexity problem by enabling designers to work at a

high level of abstraction and by semi-automating the design process. Abstractability is enabled

by using roles to model the agent behaviour and semi-automation is the result of applying the

synthesis concept to the design process. Both abstractability and semi-automation are leveraged

by a formal model of role relations, the Role Algebra. The role algebra supports high level of

abstrction by enabling designers to specify design constraints at the role-model level instead of

only at the role attribute level. Furthermore, it supports semi-automation of the design process

by enabling automatic merging of the design synthesis problem sub-solutions, the role models,

to an overall solution, the grouping of roles to agent types.

The applicability of RAMASD has been tested by applying it in two case studies. The value of

RAMASD with respect to reducing design complexity was assessed using the evaluation

framework of Chapter 3 and by comparing and it with Gaia in the context of the mobile

workforce case study. In all cases RAMASD has been shown to be superior to other ABS

methods. In particular, it has been shown that RAMASD can support design heuristics,

organisational settings, collective behaviour, non-functional aspects, design process automation

 162

and work at different abstraction levels. RAMASD is general enough to be applied to non-

business oriented ABSs. It could even be able to be applied to design traditional object-oriented

software (with a modified role definition). However, the current version of RAMASD is not

scalable.

 163

Chapter 9

Conclusions

This chapter revisits the hypothesis presented in Chapter 1 in the light of the work done in this

project. Furthermore, it discusses limitations of the proposed approach and places the

contribution of this work in the context of current ABS engineering efforts. Finally, it

establishes directions for future research.

9.1 Revisiting the Research Hypothesis

This PhD project investigated the issue of reducing complexity, namely the difficulty in

understanding and manipulating software artefacts, involved in the design of ABSs. In

particular, it focused on the following two approaches which are known to reduce complexity in

software engineering:

• Enabling ABS designers to work at a high level of abstraction; and

• Semi-automating the ABS design process

A number of additional issues are involved in implementing these two approaches, including the

use of organisational settings and collective behaviour as first class design constructs, applying

design heuristics and considering non-functional aspects. Therefore, the work done in this PhD

aimed at developing an ABS design method which would involve less design complexity than

the existing methods and that would also address the above additional issues.

To narrow the scope of the research problem so that it could be addressed in the context of a

PhD project, the work was based on the view that ABS design concerns the allocation of a set of

roles R, representing agent behaviours in particular contexts, to a set of agents A such that the

resulting design satisfies the application requirements and any relevant design issues are taken

into account. Based on this view, the problem then was how to find a method for representing

agent behaviour using roles and for allocating roles to agents, which would involve less design

complexity than the existing methods.

The hypothesis underlying this research was that design complexity can be reduced by

formalising relevant role relations in a formal algebraic model and by developing an ABS

design process based on the synthesis concept. These two approaches are in the core of

RAMASD, the innovative ABS design method proposed here. In RAMASD, relations among

roles, which concern allocation of roles to agents, are formally described in the role algebra and

 164

a design process based on the synthesis concept is followed. Applying the synthesis concept

provides the basis for semi-automation where the solutions to the synthesis sub-problems are

manually specified by the designers or reused from a repository; and the merging of the

solutions is done automatically, including the allocation of roles to agents. This allocation is

made possible by the role algebra, which enables specifying design constraints at the role level.

This also increases the level of abstraction involved in design activities.

The effect of these two approaches to reducing design complexity was assessed using an

evaluation framework comprising a number of aspects pertinent to ABS design. RAMASD was

found to support all framework aspects. Furthermore, RAMASD was compared with Gaia and

was found to be superior with respect to reducing design complexity.

In summary, this thesis has demonstrated that using RAMASD reduces design complexity in

ABS design and this has shown the usefulness of the two approaches underpinning the starting

hypothesis.

9.2 Assessing the Thesis Contributions

The main original contribution to knowledge of this work is the overall RAMASD method,

which is turn is based on a number of secondary contributions. The contributions of this work

are summarised as follows:

1. The RAMASD method. RAMASD is new in many respects and in Chapter 8 it is shown

to address the problem of complexity better than comparable existing methods. Current

research trends, show an increased attention to high-level semi-automatic design of

ABSs. To this end, RAMASD constitutes a fundamental step in this direction. It

integrates a number of innovative aspects, including a technique for incorporating non-

functional aspects and design heuristics in role models, and the synthesis-based design

process enabling semi-automatic design of ABSs

2. The role algebra. In the domain of ABS engineering, there is no formal model to

describe relations among roles concerning assignment of roles to agents. Formal models

involving roles can be found in other domains, such as Role-based Access Control, for

instance [14], and in the areas of role-based pattern languages, for instance [54]. but

their complexity renders them unsuitable for reducing complexity in designing ABSs. In

contrast, the role algebra was developed with the aim of being practical and easy to

understand. This contribution is important because it enables reasoning at a high level

of abstraction and semi-automation of the design process while hiding from the designer

the details of role attributes. In order to keep the model practical it was attempted to

 165

include only a small number of basic relations. However, the model is open-ended, and

more role relations can be added as needed.

3. Classification scheme and evaluation framework. Chapter 2 and Chapter 3 propose a

classification and comprehensive evaluation of current ABS engineering approaches

focused on design complexity. To the best of the author’s knowledge, no similar

evaluation framework for ABS engineering methodologies currently exists. This

contribution is important because it offers a systematic way to assess ABS engineering

methodologies and it can be easily extended to cover other aspects of ABS engineering

and not only those concerning design complexity

9.3 Limitations of RAMASD

RAMASD was the outcome of a PhD project which had to be completed in three years.

Therefore, it is based on a number of assumptions the validity of which would require more

time to explore. RAMASD limitations include static role allocation, primitive models of non-

functional aspects and inefficient search algorithms.

It has been argued in this thesis that it is preferable to design an ABS once and for all on design

time. However, there are cases where the behaviour of agents may need to change dynamically

on run-time, for example when agents should be able to roam the internet and interact in

unknown domains. The current version of RAMASD does not explicitly consider such

possibilities. This problem can be partially overcome by using role modelling workarounds. For

example, some generic intermediary role, as the one used in the example described in Section

5.5.3, can be used to represent all alternative interactions of an agent with unknown hosts. The

guest agent will be concerned only with interacting with the intermediary role which will be

played by a host agent. The intermediary role will then interact with other roles in the particular

host environment based on host specific rules and information. This workaround is particularly

suitable for enforcing organisational rules but generally it has many disadvantages, for example

all the dynamic changes to agent behaviour need to be exposed to the host environment,

Furthermore, a large number of behavioural alternatives need to be encapsulated in the

intermediary role. Hence, this workaround may result to increased design complexity.

Another limitation of RAMASD is the way that it models non-functional aspects. It currently

uses the simplistic assumption that the relationship between the agent’s performance variables

and those of its roles is linear. This was illustrated in the mobile workforce case study (Chapter

7) where the memory of an agent was assumed to equal the sum of the memory required by each

role played by the agent. In general however, this may not be the case, and more general models

for representing these relations are necessary.

 166

9.4 Further Work

The research carried out in this PhD project identified a number of areas where it would be

interesting to undertake further work. These areas include extending the role algebra to allow

dynamic role allocation, applying RAMASD in other areas, for instance agent-based web

services, and developing efficient role allocation algorithms. In addition, interesting further

research topics include developing powerful models of non-functional aspects based on role

characteristics and developing a framework for classifying and assessing organisational

patterns.

• Extending the Role Algebra to support dynamic role allocation. Addressing the current

limitations of RAMASD includes the interesting problem of extending the role algebra to

support both dynamic and static role allocation. Such a model would be particularly useful

in conceptualising the adaptive behaviours that agents are required to exhibit in

contemporary dynamic environments. The author has already started work in this direction

both individually and in the context of the Agentcities Workgroup concerning Engineering

Self-Organising Applications [178]. The first results of the author’s individual efforts in this

direction are expected to be ready for publication in the first half of 2003.

• Applications of RAMASD in other areas. RAMASD is particularly suitable for designing

ABSs targeting specific application domains. For example, formalisation of role relations

can be used for automatic creation of agent-based business services. Agreements between

business parties concern not only products or services offered but also qualitative aspects

such as service quality and time constraints. Such agreements are termed Service-Level

Agreements (SLAs). Taking service-level agreements into consideration whilst designing

supporting software is a hard problem [125]. In RAMASD, different services can be

represented by appropriate roles and service combination constraints can be described by an

extended version of the role algebra. In this way, only valid service bundles will be created

and assigned to agent components tasked with overseeing the service provision processes.

Dynamic formation of services could then be supported using a version of RAMASD that

allows dynamic role allocation as discussed above.

• Improved search algorithms. Interesting work could be done in the direction of finding

faster search algorithms to be used for allocating roles to agents, for example in the areas of

constraint satisfaction problem solving and heuristic search. Different types of constraints

and their properties, for example the looseness and density properties described in [189],

can impact the efficiency of the role allocation algorithm. Similar work is also done in the

area of databases and the author believes that algorithms used for database query

satisfaction could be reused for efficient role allocation to a certain extent. Finally, useful

 167

search algorithms could be adopted from the area of automatic software engineering and in

particular from algebraic programming.

• Efficient models linking agent and role characteristics. As mentioned in the previous

section, RAMASD currently considers only simple and intuitive models linking agent and

role characteristics. Addressing this problem can be pursued along a number of directions,

for example each role can be associated with a rule-base making it ‘intelligent’. This

follows ideas from automated software design [124] where rulebases are used for

specification of software components. In such an approach, agent types would also be

associated with rulebases. In order for roles to be allocated to a particular agent type, the

resulting rulebases should be consistent, namely any constraints would need to be satisfied.

Such an approach would also give rise to interesting research for appropriate search

algorithms as mentioned above.

• Organisational patterns. An interesting direction for further work concerns organisational

patterns. Organisational patterns are quite powerful in specifying the overall behaviour of an

ABS but currently there is no systematic way for the designers to select which

organisational patterns to use. Hence, an appropriate organisational pattern classification

and assessment framework is required. This view is along the lines of similar views

expressed by other authors. For example Wooldridge in [212] stresses the need of

establishing quantitative criteria for evaluating organisational patterns and Coplien in [39]

advocates a qualitative organisational pattern classification. In particular, Coplien identifies

recurring patterns of interaction in business organisations and attempts to discover recurring

matches between those patterns and some qualitative measure of “goodness”. It would be

quite interesting to attempt to combine the two approaches in a comprehensive framework

where additionally relations among pattern roles would be specified using the role algebra.

In this way, designers would have a systematic way of both selecting suitable organisational

patterns and combining them with application functionality to design ABSs.

9.5 Concluding Remarks

This PhD project has resulted in important findings regarding complexity in ABS design. The

findings include identifying issues relevant to design complexity and ways in which these issues

should be addressed by ABS design methods. However, the most important result produced out

of this PhD work is the overall approach which makes it possible to reduce the level of

specification detail and delegate part of the design work to an automatic tool.

Finally, ABS engineering is a research area where elements of multiple research areas can be

fruitfully combined to facilitate the engineering task. It is the author’s belief that combining

 168

concepts from different areas to accurately represent the agent behaviour and attempting to

automate the engineering process is the correct approach for effectively engineering real world

ABSs.

 169

APPENDICES

Appendix A Evaluation of ABS design approaches

This Appendix reviews the ABS engineering methodologies discussed in Chapter 2 in detail and

presents the results of their evaluation as far as it concerns the design of ABSs. In particular, a

representative approach for each class in the classification scheme proposed in Section 2.4 is

reviewed and assessed as far as it concerns its support for ABS design based on the evaluation

framework introduced in Section 3.1. A comparative evaluation of the assessed ABS

engineering approaches is presented in Section 3.2.

A.1 RAPPID

RAPPID (Responsible Agents for Product-Process Integrated Design) is a domain specific ABS

engineering approach that targets the domain of collaborative product design [158]. ABSs

developed with RAPPID aim to assist human product designers manage product characteristics

across different functions and stages in the product design life cycle [155].

A.1.1 Overview of RAPPID

In RAPPID, each human with a stake in the design (including designers, manufacturing

engineers, and marketing and support staff), each component of the design itself and the

characteristic of each component is represented by an agent. Agents representing humans are

called Component Agents while other agents are called Characteristic Agents. Component

Agents and Characteristic Agents trade with one another for design constraints, requirements,

and manufacturing alternatives, and the resulting ABS provides a mechanism that yields product

designs faster than conventional techniques. RAPPID agents are active software objects with

varying degrees of intelligence.

Figure A.1 shows a product design decomposed into Component Agents (rounded rectangles),

each with one Characteristic Agent (ovals) for each dimension in the design space. For example,

the "SS.Weight" Characteristic Agent might represent the constraint that the entire product must

weight between 5 and 10 kg. The topmost Component Agent represents the complete product

and is the concern of the Chief Engineer, who reflects the Customer's requirements in the initial

allocation of design space. The bottommost Component Agents are either custom-manufactured

or selected from an on-line Parts Catalogue. Designers, who typically have responsibility for

 170

Figure A.1: The RAPPID ABS architecture

intermediate levels of the product tree, propagate the constraints from the top and bottom of the

tree toward each other. Each Component Agent (either automatically or under guidance from its

Designer) buys and sells design space allocations to and from other Component Agents.

RAPPID has been used in many application areas including unmanned air vehicles design [154]

and container ship design [152].

A.1.2 Evaluation of RAPPID

RAPPID is limited in the sense that it targets a specific application domain. Therefore, the

produced agents are restricted as far as it concerns their possible uses. Furthermore, RAPPID

does not clearly support the design phase of the software engineering life cycle. Instead, it only

provides a generic approach and guidelines about how the agents and the ABS should be built.

The exact system functionality is supposed to be decided by the ABS engineer in an ad-hoc

manner. Furthermore, a RAPPID ABS is viewed as a hierarchy of problem solvers and the

system conceptualisation progresses from the upper levels of this hierarchy in a top-down

manner.

 171

Table A.1: Evaluation of RAPPID

RAPPID does not include modelling mechanisms to explicitly represent organisational settings,

collective behaviour and non-functional aspects. In addition, there is no systematic way to

formally support design heuristics, to reuse design knowledge and to automate the design

process. Finally, the generality of the RAPPID approach is low as it aims at creating systems to

support the specific application domain of product design. Furthermore, there is no formal

support for reasoning at different levels of abstraction. Finally, there is no support for RAPPID

by a software tool due to its ad-hoc and informal nature (The only tools associated with

RAPPID are some spreadsheets and Java-based editors which simply facilitate editing of ABS

descriptions [158]). The evaluation of RAPPID is summarised in Table A.1.

A.1.3 Strengths and Weaknesses of RAPPID

Although this approach has proven useful in developing research prototypes demonstrating

conceptual models of an application domain, it is not applicable to large and complex agent

systems targeting real world applications. The main disadvantage is that the generic guidelines

for designing the ABS that RAPPID provides make it difficult for the ABS designer to consider

the overall picture where the guidelines may not be completely applicable or where may be

conflicting requirements. This may result to design errors. Another major problem is that

RAPPID is limited to the domain of product design. As far as it concerns design effort, RAPPID

has the disadvantage that there is no systematic way for justifying and reusing design

knowledge. This inconvenience for the designer increases as there is no support by a software

tool.

The only advantage of RAPPID is that the approach is not difficult to use, as it does not involve

complicated models and a large number of concepts. However, this advantage deteriorates due

to the lack of systematic methods and formality as the size of the designed ABS increases.

Concept definition Design in scope Heuristics support
Concepts

≤≥ − −

Organisational Settings Collective behaviour Non-Functional aspects
Models

− − −

Design Perspective Support for reuse Design automation
Process

↓ − −

Generality Abstractability Tool support
Pragmatics ○ − −

 172

Figure A.2: A generic agent model in DESIRE

A.2 DESIRE

DESIRE is an ABS-modelling framework, which can be used for conceptual specification,

behavioural simulation and prototype generation of ABSs [21, 22].

A.2.1 Overview of DESIRE

The DESIRE approach adopts a compositional view of agents and ABSs. According to this

view, the entire functionality of the system is modelled as a series of interacting, task-based, and

hierarchically structured components. Each task can be either primitive or composite. A task

hierarchy is constructed by applying a recursive top-down decomposition process on the initial

system task. The compositional view of DESIRE considers each individual agent and the whole

ABS as a collection of components that represent task solving units. The dynamic patterns of

interactions in the ABS are modelled as interactions among tasks of the same or different agents

at different levels of reasoning.

The DESIRE framework proposes two models that should be specified by the ABS designer.

The intra-agent model contains the expertise descriptions of domain tasks, the knowledge

requirements and the reasoning capabilities for solving these tasks. The inter-agent model,

Own
Process
Control

Maintaining
History

Agent Task Control Structure

Agent
Specific

Task

Cooperation
Management

Agent
Interaction

Management

Maintaining
Agent

information

World
interaction

Management

Maintaining
World

information

 173

describes the expertise to perform and guide coordination, cooperation and social interaction

among agents.

In DESIRE, the agent architecture is defined by composing primitive component models that

are directly related to agent tasks. Existing generic agent models can be used to design a specific

agent model. During the design process, relevant components in a generic model are refined by

(1) more detailed analysis of the tasks of which such components are comprised and/or (2)

inclusion of specific domain knowledge.

Within the DESIRE framework, knowledge is represented at three different levels: conceptual

level, detailed level and operational level. The representation at the operational level is

automatically generated from the representation at the detailed level. Furthermore, when the

specified ABSs are small and agents have simple architectures, it is possible to simulate the

ABS behaviour and systematically experiment for a number of parameters concerning the agent

environment. In addition, DESIRE has the advantage that the specifications and their semantics

can be formally described using temporal logic as a base. This enables proving various

properties about the system during the verification and validation phases of the software

lifecycle.

An example of the representation of the compositional structure of a generic DESIRE agent is

depicted in Figure A.2. In this model, eight agent tasks are performed by the eight internal agent

components: control of an agent’s own processes (Own Process Control), interaction with other

agents (Agent Interaction Management), maintaining knowledge of other agents’ characteristics

(Maintain Agent Information), interaction with the external world (World Interaction

Management), maintaining knowledge of the external world (Maintain World Information),

maintaining information regarding past observations and interactions (Maintain History),

managing cooperativeness (Cooperation Management), and performance of agent specific tasks

(Agent Specific Tasks).

DESIRE is based on a formal specification language and it is associated with a variety of tools

aiming to assist the designer in creating, verifying and simulating the ABS. Those include a

graphical editor, a specification compiler that generates Prolog code and various debugging and

monitoring tools. Furthermore, DESIRE can be applied in various application domains. In

particular, DESIRE has been used by a number of companies and research institutes (such as

chemical industry, financial sector, software industry, institutes for environmental studies) to

develop operational systems for a number of complex tasks (including systems for diagnosis,

design, routing, scheduling and planning).

 174

Table A.2: Evaluation of DESIRE

A.2.2 Evaluation of DESIRE

The DESIRE approach covers the analysis and the design phase of the software development

life cycle. However, DESIRE assumes a specific, task based agent architecture and therefore it

is restricted in this sense. Furthermore, the DESIRE approach is applied in a top-down fashion.

Major disadvantages of DESIRE are that it does not support explicit modelling of organisational

settings, collective behaviour and non-functional aspects. It is the responsibility of the agent-

system designer to incorporate those aspects implicitly by task-based modelling. As DESIRE is

based on a generic decomposition framework, parts of design knowledge can be reused. For

example, as described in [20] some tasks that are generic in some domain can be specialised as

required. Furthermore, the formality inherent in the DESIRE approach makes possible realising

DESIRE in a software tool. However, the design process cannot be automated to any extend as

the agent components should be known before the specification of the agent behaviour is made.

Furthermore, DESIRE does not provide any systematic and formal support for applying design

heuristics. Although some heuristic design rules could be modelled using the DESIRE

specification language this needs to be done intuitively by the designer. Finally, DESIRE

formally supports specifying interactions among task components at different levels of

abstraction, which reduces design complexity. A summary of the evaluation of DESIRE is given

in Table A.2.

A.2.3 Strengths and Weaknesses of DESIRE

The major advantage of DESIRE is the high degree of formality, which enables verification and

consistency checking of specifications of ABSs. Furthermore, an additional advantage is that it

provides support for reuse, which significantly reduces development effort [141].

Concept definition Design in scope Heuristics support
Concepts

<> √ −

Organisational settings Collective behaviour Non-functional aspects
Models

− − −

Design perspective Support for reuse Design automation
Process

↓ √ −

Generality Abstractability Tool support
Pragmatics

⊗ √ √

 175

Figure A.3: Relations between Gaia models

However, the commitment of DESIRE to a specific agent architecture impedes its general

applicability to a broader range of problems. Furthermore, since the agent components should

need to be decided before the approach is applied, the design of the ABS cannot be automated.

This makes difficult to apply DESIRE to design large ABSs.

A.3 Gaia

An example of an approach combing agent theoretic concepts with object oriented software

engineering principles is Gaia [209]. Gaia is a general methodology supporting the design of

both the individual agent architecture as well as the agent organization.

A.3.1 Overview of Gaia

Gaia [209] is one of the first systematic methodologies to view an ABS as an organisation of

agents. The Gaia methodology includes two analysis models and three design models, as

outlined in Figure A.3.

The first step in the Gaia analysis process is to find the roles in the system, and the second is to

model interactions between the roles found. Roles in Gaia consist of four attributes:

responsibilities, permissions, activities and protocols. Responsibilities are of two types: liveness

properties indicating that the role has capabilities that add something good to the system, and

safety properties that prevent and disallow something bad to happen to the system. Permissions

represent what the role is allowed to do, in particular, which information it is allowed to access.

Activities are tasks that a role performs without interacting with other roles. Protocols are the

specific patterns of interaction, for example, a seller role can support different auction protocols

such as “English auction”. Gaia has formal operators and templates for representing roles and

Requirements
Statement

Roles
Model

Interaction
Model

Services
Model

Acquaintance
Model

Agent
Model

Analysis

Design

 176

their belonging attributes and it has schemas that can be used for the representation of

interactions.

Table A.3: Evaluation of Gaia

In the Gaia design process, the first step is to map roles into agent types, and then to create the

right number of agent instances of each type. The second step is to determine the services model

needed to fulfil a role in one or several agents, and the final step is to create the acquaintance

model for the representation of communication between the agents.

A.3.2 Evaluation of Gaia

Gaia considers only cooperative agents that act towards a common goal whilst many agent

systems have to deal with resolving a number of conflicts between agents. In addition, the

problem domain is assumed to not contain any conflict situations that would need to be

resolved. Furthermore, although there is no restriction regarding the internal agent architecture

and the programming language in which the agents will be implemented, there is a restriction of

size as Gaia targets small ABSs of about 100 agents. Agents are further assumed to not be

mobile.

The Gaia approach covers the analysis and design phase of the software development process on

a very high level. The resulting ABS designs are intended as input to traditional software

engineering methods that refine the high level designs into particular implementations. Gaia

does not support explicit modelling of organisational settings, of collective behaviour and of

non-functional aspects. Furthermore, since the approach is completely informal the design

process cannot be automated to any extend. In addition, there is no tool support for GAIA.

Gaia does not support reuse since it does not provide any guidelines or techniques about how

existing specification models can be reused in the design of ABSs. Finally, there is no formal

Concept definition Design in scope Heuristics support
Concepts

>< √ −

Organisational settings Collective behaviour Non-functional aspects
Models

− − −

Design perspective Support for reuse Design automation
Process

↓ − −

Generality Abstractability Tool support
Pragmatics

∅ − −

 177

support for work at different levels of abstraction and design complexity is not handled in Gaia.

The evaluation of the Gaia approach is summarised in Table A.3.

A.3.3 Strengths and Weaknesses of Gaia

An advantage of Gaia is that it provides a concrete set of models that capture almost most

relevant aspects of the target ABS. Furthermore, the application of Gaia is quite straightforward

even for inexperienced users and it is not committed to any particular agent architecture such as

BDI or similar.

A major weakness of Gaia is that it is simply defined on top of other object-oriented software

engineering techniques. Therefore, it may be difficult to produce sufficient implementations

from the Gaia design models. A way to mitigate this problem could be to include an

environment model in the set of GAIA models, for example as is done in MAS-CommonKADS

[91], but still a systematic way to refine high-level designs to implementations would be

required. Additional considerable weaknesses of Gaia is the lack of explicitly modelling non-

functional aspects and supporting the use of organisational settings and collective behaviour as

first class design constructs and the lack of automation of the design process.

A.4 Tropos

Tropos [23, 31, 77] is an approach to ABS engineering, which originated from the area of

information systems engineering.

A.4.1 Overview of Tropos

Tropos is based on two key concepts: the notion of agent and the concept of mentalistic

attitudes, for example beliefs, capabilities, actions and plans that characterize an agent. These

ideas are used in all phases of software development. Unlike other ABS engineering

approaches, Tropos also covers the very early phases of requirements analysis and thus provides

the software designer with a deeper understanding of the environment in which the ABS will

operate. Tropos targets the realization of ABSs that automate processes normally carried out by

groups of humans within business organisations. Tropos supports five phases of software

development:

• Early requirements. This phase is concerned with the understanding of a problem by

studying existing business organisational settings. The output of this phase is an

organisational model, which includes relevant actors and their respective dependencies.

Actors are characterized as having goals, which they would be unable to achieve in

isolation.

• Late requirements. The system under realization is described within its operational

environment, along with its relevant functions and qualities. This description models the

 178

system as a number of actors, which have social dependencies with other actors in their

environment.

Table A.4: Evaluation of Tropos

• Architectural design. The system's global architecture is defined in term of subsystems,

interconnected by data and control flows. Subsystems are represented as actors, while data

and control interconnections correspond to actor dependencies. Actor capabilities and agent

types (agents are special kinds of actors) are specified. This phase finishes with the

specification of agents within the system.

• Detailed design. Each agent of the system is defined in detail, in terms of internal and

external events, plans and beliefs, and agent's communication protocols.

• Implementation. The actual implementation of the system is carried out, consistently with

the detailed design.

A.4.2 Evaluation of Tropos

Tropos is tailored to software systems that will operate in a business organisational context.

Therefore, it makes possible to use the same concepts to describe the organisational

environment within which the ABS will eventually operate, as well as the system itself. Apart

from that, the only other restrictive premises of Tropos are that it focuses on the BDI

architecture.

Furthermore, Tropos provides a smooth transition from analysis to design and implementation

since all phases are agent-oriented. This minimises the need to explicitly transform agent

concepts to traditional object oriented concepts and constructs, for example classes and

methods, in order to implement them, as is the case in MASE [186]. Tropos follows the JACK

[135] agent-building toolkit as far as it concerns agent architecture and implementation

concepts. Therefore, Tropos models can be implemented in a rather straightforward manner.

Concept definition Design in scope Heuristics support
Concepts

<> √ −

Organisational Settings Collective behaviour Non-Functional aspects
Models

− − −

Design perspective Support for reuse Design automation
Process

↓ − −

Generality Abstractability Tool support
Pragmatics

⊕ − −

 179

In addition, Tropos is to our knowledge the only static approach that provides support for non-

functional aspects. Non-functional aspects are represented by appropriate softgoals based on the

i* framework [35]. The representation is done in a qualitative manner depending on the designer

to introduce sub-actors that would contribute positively to the fulfilment of softgoals.

However, Tropos does not support neither organisational settings nor collective behaviour as

first class design constructs although it is tailored to supporting business organisations. Another

weakness of Tropos is that it does not provide formal and systematic support for applying

design heuristics. In addition, Tropos does not support reuse since all design decisions have to

be done every time from the beginning. Furthermore, the design complexity is not addressed in

Tropos, as there is no formal support for the designer to work at different levels of abstraction.

Finally, to our knowledge there is currently no tool support for Tropos.

The evaluation of Tropos is summarised in Table A.4.

A.4.3 Strengths and Weaknesses of Tropos

Tropos is a comprehensive methodology, which offers additional advantages compared with

other approaches, for example support for non-functional aspects, and it has a wide scope

covering all phases of software engineering lifecycle. A significant advantage of Tropos is that

it successfully integrates aspects from known methodologies for requirements gathering with

aspects from information systems engineering and agent concepts to create a comprehensive

ABS engineering approach. As a result, Tropos is far more powerful regarding requirements

gathering and analysis than other ABS engineering approaches.

However, Tropos provides poor support for ABS design. In particular, it does not support

organisational settings and collective behaviour as first class design constructs. Furthermore, it

does not provide any support for design heuristics, for reuse of design knowledge and for design

process automation. Finally, Tropos does not handle design complexity, as it does not support

the designers to work at different levels of abstraction.

A.5 MESSAGE

MESSAGE/UML [30, 60] (Methodology for Engineering Systems of Software Agents) is an

AOSE methodology, which builds upon current software engineering best practices covering

analysis and design of MAS. It has well defined concepts and a notation that is based on UML.

A.5.1 Overview of MESSAGE/UML

MESSAGE/UML is primarily focusing on considering a wide range of agent concepts in the

conceptual modelling of ABSs. The contributions of MESSAGE also include diagrams for

viewing these concepts, which are based on extensions of the UML modelling language.

 180

Figure A.4: Knowledge level concepts in MESSAGE/UML

The underlying philosophy of MESSAGE is that simply extending existing software

engineering approaches is not the best way to model and design ABSs. Instead, ABSs should be

viewed from a different angle in the same way that a house is viewed as an entity consisting of a

kitchen, a living room and other rooms instead of simply a pile of bricks [30].

MESSAGE/UML includes the following knowledge level concepts: agent, organisation, role,

resource, task, interaction and interaction protocol, goal, information entity and message. An

agent is an atomic autonomous entity that is capable of performing some (potentially) useful

function while an organisation is a group of agents working together to a common purpose. A

role describes the external characteristics of an agent in a particular context. Therefore, an agent

may be capable of playing several roles, and multiple agents may be able to play the same role.

A resource represents passive, non-autonomous entities such as databases or external programs

used by agents. A task is a knowledge-level unit of activity with a single prime performer, for

example an agent or a role. As far as it concerns interactions, the MESSAGE/UML concept of

interaction is similar to the one of the GAIA methodology [209]. An interaction by definition

has more than one participant, and a purpose, which the participants collectively must aim to

achieve. An interaction protocol defines a pattern of message exchange associated with an

interaction. A goal associates an agent with a situation. If a goal instance is present in the

agent’s working memory, then the agent aims at bringing about the situation referenced by the

goal. Finally, information entity is an object encapsulating some relevant information and

AimsToAchieve

Agent

RoleGoal

Information
Entity

Event

Resource

Action

Service

Task

Perceives

Plays

Performs

Implements

Acquaintance

Generated By
ChangeOfState

Generates

Describes
StateOf

DirectAction Communicative
Action

Affects

Provides
ServiceTo

Describes

 181

message is an object communicated between agents carrying information. The various relations

between knowledge concepts of MESSAGE/UML can be seen at Figure A.4.

MESSAGE/UML puts the emphasis on the analysis phase. Similar to many other software

engineering approaches, MESSAGE examines the existing system using a number of models

based on different views of the system. The proposed MESSAGE/UML analysis models are

represented by diagrams, which are extensions of UML class and activity diagrams. Currently,

six analysis views are considered: organisation, goal/task, agent/role, delegation, workflow,

interaction and domain.

The Organisation view considers the various coarse-grained relationships, for example

aggregation, power, and acquaintance relationships, between various entities in the system,

including agents, organisations, roles and resources. The Goal/Task view describes goals, and

tasks and the dependencies among them. Goals and tasks can be linked by logical dependencies

to form graphs showing, for example, the decomposition of high-level goals into sub-goals, and

how tasks can be performed to achieve goals. Graphs showing temporal dependencies can also

be drawn based on UML activity diagrams. The Agent/Role view focuses on the individual

agents and roles. For each agent/role it uses schemata supported by diagrams to describe its

characteristics, for example what goals the agent/role is responsible for and what resources it

controls. The Interaction view describes the characteristics of interactions, for example the

initiator, the collaborators and the relevant information supplied/achieved by each participant of

the interaction. Larger chains of interaction across the system, for example corresponding to use

cases, can also be considered in this view. Finally, the Domain view describes the domain

specific concepts and relations that are relevant for the system under development, for example

for a system dealing with making travel arrangements relevant concepts would include trip,

flight and ticket.

The analysis models are produced by stepwise refinement and can be created at different levels

of abstraction. The top level of decomposition is referred to as level 0. This initial level is

concerned with defining the system to be developed with respect to its stakeholders and

environment. The system is viewed as a set of organisations that interact with resources, actors,

or other organisations. Actors may be human users or other existing agents. Subsequent stages

of refinement result in the creation of more detailed models numbered in the same way, for

example level 1. In level 1, the structure and the behaviour of entities such as organisation,

agents, tasks, goals domain entities are defined. In the current MESSAGE/UML project, only

level 0 and level 1 have been considered.

 182

Table A.5: Evaluation of MESSAGE/UML

The refinement of level 0 analysis models can be done following three possible approaches:

organisation-centred, agent-centred and goal/task-centred. In organisation-centred approaches

the focus is on analysing the system overall properties, for example the system structure and the

services offered. Subsequently, the agents that are able satisfy those properties are identified

during the refinement process. Agent-centred approaches mainly focus on the identification of

agents needed for providing the system functionality and subsequently they determine the most

suitable organisation according to system requirements. Finally, Goal/task-centred approaches

are based on functional decomposition. System roles, goals and tasks are systematically

analysed to determine the most appropriate problem-solving methods, and decomposition and

exception handling mechanisms required. Therefore, considering the overall structure of goals

and tasks in the goal/task view the most appropriate agents and organisation structure for

achieving those goals/tasks can be determined.

A.5.2 Evaluation of MESSAGE

MESSAGE is intended to be applicable to a variety of agent cognitive architectures and there

are no restrictive assumptions regarding the domains it can be applied in. Furthermore, although

there are some heuristic rules as to how the various MESSAGE/UML models can be created

[187] in general MESSAGE/UML does not provide systematic support for heuristics regarding

software design.

MESSAGE/UML explicitly models organisational settings. Those models of organisational

settings can be directly adopted when model refinement is done in a top-down fashion and can

be determined from goal/task models when refinement is done bottom-up. This is not the case

for non-functional aspects, however, as they are not explicitly modelled. MESSAGE/UML

furthermore explicitly models interactions and collective behaviour.

Concept definition Design in scope Heuristics support
Concepts

>< − −

Organisational settings Collective behaviour Non-Functional aspects
Models

− − −

Design perspective Support for reuse Design automation
Process

↕ − −

Generality Abstractability Tool support
Pragmatics

⊗ − √

 183

Due to its completely informal nature, MESSAGE/UML cannot be automated and in fact there

is no systematic decision-making support in ABS design. The MESSAGE/UML approach is

implemented in the MetaEdit software tool [29].

The MESSAGE/UML approach is general and it can be applied in any application domain. In

addition, the approach is extensible in the sense that additional levels of detail can be defined

for analysing specific aspects of the system dealing with functional requirements and non

functional requirements such as performance, distribution, fault tolerance, security. Such

extensions are expected to be accompanied with appropriate techniques for consistency

checking between subsequent levels. However, although support for non-functional aspects is in

this sense possible, to our knowledge there are not examples of such extensions in the literature.

Finally, the abstractability of message results in low complexity.

The evaluation of MESSAGE is summarised in Table A.5.

A.5.3 Strengths and Weaknesses of MESSAGE/UML

The major advantage of MESSAGE/UML is the comprehensive coverage of different facets of

the system during the analysis phase. An additional advantage is the flexibility it provides to the

designer allowing her to work in both a top-down and a bottom-up fashion depending on the

application requirements. Two important additional advantages are the applicability of

MESSAGE/UML to all application domains and to all agent types are additional advantages.

The major disadvantage of MESSAGE/UML is that it does not currently provide any support

for the design phase of the agent-base system. This requires the designer to handle the design in

an ad-hoc manner after creating the analysis models. The MESSAGE/UML approach is the

subject of on-going research [60] and therefore this lack of design support may be addressed in

the near future.

A.6 Zeus

The Zeus agent development approach is closely related to the Zeus agent development toolkit

[147]. This relation enables increased tool support and rapid development of ABSs.

A.6.1 Overview of Zeus Agent Development Methodology

In common with most other structured development methodologies, the Zeus ABS engineering

approach consists of analysis, design and realisation activities, as well as runtime support

facilities that enable the developer to debug and analyse their implementations (Figure A.5).

The purpose of the initial analysis phase is to model and understand the application problem.

 184

Figure A.5: The Zeus agent development methodology

The Zeus methodology does not explicitly prescribe any particular approach to problem

analysis. Instead, it allows developers to “mix and match” their own favourite approaches, for

example use cases [36]. However, the recommended technique is role modelling [38].

The design phase involves linking role responsibilities to agent characteristics, and deciding on

the roles allocated to each agent. Role responsibilities correspond to tasks that an agent is

capable of carrying out and domain knowledge is described with facts store in the internal

knowledge base of agents. Furthermore, the proactive behaviour is represented with goals

agents try to achieve. While the analysis process involved understanding the problem

requirements, the design process involves expertise, knowing when and how to reuse and adapt

existing proven solutions.

The objective of the agent realisation phase is to realise working agent implementations from

the conceptual designs created during the design stage. The agent realisation process consists of

several steps, which are closely coupled to the levels of abstraction that exist within a Zeus

agent. Zeus agents have the architecture depicted in Figure A.6. It consists of the Definition

layer that implements the reasoning and learning capabilities of the agents, the Organization

layer that manages and maintains the relationships with other agents and the Coordination layer

that is responsible for the coordination among agents and contains the necessary negotiation

knowledge. Furthermore, the Communication layer provides the communication facilities for

the communication among agents and the API layer that serves as the programmatic interface

between Zeus agents and traditional Java objects.

The Zeus toolkit provides an extensive set of editors allowing the designer to easily specify

different types of agents and the characteristics of the ABS including the organisational

relations and the interactions among agents, for example coordination and negotiation models.

The designer has the option to either use predefined interaction models or create new ones as

required. Furthermore, the ABS designs can be transformed to Java source code within the

Agent Generator tool.

Realisation

Role Modelling

Implem-
entations Runtime

Support

Identification of
Ontology, Agents,
Services &
Acquaintances

Agent Definition,
Co

-
ordination &

Organisation

Visualisation
 Debugging

Problems SolutionsDomain
Analysis Design

 185

Interface Layer

Definition Layer

Organisation Layer

Co-ordination Layer

Communication Layer
Messages to / from

other agents

Sensors Effectors

Figure A.6: The Zeus agent architecture

The Zeus approach also provides support for testing, debugging and optimising the generated

ABSs. This consists of a suite of runtime support tools that are available in the form of the

Visualiser agent. The Visualiser agent is constantly executing through the lifecycle of the ABS

gathering statistics regarding the ABS performance.

Additional debugging and testing tools include the Society Tool, which monitors the messages

exchanged among agents, the Report Tool, which displays the current state of agent task

decomposition and execution, the Micro Tool that is used to inspect the internal state of an

agent, the Control Tool, which can remotely modify the internal state of an agent, the Statistics

Tool, which generates statistics regarding the performance of the ABS and the Video Tool,

which can record and replay ABS lifecycle executions.

Further details about the Zeus agent building environment are given in Chapter 6 where the way

that Zeus was extended to support RAMASD is discussed.

A.6.2 Evaluation of Zeus Agent Development Methodology

The Zeus Agent Development methodology (ZAD) is closely related to the Zeus agent building

toolkit. Therefore, it involves restrictive premises. For example, all must conform to the agent

architecture of Figure A.6.

The Zeus documentation suggests a number of heuristics that could be followed during ABS

design, for example the sphere of responsibility and the point of interaction [38].

 186

Table A.6: Evaluation of the Zeus agent development methodology

However, there is no formal support for applying those heuristics in the design of the ABS. The

designer is responsible for proceeding with the design based solely on intuition and experience.

ZAD considers explicit models of organisational settings and interactions. This is done based on

role modelling. Furthermore, ZAD covers most phases of the software engineering life cycle.

Design is done in a bottom-up fashion as the agent components are composed from primitive

behaviours described by role models.

As far as it concerns reuse, the toolkit environment provides the capability of storing and

retrieving previous design decisions; therefore, reuse of design knowledge is possible. This is

not the case with automation, however, as the design decisions have to be taken by the designer

alone without any support from the toolkit. In addition, there is no formal support for working at

different levels of abstraction and hence the designer is not adequately assisted in handling

design complexity.

Zeus is a general approach, which can be applied in many environments. However, there are

some limits imposed by the toolkit environment and the implementation technology, for

example, Zeus agents cannot be mobile. Apart from that, the toolkit provides substantial support

to the designers. The evaluation of Zeus agent development methodology is summarised in

Table A.6.

A.6.3 Strengths and Weaknesses of Zeus

All in all, the freely available Zeus toolkit provides a comfortable and flexible framework for

the development of ABSs. However, Zeus is limited to particular agent architecture and

capabilities that may not be suited for all kinds of applications domains, for example where

agent mobility is required. In addition, a major weakness of Zeus is that the design process is

completely informal and therefore it cannot be automated providing extra assistance to the

Concept definition Design in scope Heuristics support
Concepts

<> √ −

Organisational Settings Collective behaviour Non-Functional aspects
Models

√ √ −

Design perspective Support for reuse Design automation
Process

↑ √ −

Generality Complexity handling Tool Support
Pragmatics

∅ − √

 187

designers. Finally, the lack of formality in Zeus impedes appropriate handling of design

complexity by working at different levels of abstraction.

A.7 KARMA/TEAMCORE

Whilst all methods reviewed up until now are static, where design is done once before the

system execution, a number of approaches use the opposite paradigm where agent systems are

self-organised dynamically at run-time, KARMA/TEAMCORE [192, 193] is such an approach.

KARMA/TEAMCORE enables rapid integration of existing agents to agent organisations based

on the application requirements and therefore it reduces the development effort. Agent

organisations can be modified on run-time considering dynamic changes in application

requirements and the agent environment.

A.7.1 Overview of KARMA/TEAMCORE

The KARMA/TEAMCORE philosophy is that instead of engineering ABSs from scratch, it

would be better to search and recruit appropriate agents that already exist in the cyberspace. The

idea is that the search for appropriate agents should be done automatically on

Figure A.7: The KARMA/TEAMCORE Framework

run-time, enabling thus reorganisation of the ABS when required. In this way, even

inexperienced users would be able to build large agent organisations for real world applications.

 188

An outline of the KARMA/TEAMCORE framework is depicted in Figure A.7. There are two

key aspects in the KARMA/TEAMCORE approach. The first focuses on the creation,

specification, and monitoring of the agent organisation. The second focuses on enabling the

organisation to reliably execute tasks, by ensuring robust teamwork among the agents in the

organisation.

KARMA (Knowledgeable Agent Resources Manager Assistant) addresses the first aspect by

assisting ABS designers in three ways: First, it provides support for team-oriented

programming, where the system designer specifies a hierarchical agent organisation as well as

its high level goals, for example to support supply-chain management. Team-oriented

programming abstracts away from coordination details, thus eliminating the burden of writing

large numbers of coordination plans. Second, KARMA locates agents that match the

requirements of the specified organisation and assists in allocating organisational roles to

agents. In this way, it alleviates the designer from the burden of searching through vast numbers

of agents in the cyberspace. Third, KARMA monitors the agent organisation to diagnose

failures and to evaluate agent performance for future reorganisations.

The second aspect of the TEAMCORE approach focuses on robust execution. According to the

TEAMCORE approach, the teamwork of agents enhances robust execution, since TEAMCORE

agent components are expected to act responsibly towards one another, covering for each

other’s execution failures and sharing key information. To be able to seamlessly interact with

each other, each agent is associated with a TEAMCORE wrapper that is responsible for the

interoperability among even heterogeneous agents.

The ABS designer specifies an agent organisation by specifying a team program. The team

program includes specifications of the organisation hierarchy, the plan hierarchy and the

capabilities of agents that could execute those plans. The team organisation hierarchy consists of

roles for individuals and for groups of agents. The functionality of the ABS is explicitly

expressed by team plans. The developer first assigns roles to plans and then assigns roles to

agents. Specifications are done in the STEAM specification language [191].

To locate and recruit agent components, an agent resources manager (an analogue of a human

resources manager) searches for agents of interest to this organisation in the cyberspace and

monitors their performance over time. When a new agent organisation needs to be constructed,

KARMA searches different sources, for example yellow pages or other catalogues and compiles

a list of different agents together with their properties. From this list, the designer then manually

selects the desired agents to include in the organisation. KARMA avoids overwhelming the

agent system designer with unnecessary information by including in the list only agents that are

capable of playing the roles of the specified organisation.

 189

Table A.7: Evaluation of KARMA/TEAMCORE

A.7.2 Evaluation of KARMA/TEAMCORE

KARMA/TEAMCORE is targeting a wide range of agents and application domains. The only

restriction therefore is that the agents should exist in the cyberspace in order to participate in the

organisation. An ABS in KARMA/TEAMCORE is assembled in a top-down fashion.

Furthermore, design heuristics can be specified as rules in the STEAM specification language

and taken into account when designing the agent components.

Organisational settings are explicitly modelled in KARMA/TEAMCORE using appropriate

roles. Therefore, they can be used as first class design constructs. Collective behaviours are

modelled with appropriate team plans, which are assigned to roles. Therefore, collective

behaviours can also be used as first class design constructs. Furthermore, some non-functional

aspects, for example the performance of the ABS, can be explicitly modelled as constraints in

the STEAM specification language. However, there is no comprehensive support for reusing

design knowledge.

The KARMA/TEAMCORE approach can be automated to some extend, since a software tool

based on the STEAM specifications does the allocation of roles to agents. This tool also assists

the designer in specifying team plans and role hierarchies. Furthermore, the formality inherent

in the STEAM specification language makes possible for the designer to work at different levels

of abstraction with appropriate rigour, reducing therefore the design complexity.

A summary of the evaluation of the KARMA/TEAMCORE approach is given in Table A.7.

A.7.3 Strengths and Weaknesses of KARMA/TEAMCORE

KARMA/TEAMCORE is the most comprehensive ABS engineering approach as far as it

concerns supporting the design of the ABSs. It provides assistance to the designers in the

Concept definition Design in scope Heuristics support
Concepts

>< √ √

Organisational settings Collective behaviour Non-functional aspects
Models

√ √ −

Design perspective Support for reuse Design automation
Process

↓ − √

Generality Complexity handling Tool Support
Pragmatics

⊕ √ √

 190

majority of aspects of the evaluation framework proposed in Section 3.1. Notable exceptions are

the lack of support for reuse of design knowledge and bottom-up design.

In addition, a major weakness of KARMA/TEAMCORE is that it assumes existing agents,

which cannot be generally the case. When suitable agents do not exist, there is no support for

creating new agents from scratch. Finally, not all non-functional aspects, for example security,

can be conveniently modelled in a quantitative manner as constraints in the STEAM

specification language.

 191

Appendix B The Zeus Toolkit

This Appendix describes the Zeus Toolkit components and the Zeus agent realisation process. It

also provides details on the Zeus utility agents and the generic Zeus agent structure.

B.1 The Components of the Zeus Toolkit

The ZEUS toolkit consists of three main components: an agent component library, an agent

building tool and a suite of utility agents.

B.1.1 The Agent Component Library

This is a package of Java classes that implement the functionality of collaborative agents, that is

these classes are the ‘building blocks’ of the agents created during the generation process. This

Java library includes classes implementing a number of agent coordination protocols based on

the contract-net protocol [184], a number of predefined organizational relationships that can be

imposed to agents such as peer and superior and a performative-based agent

communication language with a comprehensive instruction set. This language was initially

based on KQML [65] but in the latest version of the tool the FIPA ACL [66] was implemented

as well.

In order to maximise future compatibility, the components of the ZEUS toolkit utilise

standardised and low level technology whenever possible. For example, communication takes

place through TCP/IP sockets. In the latest versions of the tool, the IIOP and HTTP transport

protocols were implemented as well, enabling the creation of Zeus agents capable of connecting

to the AgentCities network [203]. AgentCities is an EU Framework V applied research project

which aims to demonstrate deployment and interaction of ABSs in a large number of

internationally distributed nodes.

The component library also provides full implementations for three types of standard utility

agents existing in every ABS developed: the Agent Name Server, the Facilitator and the

Visualiser. The utility agents fulfil a support role in the agent society and can be used in any

application without modification. The Agent Name Server provides a white pages service,

matching agent names to network address just like the Domain Name Servers match domain

names to IP addresses. The Facilitator provides a yellow pages service similar to the UDDI

registry; it is used by agents looking for others who are capable of a particular task or service.

The role of the Visualiser agent is to provide a pictorial representation of the ABS throughout its

execution and it is discussed in the next section.

 192

Figure B.1: The components of the Zeus agent building toolkit (Collins et al. 1999)

B.1.2 The Visualisation Tools

The Visualiser tool includes a number of components which attempt to visualise the behaviour

of the ABS while it executes. The approach followed is to have a special purpose agent, the

Visualiser agent, which is informed of the organisational relations existing between agents and

the communication messages exchanged in the ABS.

Monitoring the run-time behaviour of an ABS is not trivial because data, control and active

processes are all distributed across the agents. Therefore, the analysis and debugging of ABSs is

challenging, as each agent has only a local view of the whole system.

The Visualiser Agent provides a solution to this problem by asking every agent to forward a

copy of every message they send to other agents. The messages received can then be collated,

interpreted and used to create an up-to-date picture of the agents’ collective behaviour. The user

interacts with the Visualiser agent through the five Visualisation Tools listed in Figure B.1, with

each tool visualising a different aspect of agent society. For instance, the Society Viewer shows

all agents known, and the type and frequency of the messages they send, the Reports Tool

shows the state of agent tasks and sub-tasks and the Control Tool allows a variety of system

housekeeping operations including creating new agents and terminating agent execution. The

Society Viewer and the Control Tool are depicted in Figure B.2.

B.1.3 The Agent Building Tools

The agent building tools include the Visual Agent Creator and the Code Generator components

and a legacy systems API interfacing Zeus agents with existing Java software. Those tools

provide the capability for developing ABSs in Java without the need to know the internal details

of how each agent is implemented.

 193

Figure B.2: The Control and Society Tools of the Zeus agent building toolkit

These Visual Agent creator components implement the editors that enable users to interactively

create agents by visually specifying their attributes and strategies. A snapshot of the Agent

definition interface, depicting the Zeus Agent Generator and the Agent Editor sub-components

of the Visual Agent Creator component, is provided in Figure B.3.

Figure B.3: The agent definition interface of the Zeus agent building tool

 194

In order to generate code for a specific application system, the Code Generator component

inherits code from the Agent Component library, and integrates the data from the various visual

editors. All Zeus agents are constructed by specialising a generic ZEUS agent (see also Section

B.4). The resulting Java program code is then compiled and executed normally. It must be

emphasised that the designer does not need to be aware of the detailed internal implementation

of each Zeus agent. However, if one has mastered this knowledge, it is possible to modify the

Java source code produced by the Code Generator and customise the agents to work in other

environments as well.

Existing systems can be linked to the Zeus agents using the Application Programmers’ Interface

(API) of the wrapper class that is also part of the toolkit. The developer describes the intended

agents with the Agent Creation tools and the Code Generator generates Java source code using

classes from the Agent component library. Once their tasks have been implemented the agents

can be executed, and observed using the visualisation tools provided. Using the above tools

together substantially facilitates the engineering of intelligent collaborative ABSs.

In order for agents to be able to understand the common domain concepts they need to be aware

of the same ontology of shared concepts. This is supported in Zeus by the Ontology Editor,

which is part of the Visual Agent creation tool. The Ontology editor supports definition, storing

and retrieving of ontologies which can then be used by different ABSs. A snap shot of the

ontology editor is provided in Figure B.4.

Fact
Entry Options

A ttribute
Entry Options

Fact
Hierarchy

A ttribute
Table

Figure B.4: The Ontology editor

 195

Figure B.5: The Zeus agent realisation process (Nwana et al. 1999)

B.2 The Zeus Agent System Realisation Process

The Zeus agent development methodology includes analysis, design, realisation and run-time

support stages. The agent realisation process refers to the design and code generation for the

agents of the ABS. In particular, it refers to creating an ontology, defining the goals, tasks and

initial resources (facts) of the agents and setting the run-time parameter for utility and agents.

At the highest level of abstraction, the ZEUS agent development approach requires developers

to view an agent as composed of three layers: a definition layer, an organisation layer and a

coordination layer. At the definition layer the agent is viewed as an autonomous reasoning

entity in terms of its competencies, rationality model, resources, beliefs, and preferences. At the

organisation layer it is viewed in terms of its relationships with other agents, for example what

other agents it is aware of, and what abilities it knows they possess. At the co-ordination layer

the agent is viewed as a social entity in terms of its co-ordination and negotiation techniques.

This agent model is supplemented with the protocols that implement inter-agent communication

and an application programmer’s interface that enables the agent to be linked to the external

programs that provide it with resources and/or implement its competencies.

The realisation process consists of the following stages (Figure B.5):

Stage 1: Ontology Creation: The first stage in the agent realisation process is to define an

appropriate application ontology representing the significant concepts, attributes and values

Domain Study and Ontology Creation

Agent Creation and Configuration

Agent and Task Implementation

Agent Organisation Domain ontology

Agent Definitions

Agent Organisation

Agent Coordination

Task Names

Task Definition

Task Specification

 196

within the application domain. The contents of the ontology consist of fact types each one

associated with a number of attributes and fact instances, or facts, which have values assigned

to their attributes. Fact types can be derived from other fact types via inheritance in a manner

similar to object-oriented programming. The ontology definition is done using the ZEUS

Ontology Editor mentioned in Section B.1.3. Alternatively, an existing ontology can be

imported.

Stage 2: Agent Creation and Configuration: During this stage the generic ZEUS agent is

configured to fulfil its application-specific responsibilities, resulting in a number of application

agents (also called task agents in Zeus terminology). This stage is carried out using the ZEUS

Agent Editor and it involves four sub-stages:

1. Agent Definition - where the tasks, initial resources and planning abilities of the agent are

specified. This involves specifying the number of tasks that an agent can carry out

concurrently and the time frame in which the agent will plan its activities. The default

values are 1 and 20 respectively. Furthermore, at this stage the resources9 initially available

to the agent are specified. Finally, agent definition involves specifying the types of tasks the

agent is capable of carrying out. Zeus currently supports three types of tasks, namely

primitive, rulebase, planscripts and summary tasks. Detailed specification of the

functionality of each task is done in the next sub-stage.

2. Task Description - where the functionality and attributes of agent tasks are specified.

Primitive tasks are developed as external Java classes invoked by the agent when required.

Rulebase tasks are developed as CLIPS-like rules executed each time by the built-in agent

rule engine. Summary tasks are defined as combinations of primitive and rulebase tasks.

However, summary tasks are not supported in the current version of Zeus. Task execution is

triggered when appropriate events are perceived by the agent. This is done when a number

of task preconditions are met and it results to a number of task effects. The flow of

information between agents and tasks on task execution is depicted in Figure B.6.

3. Agent Organisation - where the organisational relationships of each agent are specified.

Zeus currently supports four types of organisational relationships:

• Peer - which is the default relationship an agent has with other agents.

9 In Zeus the resources of an agent correspond to facts stored to the agent’s knowledge base. Facts are

parts of the common ontology used by the agents and can be entered or removed dynamically throughout

the lifecycle of the agent.

 197

Figure B.6: The flow of information between an agent and a task

• Superior - which means that an agent has authority to require tasks to be carried

out by certain other agents.

• Subordinate - meaning that the agent is obliged to carry out tasks when required

by certain other agents (which are its superiors).

• Co-worker – indicating that there is a social relationship between certain agents.

Co-workers are contacted after subordinates and before peers when there is a

need for an agent to outsource one of its tasks.

Furthermore, at this stage the abilities of each acquaintance, namely the tasks that it is

possible to carry out, are specified.

4. Agent Co-ordination - where each agent is equipped with coordination protocols and

negotiation strategies. Currently only the contract net coordination protocol and two simple

negotiation strategies, linear and exponential decay are supported. However, it is possible

for the ABS designer to implement proprietary coordination protocols and negotiation

strategies.

Stage 3: Agent and Task Implementation: Here the run-time parameters of the utility and

application agents are specified and the agent Java source code is generated. The agent tasks are

implemented manually by the agent engineers. In particular, this stage involves the following

sub-stages:

1. Utility Agent Configuration: This involves defining the attributes of the utility agents who

provide the support infrastructure for the agent society. This information is entered through

the Code Generation Editor and it is used for the creation of the utility agents.

Information
Received

Information
Used

Information
Returned

Agent outgoing agent
communications

incoming agent
communications

Agent
Level

Domain
Level

Task

 198

2. Application Agent Configuration: Agent configuration involves specifying the runtime

parameters of the application agents. This requires supplying information such as the host

machines the agents will run on, and the external resources and programs to which the

agents will be linked.

3. Agent code generation and task implementation: Finally, the agent source code is

automatically generated via the Code Generator component. This leaves the developer with

the job of providing the application-specific implementations of the tasks, external

resources, programs (such as agent user interfaces) and interaction strategies. When this

stage has been completed the ABS is ready for deployment.

The agent realisation process is the part of the Zeus agent development methodology which has

been extended to support RAMASD (see Section 6.3). The Zeus agent development

methodology is critically discussed in Appendix A.6.

B.3 The Zeus Utility Agents

The Zeus agent building toolkit follows the FIPA standards regarding agent system management

[67]. Each Zeus ABS is assumed to operate in a separate agent platform10 . In particular, each

Zeus ABS includes three utility agents, the Agent Name Server (ANS), the Facilitator the Agent

Communication Channel (ACC), and an arbitrary number of application agents (see Figure B.7).

The utility agents serve the purpose of enabling the application agents to find about services that

other agents in the agent system offer and to facilitate inter-agent and inter-platform

communication. More specifically the responsibilities of the utility agents are the following:

• Agent Name Server: The Agent Name Server provides white pages lookup services to the

other agents. Every agent, when it is first executed it contacts the ANS and its internal

address is stored together with its name in an ANS database. Any agent wishing to contact

another agent it hasn’t contacted previously, requests details about the new agent’s address

from ANS. Subsequently, communication is initiated via an appropriate TCP/IP socket.

• Facilitator: Each Zeus agent aims to fulfil certain goals and is able to carry out certain tasks

(see also Section A.6). Those tasks are termed capabilities in the Zeus terminology and can

be carried out to fulfil the agent’s goals or on behalf of other agents upon request. In the

10 According to the FIPA standards an Agent Platform (AP) consists of a number of host computers,

operating system, agent support software, an inter-agent communication method termed Message

Transport System (MTS), two FIPA agent management logical components (usually implemented as

utility agents): Directory Facilitator (DF), and Agent Management System (AMS) and an arbitrary

number of application agents.

 199

latter case, they are considered as services that the agent provides to other agents. The

Facilitator agent serves as a yellow pages directory listing all services that agents in the

ABS are able to provide to others.

On system initialisation, all agents register their capabilities with the Facilitator. When an

agent is unable to complete all tasks required to fulfil its goals alone, it considers seeking

assistance from other agents in the ABS. In that case, it contacts the Facilitator agent and if

there is another agent capable of carrying out this particular task the Facilitator agent

provides its address for direct interaction.

• Agent Communication Channel (ACC): The ACC agent is the Agent Communication

Channel as specified by FIPA [67]. It can be thought of as the single point of contact for all

agents on a platform. The basic function of the ACC is to forward messages to the other

agents, and to accept messages for forwarding from agents on it’s platform and pass them

on. The ACC agent in the current release of Zeus (1.2.1) supports FIPA’97 and FIPA 2000

IIOP transport and FIPA 2000 HTTP support implemented by sockets that listen over

TCP/IP for connections from remote machines.

Figure B.7: The Zeus ABS structure (Thompson 2001)

A

B

C

D

Agent

Facilitator

Abilities

Database

request

reply

TCP/IP Transport Protocol

Agent

Perform
 Task A

Agent

Perform
 Task C

Agent

Perform
 Task D

External
 program

Agent Communication Channel

External Address
Book

Agent Name Server

Internal Address
 Book

KQML MESSAGE

FIPA ACL MESSAGE

HTTP, IIOP
External
Platforms

Common Message Format (Language)
Shared message content

representation and ontology

 200

The ACC agent also provides translation facilities between Zeus communication language

messages and FIPA ACL messages, in particular resolving FIPA addresses to Zeus

addresses (and vice versa) and providing FIPA envelopes. For example, when a message

from outside Zeus is received by the ACC agent, it generates a new alias for the external

agent, registers the alias in the name server, translates the incoming message to Zeus

performatives and sends the message to the appropriate agent. A similar procedure is

followed when a Zeus agents wants to communicate with an external agent.

Zeus is an evolving software package and therefore certain agent platform characteristics which

have recently became FIPA standards have not been implemented yet. For example, Zeus still

communicates with the external world with a special purpose utility agent, the Agent

Communication Channel. This term was used in FIPA 98 specifications while in FIPA 2000 it

has been replaced by the term Agent Management Service. Furthermore, FIPA AMS and FIPA

DF are not currently supported [198]. However, there is an active Zeus users community [197],

which constantly updates the Zeus tool. Therefore, it is expected that Zeus will be fully

compatible with all current FIPA specifications in the near future.

B.4 The Generic Zeus Agent

The components of the Agent Component Library enable the construction of an application

independent generic ZEUS agent that can be customised for specific applications by imbuing it

with problem-specific resources, competencies, information, organisational relationships and

co-ordination protocols. The generic ZEUS agent internal structure includes the following

components (Figure B.8):

• a Mailbox that handles communications between the agent and other agents.

• a Message Handler that processes incoming messages from the Mailbox, dispatching them

to the relevant components of the agent.

• a Co-ordination Engine that makes decisions concerning the goals of the agent, for example

how they should be pursued and when to abandon them. The coordination engine is also

responsible for co-ordinating the agent’s interactions with other agents using known co-

ordination protocols and strategies. In the current version of Zeus only the contract net

protocol has been implemented.

• an Acquaintance Database that contains information regarding the relationships of the agent

and other agents in the ABS. In addition, the Acquaintance database contains the beliefs the

agent has about the capabilities of its acquaintance agents. The Co-ordination Engine uses

information contained in this database when making collaborative arrangements with other

agents.

 201

Figure B.8: The generic Zeus agent internal structure (Collins and Ndumu 1999)

• a Planner and Scheduler component that plans the tasks of the agent based on decisions

taken by the Co-ordination Engine and the resources and task specifications available to the

agent.

• a Resource Database that maintains a list of resources (referred to in this paper as facts) that

are owned by and available to the agent. The Resource Database also supports a direct

interface to external systems, in other words it is possible to programmatically manipulate

the resource database of an agent from external Java classes.

Mailbox Message
Handler

Co-ordination
Engine

Acquaintance
Database

Planner and
Scheduler

Task/Plan
Database

Resource
Database

Ontology
Database

Execution
Monitor

External
Database

Incoming
Messages

Outgoing
Messages

External
Systems

 202

 203

Appendix C RCL EBNF Syntax

The EBNF syntax of RCL is the following:

/* EBNF_production section */

RclProgram : "Program" <IDENTIFIER> "{" (RclProduction)* "}" <EOF>

RclProduction : RoleDeclaration | Statement | RoleConstraints

RoleConstraints : <IDENTIFIER> <ROP> <IDENTIFIER> ";"

RoleDeclaration : DeclarationSpecifiers [InitDeclaratorList] ";"

DeclarationSpecifiers : TypeSpecifier [DeclarationSpecifiers]

TypeSpecifier : <STRING> | <INT> | <REAL> | RoleSpecifier

RoleSpecifier : <ROLE> ([<IDENTIFIER>] "{" RoleParamDeclaration "}" |

<IDENTIFIER>)

RoleParamDeclaration : (SpecifierQualifierList RoleDeclaratorList ";")+

SpecifierQualifierList : TypeSpecifier [SpecifierQualifierList]

RoleDeclaratorList : RoleDeclarator ("," RoleDeclarator)*

RoleDeclarator : Declarator | [Declarator] ":" ConstantExpression

InitDeclaratorList : InitDeclarator ("," InitDeclarator)*

InitDeclarator : Declarator [<EQUALS> Initializer]

Declarator : (<IDENTIFIER> | "(" Declarator ")") ("[" [ConstantExpression]

 "]" | "(" ParameterTypeList ")" | "(" [IdentifierList] ")")*

ParameterTypeList : ParameterList ["," "..."]

ParameterList : ParameterDeclaration ("," ParameterDeclaration)*

ParameterDeclaration : DeclarationSpecifiers Declarator

IdentifierList : <IDENTIFIER> ("," <IDENTIFIER>)*

Initializer : AssignmentExpression |"{" InitializerList() [","] "}"

InitializerList : Initializer ("," Initializer())*

TypeName : SpecifierQualifierList

/* Statements */

Statement : ExpressionStatement | CompoundStatement

ExpressionStatement : [Expression] ";"

CompoundStatement : "{" [DeclarationList] [StatementList] "}"

DeclarationList : RoleDeclaration+

 204

StatementList : (Statement)+

/* Expressions */

Expression : AssignmentExpression ("," AssignmentExpression())*

AssignmentExpression: PostfixExpression <EQUALS> AssignmentExpression

 | ConditionalExpression

ConstantExpression : ConditionalExpression

ConditionalExpression : LogicalORExpression

LogicalORExpression: LogicalANDExpression ["||" LogicalORExpression]

LogicalANDExpression: EqualityExpression ["&&" LogicalANDExpression]

EqualityExpression : RelationalExpression [("==" | "!=")

 EqualityExpression]

RelationalExpression : AdditiveExpression [("<" | ">" | "<=" |

 ">=") RelationalExpression]

AdditiveExpression : MultiplicativeExpression [("+" | "-")

 AdditiveExpression]

MultiplicativeExpression : PostfixExpression [("*" | "/" | "%")

 MultiplicativeExpression]

PostfixExpression : PrimaryExpression ("(" [ArgumentExpressionList

] ")" | "." <IDENTIFIER>)*

PrimaryExpression : <IDENTIFIER> Constant

ArgumentExpressionList: AssignmentExpression (","

 AssignmentExpression)*

Constant: <INTEGER_LITERAL>|<FLOATING_POINT_LITERAL>|<STRING_LITERAL>

/* ROLE CONSTRAINT SYMBOLS */

ROP: <NOT> | <AND> | <ADD> | <EQ> | <MERGE> | <IN>

 NOT: "not" | "NOT"

 AND: "and" | "AND"

 ADD: "add" | "ADD"

 EQ: "eq" | "EQ"

MERGE: "merge" | "MERGE"

 IN: "in" | "IN"

 205

/* KEYWORDS */

INT: "int"

STRING: "string"

REAL: "real"

ROLE: "Role"

/* SYMBOLS */

EQUALS: "="

LBRACE: "{"

RBRACE: "}"

/* IDENTIFIERS */

IDENTIFIER: <LETTER> (<LETTER>|<DIGIT>)*

LETTER: ["a"-"z", "A"-"Z"]

DIGIT: ["0"-"9"]

INTEGER_LITERAL: ["1"-"9"] (["0"-"9"])*

FLOATING_POINT_LITERAL: (["0"-"9"])+ "." (["0"-"9"])*

STRING_LITERAL: "\"" (~["\"","\\","\n","\r"] | "\\"

(["n","t","b","r","f","\\","\'","\""] | ["0"-"7"] (["0"-"7"])? | ["0"-"3"]

["0"-"7"] ["0"-"7"]))* "\""

 206

 207

References

1. Alagar, V.S. and K. Periyasamy, Specification of Software Systems. Graduate Texts in
Computer Science, ed. D. Gries and F.B. Schneider. 1998, New York: Springer-Verlag,
p. 422, ISBN: 0-387-98430-5.

2. Andersen, E.P., Conceptual Modelling of Objects: A Role Modelling Approach. PhD
Thesis, Dept of Computer Science. 1997, University of Oslo: Oslo, Norway. p. 333.

3. Andrews, P. and S. Adler, Privacy: Basing Service on Respect. 2001, Center for IBM E-
business Innovation, IBM Labs: New York, NY. p. 4.

4. Antonsson, E.K. and J. Cagan, eds. Formal Engineering Design Synthesis. 2001,
Cambridge University Press: Cambridge, p. 450, ISBN: 0521792479.

5. Bansiya, J. and C.G. Davis, A hierarchical model for object-oriented design quality
assessment. IEEE Transactions on Software Engineering, 2002. 28(1): p. 4-17.

6. Banton, M., Roles: An introduction to the study of social relations. 1965, London:
Tavistock Publications, p. 224, ISBN: 0422721204.

7. Barber, K.S., T.H. Liu, and D.C. Han, Agent-Oriented Design. 1999, University of
Texas at Austin: Austin, TX, USA. p. 14.

8. Barber, K.S., A. Goel, and C.E. Martin, The Motivation for Dynamic Adaptive
Autonomy in Agent-based Systems. 1999, University of Texas at Austin: Austin, TX,
USA. p. 11.

9. Barber, K.S., D.C. Han, and T.-H. Liu, Strategy Selection-Based Meta level Reasoning
for Multi-Agent Problem Solving, in Agent-Oriented Software Engineering, P.
Ciancarini and M. Wooldridge, eds, 2001, Springer-Verlag: Berlin, p. 269-283, ISBN 3-
540-41594-7.

10. Bartelt, A. and W. Lamersdorf, Agent-Oriented Concepts to Foster the Automation of e-
Business, in Proceedings of the 11th International Workshop on Database and Expert
Systems (DEXA 2000), A.M. Tjoa, R.R. Wagner, and A. Al-Zobaidi, eds. 2000, IEEE
Computer Society Press: Munich, Germany, p. 775-779, ISBN 0-7695-0680-1.

11. Basin, D. and S. Friedrich, Modeling a Hardware Synthesis Methodology in Isabelle.
Formal Methods in System Design, 1999. 15(2): p. 99-122.

12. Bauer, B., J.P. Muller, and J. Odell, Agent UML: A Formalism for Specifying
Multiagent Software Systems, in Agent-Oriented Software Engineering, P. Ciancarini
and M. Wooldridge, eds, 2001, Spriger-Verlag: Berlin, p. 106-119, ISBN 3-540-41594-
7.

13. Bellifemine, F., A. Poggi, and G. Rimassa. JADE - a FIPA-compliant agent framework.
in PAAM 99. 1999. London, UK.

14. Bertino, E., E. Ferrari, and V. Atluri. RBAC support in object-oriented role databases.
in ACM Workshop on Role-based Access Control. 1997. Fairfax, VA USA: ACM Press.

15. Biddle, B.J., Role Theory: Expectations, Identities and Behaviors. 1979, London:
Academic Press, p. 416, ISBN 0-12-095950-X.

16. Biddle, B.J. and E. J. Thomas, eds, Role Theory: Concepts and Research. 1979,
Huntington, New York: Robert E. Krieger Publishing Company, ISBN 0-47-107215-X.

17. Blake, M.B., A Development Approach for Workflow-Based E-Commerce using
Reusable Distributed Components, in 2000 Americas Conference on Information

 208

Systems (AMCIS2000) (Track on Workflow Technology and E-Commerce
Applications). 2000: Long Beach, CA.

18. Blake, M.B., Innovations in Software Agent-Based B2B Technologies, in Workshop on
Agent-Based Approaches to B2B at the Fifth International Conference on Autonomous
Agents (AGENTS 2001). 2001, ACM Press: Montreal, Canada. p. 1-7.

19. Blake, M.B., Towards the Use of Agent Technology for B2B Electronic Commerce.
2002: Department of Computer Science, Georgetown University, 234 Reiss Science
Building, Washington. p. 16.

20. Brazier, F., et al., Formal Specification of Multi-Agent Systems: a Real-World Case, in
First International Conference on Multi-Agent Systems (ICMAS'95). 1995: San
Francisco, CA. p. 25-32.

21. Brazier, F.M.T., P.A.T.V. Eck, and J. Treur, Modelling a Society of Simple Agents:
From Conceptual Specification to Experimentation. Applied Intelligence, 2001. 14(2):
p. 161-178.

22. Brazier, F.M.T., et al., DESIRE: Modelling Multi-Agent Systems in a Compositional
Formal Framework. International Journal of Cooperative Information Systems, Special
Issue on Formal Methods in Cooperative Information Systems: Multi-Agent Systems,
1997. 5(1): p. 67-94.

23. Bresciani, P., et al. A Knowledge Level Software Engineering Methodology for Agent
Oriented Programming. in Proceedings of the Fifth International Conference on
Autonomous Agents (AGENTS 2001). 2001. Montreal, Canada: ACM Press.

24. Bresciani, P., et al., Modeling Early Requirements in Tropos: a Transformation Based
Approach, in Agent-Oriented Software Engineering II, Second International Workshop
(AOSE 2001), Montreal, Canada, M.J. Wooldridge, G. Weis, and P. Ciancarini, eds.
2002, Springer Verlag: Berlin, p. 151-168, ISBN 3-540-43282-5.

25. Briand, L.C. and J. Wust, Modeling development effort in object-oriented systems using
design properties. IEEE Transactions on Software Engineering, 2001. 27(11): p. 963 -
986.

26. Briand, L.C., S. Morasca, and V.R. Basili, Property-based software engineering
measurement. IEEE Transactions on Software Engineering, 1996. 22(1): p. 68 - 86.

27. Bubler, C. Capability-based modelling. in First International Conference on Enterprise
Integration Modelling. 1992. Carolina: MIT Press.

28. Busbach, U., Activity Coordination in Decentralised Working Environments, in Remote
Cooperation: CSCW Issues for Mobile and Teleworkers, A. Dix and R. Beale, eds.
1996, Springer-Verlang: Berlin, p. 95-112, ISBN 3-540-76035-0.

29. Caire, G., F. Leal, and J. Rodriguez, MESSAGE: Methodology for Engineering Systems
of Software Agents, in Recommendations on supporting tools. 2001, EURESCOM:
Heidelberg. p. 27.

30. Caire, G., et al., Agent Oriented Analysis Using Message/UML, in Agent-Oriented
Software Engineering II, Second International Workshop, (AOSE 2001), Montreal,
Canada, M.J. Wooldridge, G. Weis, and P. Ciancarini, eds. 2002, Springer Verlag:
Berlin, p. 151-168, ISBN 3-540-43282-5.

31. Castro, J., M. Kolp, and J. Mylopoulos. Developing Agent-Oriented Information
Systems for the Enterprise. in Second International Conference On Enterprise
Information Systems. 2000. Stafford, UK.

32. Chandrasekaran, B., T. Johnson, and J.W. Smith, Task Structure Analysis for
Knowledge Modeling. Communications of the ACM, 1992. 33(9): p. 124-136.

 209

33. Chatha, K.S. and R. Vemuri, An Iterative Algorithm for Hardware-Software
Partitioning, Hardware Design Space Exploration and Scheduling. Design Automation
for Embedded Systems, 2000. 5(3-4): p. 281-293.

34. Chuang, T.-T. and S.B. Yadav. An Agent-Based Architecture of an Adaptive Decision
Support System. in Proceedings of Second Americas Conference on Information
Systems. 1997.

35. Chung, L., et al., Non-Functional Requirements in Software Engineering. The Kluwer
International Series in Software Engineering, V.R. Basili. ed. 2000, New York, NY:
Kluwer Academic Publishers, ISBN 0-7923-8666-3.

36. Cockburn, A., Structuring Use Cases with Goals. 1997, SIGS Publications: Journal of
Object-Oriented Programming.

37. Cohen, P.R. and H.J. Levesque, Intention is choice with commitment. Artificial
Intelligence, 1990. 42: p. 213-261.

38. Collins, J. and D. Ndumu, The Zeus Agent Building Toolkit:The Role Modelling Guide.
1999.

39. Coplien, J.O., A Generative Development Process Pattern Language, in Pattern
Languages of Program Design, J.O. Coplien and D.C. Schmidt, eds. 1995, Addison-
Wesley: New York, p. 183-237, ISBN 0-201-60734-4.

40. Coplien, J.O., The Column Without a Name: After all, we can't ignore efficiency, in
C++ Report. 1996. p. 71-74.

41. Coplien, J.O. and D.C. Schmidt, eds. Pattern Languages of Program Design. 1995,
Addison-Wesley: New York, p. 562, ISBN 0-201-60734-4.

42. Covisint, Covisint Solution Suites. 2002, Covisint, LLC.

43. Coyne, R.D., et al., eds. Knowledge-based design systems. 1990, New York: Addison-
Wesley, ASIN: 0201103818.

44. Dascalu, S. and P. Hitchcock, An Approach to Integrating Semi-formal and Formal
notations in Software specifications, in Proceedings of the 2002 ACM Symposium on
Applied Computing. 2002, ACM Press: Madrid, p. 1014-1020.

45. Davis, J.S. and R.J. LeBlanc, A study of the applicability of complexity measures. IEEE
Transactions on Software Engineering, 1988. 14(9): p. 1366-1372.

46. Decker, K.S., Environment Centered Analysis and Design of Co-Ordination
Mechanisms. 1995, PhD Thesis, University of Massachusetts at Amherst.

47. Dellarocas, C. and M. Klein, Civil Agent Societies: Tools for Inventing Open Agent-
Mediated Electronic Marketplaces, in Agent Mediated Electronic Commerce II,
Towards Next-Generation Agent-Based Electronic Commerce Systems, IJCAI 1999
Workshop, A. Moukas, C. Sierra, and F. Ygge, eds. 2000, Springer Verlag: Berlin, p.
24-39, ISBN 3-540-67773-9.

48. DeLoach, S.A., Modeling Organizational Rules in the Multi-agent Systems Engineering
Methodology, in Proceedings of the 15th Canadian Conference on Artificial
Intelligence (AI'2002). Calgary, Alberta, Canada. May 27-29, 2002, R. Cohen and B.
Spencer, eds. 2002, Springer Verlag: Berlin, Heidelberg, p. 1-15, ISBN 3-540-43724-X.

49. DeLoach, S.A., M.F. Wood, and C.H. Sparkman, Multi-Agent Systems Engineering.
International Journal of Software Engineering and Knowledge Engineering, 2001.
11(3): p. 231-258.

50. Depke, R., R. Heckel, and J.M. Kuster, Agent-Oriented Modelling with Graph
Transformation, in Agent-Oriented Software Engineering I, First International

 210

Workshop (AOSE 2000), Limerick, Ireland, P. Ciancarini and M. Wooldridge, eds.
2001, Springer-Verlag: Berlin, p. 106-119, ISBN 3-540-41594-7.

51. Depke, R., R. Heckel, and J.M. Kuster, Improving the Agent-oriented Modeling Process
by Roles, in Proceedings of the fifth international conference on Autonomous Agents.
2001, ACM Press: Montreal, Canada.

52. Depke, R., R. Heckel, and J.M. Kuster, Formal Agent-Oriented Modeling with Graph
Transformation. Science of Computer Programming, 2001.

53. Durante, A., et al., A Model for the E-Service Marketplace. 2000, HP Laboratories: Palo
Alto, CA. p. 22.

54. Eden, A.H., Precise Specification of Design Patterns and Tool Support in Their
Application, in Department of Computer Science. 2000, PhD Thesis, Tel Aviv
University: Tel Aviv. p. 101.

55. Eiter, T. and V. Mascardi, Comparing Environments for Developing Software Agents.
AI Communication, 2002.

56. Elammari, M. and W. Lalonde. An Agent-Oriented Methodology: High-Level and
Intermediate Models. in CaiSE Workshop on Agent Oriented Information Systems
(AOIS´99). 1999. Heidelberg: MIT Press.

57. Electronic Marketplaces Source Guides, Business to Business Marketplaces to the
Automotive Industry. 2000, Momentum Technologies LLC.

58. Eles, P., et al., System Level Hardware/Software Partitioning Based on Simulated
Annealing and Tabu Search. Design Automation for Embedded Systems, 1997. 2(1): p.
5-32.

59. Elliot, J., A General Theory of Bureaucracy. 1976, London, UK: Heinneman Press,
ISBN 0-435-824-732.

60. Evans, R., et al., MESSAGE: Methodology for Engineering Systems of Software Agents,
in Methodology for Agent-Oriented Software Engineering. 2001, EURESCOM:
Heidelberg. p. 75.

61. Fenton, N. and S.L. Pfleeger, Software Metrics: A Rigorous and Practical Approach.
Second ed. 1997, Boston, MA, USA: PWS Publishing Co, p. 656, ISBN 0-534-95425-
1.

62. Ferber, J., Multi-Agent Systems: An Introduction to Distributed Artificial Intelligence.
1999, Singapore: Adison Wesley, p. 509, ISBN 0-201-36048-9.

63. Ferber, J. and O. Gutknecht. A meta-model for the analysis and design of organisations
of Multi-Agent systems. in Proceedings of the International Conference in Multi-Agent
Systems (ICMAS 98). 1998. Paris, France: IEEE Computer Society Press.

64. Ferber, J., et al. Organization Models and Behavioral Requirements Specification for
Multi-Agent Systems. in The Fourth International Conference on MultiAgent Systems
(ICMAS-2000). 2000. Boston MA, USA.: IEEE Press.

65. Finin, T., Y. Lambrou, and J. Mayfield, KQML as an Agent Communication Language,
in Software Agents, chap. 14, J.M. Bradshaw, ed. 1997, MIT Press: New York, p. 291-
316, ISBN 0-262-52234-9.

66. FIPA98, FIPA 98 Specification. http://www.fipa.org, 1998.

67. FIPA, FIPA 2000 Specification. 2000.

68. Fisher, M. and M. Wooldridge, On the formal specification and verification of Multi-
Agent Systems. International Journal of Cooperative Information Systems, 1997. 6(1): p.
37-65.

 211

69. Fox, M.S., M. Barbuceanau, and R. Teigen, Agent-Oriented Supply-Chain
Management. The International Journal of Flexible Manufacturing Systems, 2000. 12:
p. 165-188.

70. Franklin, S. and A. Graesser, Is It an Agent, or Just a Program?: A Taxonomy for
Autonomous Agents, in Agent Theories, Architectures and Languages III. 1996,
Springer Verlag: Berlin, p. 193-206, ISBN 3-540-62507-0.

71. Gajski, D.D., et al., High-level synthesis: Introduction to chip and system design. 1992,
Boston: Kluwer Academic Publishers, p.384, ISBN 0-7923-9194-2.

72. Galbraith, J., Organisation Design. 1977, Reading, MA: Addison Wesley, p.426, ISBN
0-2010-2558-2.

73. Gasser, L., Perspectives on Organizations in Multi-agent Systems, in Multi-Agent
Systems and Applications, 9th ECCAI Advanced Course ACAI 2001 and Agent Link's
3rd European Agent Systems Summer School, EASSS 2001, Prague, Czech Republic,
July 2-13, 2001. Selected Tutorial Papers, M. Luck, et al., eds. 2001, Springer Verlag,
p. 1-16, ISBN 3-540-42312-5.

74. Genesereth, M.R. and N. Nilsson, Logical Foundations of Artificial Intelligence. 1987,
San Mateo, CA: Morgan Kaufmann, p. 405, ISBN 0-9346-1331-1.

75. Genesereth, M.R. and S.P. Ketchpel, Software Agents. Communications of the ACM,
1994. 37(7): p. 48-53.

76. Gerber, C. Bottleneck Analysis as a Heuristic for Self-Adaption in Multi-Agent
Societies. in Joint Conference on the Science and Technology of Intelligentt Systems
ISIC/CIRA/ISAS. 1998. GAITHERSBURG, MARYLAND: IEEE Control Systems
Society Press.

77. Giunchiglia, F., J. Mylopoulos, and A. Perini, The Tropos Software Development
Methodology: Processes, Models and Diagrams. 2002, ITC - IRST. in Autonomous
Agents and Multi Agent Systems (AAMAS), 2002, Bologna, Italy, ACM Press.

78. Glaser, N., The CoMoMAS Methodology and Enironment for Multi-Agent System
Development, in Multi-Agent Systems: Methodologies and Applications, Second
Australian Workshop on Distributed Artificial Intelligence, Cairns, Queensland,
Australia, August 27, 1996, Revised Papers, C. Zhang and D. Lukose, eds. 1997,
Springer Verlag: Berlin, p. 1-16, ISBN 3-540-63412-6.

79. Glaser, N. and P. Morignot, The Reorganization of Societies of Autonomous Agents, in
Multi-Agent Rationality: 8th European Workshop on Modelling Autonomous Agents in
a Multi-Agent World, MAAMAW'97, Ronneby, Sweden, May 13-16, 1997, Proceedings,
M. Boman and W.V.d. Velde, eds. 1997, Springer Verlag: Berlin, p. 98-111, ISBN 3-
540-63077-5.

80. Greenspan, S., J. Mylopoulos, and A. Borgida, On formal requirements modeling
languages: RML revisited, in Proceedings of the 16th International Conference on
Software Engineering. 1994, IEEE Computer Science Press. p. 135-148.

81. Griss, M.L. and G. Pour, Accelerating Development with Agent Components. IEEE
Computer, 2001. 34(5): p. 37-43.

82. Guttman, R.H., A.G. Moukas, and P. Maes, Agent-mediated Electronic Commerce: A
Survey. Knowledge Engineering Review, 1998. 13(2): p. 147-159.

83. Haddadi, A. and K. Sundermeyer, Belief-Desire-Intention Agent Architectures, in
Foundations of Distributed Artificial Intelligence, G.M.P. O'Hare and N.R. Jennings,
eds. 1996, John Wiley and Sons: London, p. 169-185, ISBN 0-4710-0675-0.

 212

84. Hastings, T.E. and A.S.M. Sajeev, A vector-based approach to software size
measurement and effort estimation. IEEE Transactions on Software Engineering, 2001.
27(4): p. 337-350.

85. Hilaire, V., et al., Formal Specification and Prototyping of Multi-Agent Systems, in
Engineering Societies in the Agents World, First International Workshop, ESAW 2000,
Berlin, Germany, August 21, 2000, A. Omicini, R. Tolksdorf, and F. Zambonelli, eds.
2001, Springer Verlag: Berlin, p. 114-127, ISBN 3-5404-1477-0.

86. Hong, S., G.v.d. Goor, and S. Brinkkemper, A Formal Approach to the Comparison of
Object-Oriented Analysis and Design Methodologies, in The Twenty-Sixth Annual
Hawaii International Conference on System Sciences. 1993, IEEE Press: Hawaii. p.
689-699.

87. Huhns, M.N. and L.M. Stephens, Multiagent Systems and Societies of Agents, in Multi-
Agent Systems: a Modern Approach to Distributed Artificial Intelligence, G. Weiss, ed.
1999, MIT Press: New York, p. 79-120, ISBN 0-2627-3131-2.

88. Hullermeier, E. and C. Zimmermann, A Two-Phase Search Method for Solving
Configuration Problems. 1998, Dept. of Mathematics and Computer Science,
University of Paderborn: Paderborn, Germany. p. 42.

89. IDC, Strengthening End-to-End eBusiness Security and Privacy, in Information
Security Services Worldwide Market Forecast and Analysis, 1999-2004,. 2000, IDC
Rep No. 23166. p. 8.

90. Iglesias, C.A., M. Garrijo, and J.C. Gonzalez, A Survey of Agent-Oriented
Methodologies, in Proceedings of the 5th International Workshop on Intelligent Agents
{V}: Agent Theories, Architectures, and Languages (ATAL-98), J. Muller, M.P. Singh,
and A.S. Rao, eds. 1999, Springer-Verlag: Heidelberg, Germany, p. 317-330, ISBN 3-
540-65713-4.

91. Iglesias, C.A., et al., Analysis and Design of Multiagent Systems using MAS-
CommonKADS, in Intelligent Agents IV: Agent Theories, Architectures, and Languages
(ATAL '97), M.P. Singh, A.S. Rao, and M.J. Wooldridge, eds. 1998, Springer Verlag:
Berlin, Germany, p. 313-326, ISBN 3-540-64162-9.

92. Institute of Electrical and Electronics Engineers, IEEE Standard Computer Dictionary:
A Compilation of IEEE Standard Computer Glossaries. 1990.

93. Ishida, T., L. Gasser, and M. Yokoo, Organisation Self-Design in Distributed
Production Systems. IEEE Transactions on Knowledge and Data Engineering, 1992.
4(2): p. 123-134.

94. Jacobson, I., M. Ericsson, and A. Jacobson, The Object Advantage: Business Process
Re-engineering with Object Technology. 1994, Menlo Park, CA: Addison Wesley
Publishing Company, p. 347, ISBN 0-201-42289-1.

95. JavaCC, Java Compiler Compiler. 2000: http://www.suntest.com.

96. Jennings, N.R., On Agent-based Software Engineering. Artificial Intelligence, 2000.
117: p. 277-296.

97. Jennings, N.R., An agent-based approach for building complex software systems.
Communications of the ACM, 2001. 44(4): p. 35-41.

98. Jennings, N.R. and M. Wooldridge, Agent-Oriented Software Engineering, in
Handbook of Agent Technology, J. Bradshaw, ed. (to appear), AAAI/MIT Press.

99. Jennings, N.R., et al., Autonomous Agents for Business Process Management. Applied
Artificial Intelligence, 2000. 14(2): p. 145-189.

 213

100. Jennings, N.R. and M.J. Wooldridge, eds. Agent Technology: Foundations,
Applications and Markets. Software Agents. 1998, Springer Verlang: Berlin, Germany,
p. 352, ISBN 3-5406-3591-2.

101. Karageorgos, A. and S. Thompson, Multi-Agent System Design Using Role Models,
Patent Application, BT Case Ref A26117. 2001: UK.

102. Karageorgos, A., S. Thompson, and N. Mehandjiev. Semi-Automatic Design of Agent
Organisations. in Proceedings of the ACM Symposium on Applied Computing (SAC
2002). 2002. Madrid: ACM Press.

103. Karageorgos, A., S. Thompson, and N. Mehandjiev, Agent-Based System Design for
B2B E-commerce. International Journal of Electronic Commerce, Special Issue in
Agents in B2B, 2002. 7(1): p. 59-90.

104. Karageorgos, A., N. Mehandjiev, and S. Thompson, RAMASD: a semi-automatic
method for designing agent organisations. Knowledge Engineering Review, Special
Issue on Coordination and Knowledge Engineering, 2002. 17(4): p. 57-84.

105. Kauffman, R.J., M. Subramani, and C.A. Wood. Analysing Information Intermediaries
in Electronic Brokerage. in Proceedings of the 33nd Hawaii International Conference
on System Sciences. 2000. Hawaii: IEEE Computer Society Press.

106. Kendall, E.A. Agent Roles and Role Models: New Abstractions for Multiagent System
Analysis and Design. in AIP'98, Intelligent Agents for Information and Process
Management, German Conference on Artificial Intelligence. 1998. Bremen, Germany.

107. Kendall, E.A. Role Modelling for Agent System Analysis, Design and Implementation.
in First International Symposium on Agent Systems and Applications Third
International Symposium on Mobile Agents. 1999. Palm Springs, California.

108. Kendall, E.A., Role models - patterns of agent system analysis and design. BT
Technology Journal, 1999. 17(4): p. 46-57.

109. Kendall, E.A., Agent Analysis and Design with Role Models, in Volume 1: Overview.
1999, BT Exact Technologies: Martlesham Heath, UK. p. 89.

110. Kendall, E.A., Agent Analysis and Design with Role Models, in Volume 2: Role Models
for Agent Enchanced Workflow and Business Process Management. 1999, BT Exact
Technologies: Martlesham Heath, UK. p. 57.

111. Kendall, E.A., Agent Software Engineering with Role Modelling, in Agent-Oriented
Software Engineering II, First International Workshop (AOSE 2000), Limerick, Ireland,
P. Ciancarini and M.J. Wooldridge, eds. 2001, Springer Verlag: Berlin, p. 163-169,
ISBN 3-540-41594-7.

112. Kendall, E.A. and L. Zhao. Capturing and Structuring Goals. in Workshop on Use Case
Patterns, Object Oriented Programming Systems Languages and Architectures
(OOPSLA),. 1998. Vancouver, British Columbia, Canada: ACM Press.

113. Kinny, D. and M. Georgeff, Modelling and Design of Multi-Agent Systems, in
Intelligent Agents {III}: Agent Theories, Architectures, and Languages, J.P. Muller,
M.J. Wooldridge, and N.R. Jennings, eds. 1997, Springer Verlag: Berlin, p. 1-20, ISBN
3-5406-2507-0.

114. Klein, M. and R. Kazman, Attribute-Based Architectural Styles. 1999, Software
Engineering Institute: Pittsburgh, PA 15213-3890. p. 41.

115. Koubarakis, M. and D. Plexoudakis, Business process modelling and Design: a formal
model and methodology. BT Technology Journal, 1999. 17(4): p. 23-35.

116. Kristensen, B.B. Object-Oriented Modelling with Roles. in 4th International
Conference on Object-Oriented Information Systems. 1997. Brisbane, Australia.

 214

117. Kristoffersen, S. and F. Ljungberg, MobiCom: Networking Dispersed Groups.
Interacting with Computers, 1998. 10: p. 55-65.

118. Kruchten, P.B., The 4+1 View Model of Architecture. IEEE Software, 1995. 12(6): p. 5-
33.

119. Lee, L., et al., The stability, scalability and performance of multi-agent systems. BT
Technology Journal, 1998. 16(3): p. 94-103.

120. Lee, M.T.-C., et al., Domain-Specific High-Level Modeling and Synthesis for ATM
Switch Prototyping. Design Automation for Embedded Systems, 1997. 2(3/4): p. 319-
338.

121. Lesaint, D., et al., Engineering Dynamic Scheduler for Work Manager. BT Technology
Journal, 1998. 16(3).

122. Lind, J., MASSIVE: Software Engineering for Multi-Agent Systems, PhD Thesis. Dept of
Computer Science. 2000, DFKI: Saarbrucken.

123. Loukopoulos, P. and V. Karakostas, System Requirements Engineering. 1995, London:
McGraw-Hill, p. 160, ISBN 0-07-707843-8.

124. Lowry, M.R. and R.D. McCartney, eds. Automating Software Design. 1991, AAAI
Press: Menlo Park, CA, p. 662, ISBN 0-262-62080-4.

125. Ludwig, H., et al., A Service Level Agreement Language for Dynamic Electronic
Services. 2002, Thomas J. Watson Research Center: New York. p. 14.

126. Lupu, E., Z. Milosevic, and M. Sloman. Use of Roles and Policies for Specifying and
Managing a Virtual Enterprise. in RIDE. 1999.

127. Lupu, E.C., A Role Based Framework for Distributed Systems Management, PhD
Thesis, Department of Computing. 1998, Imperial College of Science, Technology and
Medicine: London.

128. MacDonell, S.G., Comparative review of functional complexity assessment methods for
effort estimation. Software Engineering Journal, 1994. 9(3): p. 107-116.

129. MacDonell, S.G., Determining delivered functional error content based on the
complexity of CASE specifications. New Zealand Journal of Computing, 1994a. 5(1): p.
57-65.

130. MacDonell, S.G., Establishing relationships between specification size and software
process effort in CASE environments. Information and Software Technology, 1997.
39(1): p. 35-45.

131. Madsen, J., et al., LYCOS: the Lyngby Co-Synthesis System. Design Automation for
Embedded Systems, 1997. 2(2): p. 195-235.

132. Maher, M.L., Process models of design synthesis, in AI Magazine. 1990. p. 49-58.

133. Mahling, D.e. and R.C. King, A Goal-based Workflow System for Multiagent task
coordination. Journal of Organisational Computing and Electronic Commerce, 1999.
9(1): p. 57-82.

134. Maimon, O. and D. Braha, On the Complexity of the Design Synthesis Problem. IEEE
Transactions on Systems, Man, And Cybernetics-Part A: Systems and Humans, 1996.
26(1).

135. Maisano, P., JACK Intelligent AgentsTM User Guide. 2002, Agent Oriented Software
Pty. Ltd.: Melburne, Australia.

136. Malvile, E. and F. Bourdon. Task Allocation: A group self Design Approach. in
International Conference on Multi-Agent Systems. 1998. Paris: IEEE Press.

 215

137. Mattsson, M.M., A Comparative Study of Three New OO Methods. 1995, Department of
Computer Science, University of Karlskrona/Ronneby: Ronneby. p. 31.

138. McConnell, M. and B.A. Hamilton, Information Assurance in the Twenty-First Century,
in IEEE Computer, supplement on Security and Privacy. 2002. p. 16-19.

139. Metzger, A. and S. Quelns, A Reuse- and Prototyping-based Approach for the
Specification of Building Automation Systems, in OMER-2 Workshop Proceedings, A.
Schuerr, ed. 2001, University of the Federal Armed Forces, Germany: Munich. p. 3-9.

140. Morgenthal, J.P., Which B2B Exchange Is Right for You?, in Software Magazine. 2001.

141. Nada, N. and D.C. Rine, Three empirical evaluations of a software reuse reference
model. Annals of Software Engineering, 2000. 10(1-4): p. 225-259.

142. Newcomb, T.M. et al. Social Psychology. 1966, London: Routledge & Kegan Paul,
ISBN 0-7100-1890-8.

143. Ng, K., J. Kramer, and J. Magee, A CASE Tool for Software Architecture Design.
Automated Software Engineering, 1996. 3(3/4): p. 261-284.

144. Niemann, R. and P. Marwedel, An Algorithm for Hardware/Software Partitioning
Using Mixed Integer Linear Programming. Design Automation for Embedded Systems,
1997. 2(2): p. 165-193.

145. Nixon, B.A., Management of Performance Requirements for Information Systems. IEEE
Transactions on Software Engineering, 2000. 26(12): p. 1122-1146.

146. Nwana, H.S., Software Agents: An Overview. Knowledge Engineering Review, 1996.
11(3): p. 205-244.

147. Nwana, H.S., et al., Zeus: A Toolkit for Building Distributed Multi-Agent Systems.
Applied Artificial Intelligence Journal, 1999. 13(1): p. 129 - 185.

148. Objectspace Inc., Voyager 2.0 User’s Manual. 1997, Objectspace Inc.

149. OMG, Unified Modelling Language Specification, ver. 2.0. 2000.

150. Omicini, A., SODA : Societies and Infrastructures in the Analysis and Design of Agent-
based Systems, in Agent-Oriented Software Engineering II, First International
Workshop (AOSE 2000), Limerick, Ireland, P. Ciancarini and M.J. Wooldridge, Editors.
2001, Springer Verlag: Berlin, p. 185-193, ISBN 3-540-41594-7.

151. Ould, M., Modelling and Analysis for Reengineering and Improvement. 1995, West
Sussex, UK: John Wiley & Sons, p. 224, ISBN 0-4719-5352-0.

152. Parsons, M.G., D.J. Singer, and J.A. Sauter. A Hybrid Agent Approach for set-based
conceptual ship design. in International Conference on Computer Applications in
Shipbuilding. 1999. Cambridge, MA.

153. Parsons, T., The Social System. 1964, Glenoe, ILL: The Free Press, ISBN 0-0292-4190-
1.

154. Parunak, H.V.D., A Practitioners' Review of Industrial Agent Applications.
Autonomous Agents and Multi-Agent Systems, 2000. 3(4): p. 389-407.

155. Parunak, H.V.D., et al. A Marketplace of Design Agents for Distributed Concurrent Set-
Based Design. in Fourth International Conference on Concurrent Engineering,
Research and Applications. 1997. Troy, Michigan.

156. Parunak, H.V.D., et al. Distinguishing Environmental and Agent Dynamics: A Case
Study in Abstraction and Alternate Modeling Technologies. in Engineering Societies in
the Agents World, First International Workshop, ESAW 2000, Berlin, Germany, August
21, 2000, A. Omicini, R. Tolksdorf, and F. Zambonelli, eds. 2001, Springer Verlag:
Berlin, p. 19-33, ISBN 3-5404-1477-0.

 216

157. Parunak, V., J. Sauter, and S. Clark, Toward the Specification and Design of Industrial
Synthetic Ecosystems, in Intelligent Agents IV: Agent Theories, Architectures, and
Languages, M.P. Singh, A. Rao, and M.J. Wooldridge, Editors. 1998, Springer Verlag:
Berlin, p. 45-59, ISBN 3-540-64162-9.

158. Parunak, V.D., et al., The RAPPID Project: Symbiosis between Industrial Requirements
and MAS Research. Autonomous Agents and Multi-Agent Systems, 1999. 2(2): p. 111-
140.

159. Pattison, H.E., D.D. Corkill, and V.R. Lesser, Instantiating Descriptions of
Organisational Structures, in Distributed Artificial Intelligence, M.N. Huhns, ed. 1987,
Pitman: London, p. 59-96, ISBN 0-273-08778-9.

160. Petrie, C., Agent-Based Software Engineering, in Agent-Oriented Software Engineering
II, First International Workshop (AOSE 2000), Limerick, Ireland, P. Ciancarini and
M.J. Wooldridge, eds. 2000, Springer Verlag: Berlin, p. 58-76, ISBN 3-540-41594-7.

161. Pinzon, L.E., et al., A Comparative Study of Synthesis Methods for Discrete Event
Controllers. Formal Methods in System Design, 1999. 15(2): p. 99-122.

162. Rao, A.S. and M.P. Georgeff, BDI-agents: from theory to practice, in Proceedings of
the First International. Conference on Multiagent Systems. 1995: San Francisco.

163. Reenskaug, T., P. Wold, and O.A. Lehne, Working with Objects, The OOram Software
Engineering Method. 1996, Greenwich: Manning Publications, p. 420, ISBN 0-1345-
2930-8.

164. Renner, F.-M., J. Becker, and M. Glesner, Communication Performance Models for
Architecture-Precise Prototyping of Real-Time Embedded Systems. Design Automation
for Embedded Systems, 2000. 5(3-4): p. 351-363.

165. Reticular Systems Inc, Agent Construction Tools. 2002.

166. Richle, D. Composite Design Patterns. in OOPSLA'97 Proceedings of the 1997
Conference on Object-Oriented Programming Systems,Languages and Applications.
1997: ACM Press.

167. Richle, D., A Role-Based Design Pattern Catalog of Atomic and Composite Patterns
Structured by Pattern Purpose. 1997, Ubilab, Union Bank of Switzerland: Zurich. p. 48.

168. Richle, D. and T. Gross. Role model based framework design and integration. in
OOPSLA'98 Proceedings of the 1998 Conference on Object-Oriented Programming
Systems,Languages and Applications. 1998: ACM Press.

169. Ricordel, P.-M. and Y. Demazeau, From Analysis to Deployment: a Multi-Agent
Platform Survey, in Engineering Societies in the Agents World, First International
Workshop, ESAW 2000, Berlin, Germany, August 21, 2000, A. Omicini, R. Tolksdorf,
and F. Zambonelli, eds. 2001, Springer Verlag: Berlin, p. 93-105, ISBN 3-5404-1477-0.

170. Roeckle, H., G. Schimpf, and R. Weidinger. Process-oriented approach for role-finding
to implement role-based security administration in a large industrial organization. in
ACM Workshop on Role-based Access Control. 2000. Berlin, Germany: ACM Press.

171. Romanosky, S., Security Design Patterns v 1.4. 2001, Security Focus: San Francisco,
CA. p. 19.

172. Rumbaugh, J. et al., Object Oriented Modelling and Design. 1991, New York: Prentice
Hall International, p. 528, ISBN 0-13-629841-9.

173. Russel, S. and D. Subramanian, Provably bounded-optimal agents. Journal of AI
Research, 1995. 2: p. 575-609.

174. Samuel, A. and J. Weir, Introduction to Engineering Design: Modelling, Synthesis and
Problem Solving. 1999, Oxford: Butterworth-Heinemann, p. 416, ISBN 0-7506-4282-3.

 217

175. Schiefloe, P.M. and T.G. Syvertsen, Coordination in Knowledge-Intensive
Organisations, in Coordination Technology for Collaborative Applications:
Organizations, Processes and Agents, W. Conen and G. Neumann, eds. 1999, Springer
Verlag, p. 9-23, ISBN 3-5406-4170-X.

176. Schreiber, G., et al., Knowledge Engineering and Management: The CommonKADS
Methodology. 2000, New York: MIT Press, p. 455.

177. Scott, W.R., Organisations: Rational, Natural and Open Systems. 2003, New York,
NY: Prentice Hall International, p. 430, ISBN 0-13-016559-X.

178. Serugendo, G.D.M. and C.V. Aart, Engineering Self-Organising Applications Working
Group. 2002, Agentcities.NET Project.

179. Shaw, M. and D. Garlan, Software Architecture: Perspectives on an Emerging
Discipline. 1996, New York, NY: Prentice Hall Publishing, p. 242, ISBN 0-13-182957-
2.

180. Shehory, O., S. Kraus, and O. Yadgar, Emergent Cooperative Goal-Satisfaction in
Large Scale Automated-Agent Systems. Artificial Intelligence, 1999. 110(1): p. 1-55.

181. Shen, W. and D.H. Norrie, Agent-Based Systems for Intelligent Manufacturing: A
State-of-the-Art Survey. Knowledge and Information Systems, an International Journal,
1999. 1(2): p. 129-156.

182. Silva, A.R., et al., Towards a Reference Model for Surveying Mobile Agent Systems.
Autonomous Agents and Multi-Agent Systems, 2001. 4(3): p. 187-231.

183. Simonyi, C., Intentional Programming - Innovation in the Legacy Age. 1996, Microsoft
Corporation: IFIP WG 2.1 meeting,. p. 25.

184. Smith, R.G., The Contract Net Protocol. High Level Communication and Control in a
Distributed Problem Solver. IEEE Transactions on Computers, 1980. 29(12): p. 1104-
1113.

185. So, Y.-p. and E.H. Durfee, Designing Organisations for Computational Agents, in
Simulating Organisations: Computational Models of institutions and groups, M.J.
Prietula, K.M. Carley, and L. Gasser, eds. 1998, AAAI Press: Menlo Park, CA, p. 47-
64, ISBN 0-262-66108-X.

186. Sparkman, C.H., S.A. DeLoach, and A.L. Self, Automated Derivation of Complex Agent
Architectures from Analysis Specifications, in Agent-Oriented Software Engineering II,
Second International Workshop (AOSE 2001), Montreal, Canada, M.J. Wooldridge, G.
Weis, and P. Ciancarini, eds. 2001, Springer Verlag: Berlin, p. 278-296, ISBN 3-540-
43282-5.

187. Stark, J., et al., ACSOSS: a case study applying the MESSAGE analysis method. 2001,
BT Exact Technologies: Martlesham Heath.

188. Steimann, F., On the representation of roles in object-oriented and conceptual
modelling. Data and Knowledge Engineering, 2000. 35: p. 83-106.

189. Stergiou, K., Representation and Reasoning with Non-Binary Constraints, PhD Thesis,
Department of Computer Science. 2001, University of Strathclyde: Glascow, UK. p.
174.

190. Szymanek, R., F. Gruian, and K. Kuchcinski. Digital Systems Design Using Constraint
Logic Programming. in Practical Application of Constraint Logic Programming
(PACLP'2000), 2000. Manchester: Practical Applications Company.

191. Tambe, M., Towards flexible teamwork. Journal of AI Research, 1997. 7: p. 83-124.

192. Tambe, M., D.V. Pynadath, and N. Chauvat, Building Dynamic Agent Organisations in
Cyberspace. IEEE Internet Computing, 2000. 4(2): p. 65-73.

 218

193. Tambe, M., D.V. Pynadath, and N. Chauvat. Rapid integration and coordination of
heterogeneous distributed agents for collaborative enterprises. in DARPA JFACC
symposium on advances in Enterprise Control. 2000.

194. Tekinerdogan, B., Synthesis-based Software Design, PhD Thesis, Department of
Computer Science. 2000, University of Twente: Twente. p. 226.

195. The Object Agency Inc, A Comparison of Object-Oriented Development
Methodologies. 1995, The Object Agency, Inc.

196. Thomas, E.J. and B.J. Biddle, The Nature and History of Role Theory, in Role Theory:
Concepts and Research, B.J. Biddle and E.J. Thomas, eds. 1979, John Wiley
Publishing: London, p. 3-19, ISBN 0-471-07215-X.

197. Thompson, S., The Zeus mailing list, (zeus@jiscmail.ac.uk). 1999, BT Exact
Technologies.

198. Thompson, S., ZEUS Methodology Documentation Part V: FIPA & Zeus. 2001, BT
Exact Technologies.

199. Thompson, S.G. and B.R. Odgers. Collaborative Personal Agents for Team Working. in
Proceedings of 2000 Artificial Intelligence and Simulation of Behaviour (AISB)
Symposium. 2000. Birmingham, England, ISBN 1-902956-14-6.

200. Wagner, G., Agent-Oriented Analysis and Design of Organizational Information
Systems, in Proc. of Fourth IEEE International Baltic Workshop on Databases and
Information Systems. 2000: Vilnius (Lithuania).

201. Weiss, G., ed. Multi-Agent Systems: a Modern Approach to Distributed Artificial
Intelligence. 1999, MIT Press: New York, p. 619, ISBN 0-262-23203-0.

202. Werner, E., Cooperating Agents: A Unified Theory of Communication and Social
Structure, in Distributed Artificial Intelligence, L. Gasser and M.N. Huhns, eds. 1989,
Pitman/Morgan Kaufmann: London, p. 3-36, ISBN 1-558-60092-2.

203. Willmott, S.N., et al., Agentcities: A Worldwide Open Agent Network. Agentlink News,
2001(8): p. 13-15.

204. Wong, R.K. RBAC support in object-oriented role databases. in ACM Workshop on
Role-based Access Control. 1997. Fairfax, VA USA: ACM Press.

205. Wood, M. and S.A. DeLoach, An Overview of the Multiagent Systems Engineering
Methodology, in Agent-Oriented Software Engineering I, First International Workshop
(AOSE 2000), Limerick, Ireland, P. Ciancarini and M.J. Wooldridge, eds. 2001,
Springer Verlag: Berlin, p. 207-221, ISBN 3-540-41594-7.

206. Wooldridge, M., Intelligent Agents, in Multi-Agent Systems: a Modern Approach to
Distributed Artificial Intelligence, G. Weiss, ed. 1999, MIT Press: New York, p. 27-77,
ISBN 0-262-23203-0.

207. Wooldridge, M., On the Sources of Complexity in Agent Design. Applied Artificial
Intelligence, 2000. 14(7): p. 623-644.

208. Wooldridge, M. and P. Ciancarini, Agent-Oriented Software Engineering: The State of
the Art, in Agent-Oriented Software Engineering I, First International Workshop (AOSE
2000), Limerick, Ireland, P. Ciancarini and M.J. Wooldridge, eds. 2001, Springer-
Verlag: Berlin, p. 1-28, ISBN 3-540-41594-7.

209. Wooldridge, M., N.R. Jennings, and D. Kinny, The Gaia methodology for agent-
oriented analysis and design. International Journal of Autonomous Agents and Multi-
Agent Systems, 2000. 3(3): p. 285-312.

210. Wooldridge, M.J. and N.R. Jennings, Intelligent Agents: Theory and Practice.
Knowledge Engineering Review, 1995. 10(2): p. 115-152.

 219

211. Wooldridge, M.J. and N.R. Jennings, Agent Based Software Engineering. IEE
Proceedings in Software Engineering, 1997. 144(1): p. 26-37.

212. Wooldridge, M.J. and N.R. Jennings, Software Engineering with Agents: Pitfalls and
Pratfalls. IEEE Internet Computing, 1999. 3(3): p. 20-27.

213. Wyns, J., Reference architecture for Holonic Manufacturing Systems - the key to
support evolution and reconfiguration, PhD Thesis, Department of Mechanical
Engineering. 1999, KU Leuven: Leuven. p. 274.

214. Yacoub, S.M. and H.H. Ammar. Pattern-Oriented Analysis and Design (POAD): A
Structural Composition Approach to Glue Design Patterns. in Proceedings of the :
Technology of Object-Oriented Languages and Systems (TOOLS-34"00). 2000: IEEE
Press.

215. Yacoub, S.M., H. Xue, and H.H. Ammar. POD: A Composition Environment for
Pattern-Oriented Design. in Proceedings of the : Technology of Object-Oriented
Languages and Systems (TOOLS-34"00). 2000: IEEE Press.

216. Yoder, J. and J. Barcalow[Architectural Patterns for Enabling Application Security, in
The 4th Pattern Languages of Programming Conference. 1997, Washington University:
Allerton Park, Monticello, Illinois, USA.

217. Yu, E.S.K. Models for Supporting the Redesign of Organisational Work. in ACM
Conference on Organisational Computing (COOCS'95). 1995. Milpitas California:
ACM Press.

218. Yu, E.S.K. and J. Mylopoulos. An Actor Dependency Model of Organisational Work
with application to Business Process Reengineering. in ACM Conference on
Organisational Computing (COOCS'93). 1993. Milpitas California: ACM Press.

219. Yu, L. and B.F. Schmid. A Conceptual Framework for Agent Oriented and Role Based
Workflow Modelling. in CaiSE Workshop Conference on Agent Oriented Information
Systems (AOIS´99). 1999. Heidelberg: MIT Press.

220. Zambonelli, F., N.R. Jennings, and M. Wooldridge, Organisational Abstractions for the
Analysis and Design of Multi-Agent Systems, in Agent-Oriented Software Engineering
II, First International Workshop (AOSE 2000), Limerick, Ireland, P. Ciancarini and
M.J. Wooldridge, eds. 2001, Springer Verlag: Berlin, p. 235-250, ISBN 3-540-41594-7.

221. Zambonelli, F., N.R. Jennings, and M. Wooldridge, Organisational Rules as an
Abstraction for the Analysis and Design of Multi-Agent Systems. International Journal
of Software Engineering and Knowledge Engineering, 2001. 11(3): p. 303-328.

222. Zambonelli, F., et al., Agent-Oriented Software Engineering for Internet Applications,
in Coordination of Internet Agents: Models, Technologies and Applications, A.
Omicini, et al., eds. 2001, Springer-Verlag: Berlin Heidelberg, p. 326-346, ISBN 3-
5404-1613-7.

223. Zelkowitz, M.V. and D.R. Wallace, Experimental Models for Validating Technology, in
IEEE Computer. 1998. p. 23-31.

224. Zhao, L. and E. Kendall. Role modelling for component design. in TOOLS 33,
Technology of Object-Oriented Languages and Systems. 2000: IEEE Computer Society,
ISBN 0-7695-0731-x.

225. Zini, F., Caselp, A Rapid Prototyping Environment For Agent Based Software. 2001,
ITC IRST: Trento, Italy. p. 163.

226. Zuse, H., Software Complexity - Measures and Methods. first ed. 1991, Berlin, New
York: Verlag de Gruyter, p. 605 ISBN 3-11-0122260-X.

 220

 221

Table of Contents

CHAPTER 1... 1

INTRODUCTION ..1

1.1 MOTIVATION ...1
1.2 CONTEXT OF THE THESIS ...2
1.3 ISSUES AND CHALLENGES..3

1.3.1 The ABS Design Complexity Problem...3
1.3.2 Reusing Design Knowledge..4
1.3.3 Non-Functional Aspects and Design Heuristics ..4

1.4 AIMS AND OBJECTIVES ..5
1.5 MAIN CONTRIBUTIONS ..6
1.6 RESEARCH METHODOLOGY ...7
1.7 CASE STUDY DESCRIPTIONS ..8
1.8 THESIS ORGANISATION..9

CHAPTER 2... 11

AGENT-BASED SYSTEM DESIGN ...11

2.1 DESIGNING ABSS ..11
2.2 OVERVIEW OF AGENT CONCEPTS...11

2.2.1 Agent-Oriented vs Object-Oriented Approaches ...11
2.2.2 Defining the Term ‘Agent’..13
2.2.3 A Simple Agent Formal Model ...15
2.2.4 An Example of a Simple Agent..15
2.2.5 Using Roles to Model Agent Behaviour ..16
2.2.6 Agent Architecture ...17

2.3 AGENT-BASED SYSTEMS ...19
2.3.1 Overview ...19
2.3.2 Interaction in ABSs ..20
2.3.3 ABSs as Organisations of Agents..20
2.3.4 Software Complexity and ABS Design ..21

2.3.4.1 Complexity in Software Engineering... 21
2.3.4.2 Complexity in ABS Design... 22

2.4 CLASSIFICATION OF ABS ENGINEERING APPROACHES...24

 222

2.4.1 Ad-hoc Approaches..25
2.4.2 Formal Approaches ...25
2.4.3 Informal Approaches..26

2.4.3.1 Approaches Based on Object-Oriented Software Engineering .. 27
2.4.3.2 Approaches Based on Information Systems Engineering.. 27
2.4.3.3 Approaches Based on Knowledge Engineering.. 28
2.4.3.4 Tool-Based Approaches.. 28

2.4.4 Dynamic Approaches ...29
2.4.5 Overall Assessment ..29

2.5 SUMMARY ...31

CHAPTER 3... 33

ASSESSMENT OF ABS ENGINEERING APPROACHES ...33

3.1 AN EVALUATION FRAMEWORK FOR ABS DESIGN..33
3.1.1 Concepts..34
3.1.2 Models...35
3.1.3 Process ..36
3.1.4 Pragmatics...37

3.2 COMPARATIVE EVALUATION OF ABS ENGINEERING APPROACHES..............................40
3.3 IMPLICATIONS FOR FURTHER RESEARCH ...41

3.3.1 Support for Design Heuristics ..42
3.3.2 Organisational Settings..42
3.3.3 Collective Behaviour..43
3.3.4 Non-Functional Aspects ...44
3.3.5 Automating the Design Process..45
3.3.6 Working at Different Abstraction Levels...45

3.4 SUMMARY ...47

CHAPTER 4... 49

USING ROLE MODELLING FOR ABS DESIGN...49

4.1 COMPLETE ROLE MODELLING APPROACHES..49
4.2 MODELLING SOCIAL BEHAVIOUR USING ROLES ..50

4.2.1 Defining the Term ‘Role’: a Social View ..50
4.2.1.1 Social Aspects of Role Definitions.. 50
4.2.1.2 Role Relationship Zones... 51

4.2.2 Overview of Role Theory..52

 223

4.2.3 Role Theoretic Concepts ..53
4.2.4 Role Dependency Relations..55
4.2.5 Role Identification and Role Types ...56

4.3 USING ROLES IN INFORMATION SYSTEMS MODELLING ..57
4.3.1 Roles in Business Systems Modelling..57
4.3.2 Role-Based Access Control in Distributed Systems Management59
4.3.3 Roles in Object Oriented Software engineering ..60

4.3.3.1 Defining Roles in Object Oriented Software Engineering.. 61
4.3.3.2 Role Properties... 63
4.3.3.3 Role Relationships, Synthesis and Synergy.. 65

4.3.4 Roles in ABS Modelling..66
4.3.4.1 Modelling Goal-Based Interactions Using Roles.. 67
4.3.4.2 Modelling Organisational Settings Using Roles ... 68

4.4 USING ROLES FOR THE DESIGN OF ABSS ...69
4.4.1 Comparison of Role Modelling Approaches..69
4.4.2 Formalising Role Dependency Relations ..71

4.5 SUMMARY ...71

CHAPTER 5... 73

THE RAMASD METHOD...73

5.1 USING ROLE MODELLING AND SYNTHESIS FOR ABS DESIGN.......................................73
5.2 ROLE MODELLING IN RAMASD ..74

5.2.1 Defining Roles and Role Models ..74
5.2.1.1 Role Characteristics.. 74
5.2.1.2 Properties of Roles and Role Models... 76

5.2.2 Representing and Using Role Models ...77
5.2.3 Role Model Types...77
5.2.4 Identification of Roles in the Application Domain...78

5.2.4.1 Criteria for Role Identification .. 78
5.2.4.2 Goal-Oriented Role Identification ... 79
5.2.4.3 Role Identification for an e-Business Security System ... 82

5.2.5 Management of the Role Modelling Process ...84
5.2.6 Consistency of Role-Based Specifications...85
5.2.7 Rigorous Role Assignment Using Role Algebra ..85

5.2.7.1 Relations in the Role Algebra ... 86
5.2.7.2 Semantics of the Role Algebra .. 88
5.2.7.3 Graphical Representation of Role Relations... 90

5.3 APPLYING THE SYNTHESIS CONCEPT TO ABS DESIGN ...90

 224

5.3.1 Synthesis in Traditional Engineering..90
5.3.2 A Synthesis-Based Design Process Model ..92

5.4 THE RAMASD DESIGN PROCESS ..95
5.5 THE INNOVATIVE FEATURES OF RAMASD..97

5.5.1 The Philosophy of the RAMASD Approach...97
5.5.2 Reusing Collective Behaviour...97

5.5.2.1 Representing and Using Patterns of Behaviour .. 97
5.5.2.2 An Example of Behaviour Reuse .. 98

5.5.3 Representing Organisational Settings...100
5.5.4 Considering Non-Functional Aspects ...102
5.5.5 Considering Design Heuristics...105

5.6 USING RAMASD WITH EXISTING METHODOLOGIES..107
5.7 SUMMARY ...108

CHAPTER 6..109

IMPLEMENTATION OF RAMASD...109

6.1 EXTENDING ZEUS TO SUPPORT RAMASD ...109
6.2 THE ZEUS AGENT BUILDING TOOLKIT ...111
6.3 EXTENDING ZEUS TO SUPPORT RAMASD ...111

6.3.1 The Extended Zeus Agent Development Methodology.....................................111
6.3.2 The Extended Zeus Visual Agent Creator Component.....................................113

6.4 THE RCL CONSTRAINT LANGUAGE ...117
6.5 ALLOCATING ROLES TO AGENTS ...118
6.6 SUMMARY – CONCLUSIONS ...120

CHAPTER 7..121

CASE STUDIES: MOBILE WORKFORCE SUPPORT AND COVISINT.....................121

7.1 APPLYING RAMASD TO REAL WORLD CASES ..121
7.2 MOBILE WORKFORCE SUPPORT...122

7.2.1 The Mobile Workforce Support Problem ..122
7.2.2 Role Identification..123
7.2.3 Specifying Design Constraints..126
7.2.4 Design Results ...127

7.3 EXAMPLE: AN AUTOMOTIVE INDUSTRY B2B EXCHANGE ..129
7.3.1 Case Study Overview ...129
7.3.2 Role Identification..132

 225

7.3.3 Qualitative Modelling of Non-Functional Aspects ..135
7.3.3.1 Security Issues ... 135
7.3.3.2 Privacy Issues .. 136

7.3.4 Organisational Settings..137
7.3.5 Role Composition...138
7.3.6 Specifying Design Constraints..139
7.3.7 Role Allocation Results ..141

7.4 SUMMARY – CONCLUSIONS ...143

CHAPTER 8..145

EVALUATION OF RAMASD ...145

8.1 SELECTING AN EVALUATION APPROACH ...145
8.1.1 Approaches to Evaluating Software Engineering Methods..............................145
8.1.2 Evaluating RAMASD..146
8.1.3 Selecting Case Studies and Test Scenarios..147

8.2 FRAMEWORK-BASED EVALUATION ...147
8.2.1 Main Features of RAMASD..147
8.2.2 Comparing RAMASD With Other Methods...149

8.3 COMPARISON OF RAMASD AND GAIA..151
8.3.1 Overview of Gaia ...151
8.3.2 Applying Gaia in the Mobile Workforce Case Study152
8.3.3 Limitations of Gaia ..155

8.4 DISCUSSION...158
8.4.1 Real World Applicability of RAMASD ..158

8.4.1.1 The Generality of RAMASD .. 158
8.4.1.2 The Scalability of RAMASD .. 159

8.4.2 Novel Aspects of RAMASD...159
8.4.2.1 The Innovative Features of RAMASD... 159
8.4.2.2 The Role Algebra ... 160

8.5 SUMMARY ...161

CHAPTER 9..163

CONCLUSIONS...163

9.1 REVISITING THE RESEARCH HYPOTHESIS...163
9.2 ASSESSING THE THESIS CONTRIBUTIONS ...164
9.3 LIMITATIONS OF RAMASD ...165

 226

9.4 FURTHER WORK..166
9.5 CONCLUDING REMARKS ..167

APPENDICES...169

APPENDIX A EVALUATION OF ABS DESIGN APPROACHES169

A.1 RAPPID ..169
A.1.1 Overview of RAPPID ...169
A.1.2 Evaluation of RAPPID ...170
A.1.3 Strengths and Weaknesses of RAPPID..171

A.2 DESIRE ..172
A.2.1 Overview of DESIRE..172
A.2.2 Evaluation of DESIRE..174
A.2.3 Strengths and Weaknesses of DESIRE..174

A.3 GAIA ...175
A.3.1 Overview of Gaia ...175
A.3.2 Evaluation of Gaia...176
A.3.3 Strengths and Weaknesses of Gaia ...177

A.4 TROPOS ...177
A.4.1 Overview of Tropos..177
A.4.2 Evaluation of Tropos..178
A.4.3 Strengths and Weaknesses of Tropos ..179

A.5 MESSAGE..179
A.5.1 Overview of MESSAGE/UML...179
A.5.2 Evaluation of MESSAGE..182
A.5.3 Strengths and Weaknesses of MESSAGE/UML...183

A.6 ZEUS..183
A.6.1 Overview of Zeus Agent Development Methodology183
A.6.2 Evaluation of Zeus Agent Development Methodology185
A.6.3 Strengths and Weaknesses of Zeus..186

A.7 KARMA/TEAMCORE..187
A.7.1 Overview of KARMA/TEAMCORE...187
A.7.2 Evaluation of KARMA/TEAMCORE...189
A.7.3 Strengths and Weaknesses of KARMA/TEAMCORE189

APPENDIX B THE ZEUS TOOLKIT..191

B.1 THE COMPONENTS OF THE ZEUS TOOLKIT ...191
B.1.1 The Agent Component Library ...191

 227

B.1.2 The Visualisation Tools..192

B.1.3 The Agent Building Tools...192

B.2 THE ZEUS AGENT SYSTEM REALISATION PROCESS ..195

B.3 THE ZEUS UTILITY AGENTS ...198

B.4 THE GENERIC ZEUS AGENT..200

APPENDIX C RCL EBNF SYNTAX..203

REFERENCES ...207

 228

Table of Figures

Figure 1.1: PhD research question and solution approach ..6
Figure 1.2: Thesis organisation..9
Figure 2.1: Perceive-Reason-Act cycle..13
Figure 2.2: A simple agent formal model...14
Figure 2.3: A container terminal yard agent...15
Figure 2.4: Agent internal components ..18
Figure 2.5: An agent organisation..20
Figure 2.6: Classification of ABS engineering approaches...24
Figure 3.1: A framework for comparing ABS engineering approaches with respect to design ..34
Figure 4.1: Role relationship zones ...52
Figure 4.2: Agent-Position-Role dependencies in the Actor-Dependency model58
Figure 4.3: Role characteristics for distributed systems access control60
Figure 4.4: Roles as association names..61
Figure 4.5: Roles as patterns of behaviour ...61
Figure 4.6: Object–Role relationships (Wong 1997) ..63
Figure 4.7: The Bureaucracy pattern represented as a role model (Richle 1997).......................64
Figure 4.8: Sample RRC card for the Bureaucracy pattern (Kendal 1999)................................65
Figure 4.9: A high level view of the supply chain management role model (Kendal 1999).......66
Figure 4.10: An example MASE role model (DeLoach et., al. 2001)..67
Figure 5.1: Schematic representation of a role model using UML notation...............................77
Figure 5.2: The phases of a goal-oriented role identification method..80
Figure 5.3: Goal cases for an e-business security protection system...82
Figure 5.4: Goal hierarchy tree and role identification for an e-business security system..........83
Figure 5.5: Identified roles for the e-business security system..84
Figure 5.6: Semantics of the role algebra...88
Figure 5.7: Graphical notation for the relations of the role algebra...90
Figure 5.8: The synthesis problem solving process ..91
Figure 5.9: A generic synthesis-based design process model..93
Figure 5.10: Schematic representation of the RAMASD design process...................................95
Figure 5.11: An example of collective behaviour reuse in RAMASD98
Figure 5.12: RAMASD roles for the conference management system example99
Figure 5.13: Enforcing organisational rules by appropriate merging of roles101
Figure 5.14: An example of modelling organisational rules using roles..................................102
Figure 5.15: Extended actor diagram for an e-cultural system (aft Giorgini et al., 2001)103
Figure 5.16: Using the FIPA directory facilitator role model for e-culture service brokering ..104

 229

Figure 5.17: A personal assistant role model ...105
Figure 5.18: Spheres of responsibility (Collins et al. 1999)..106
Figure 5.19: Specifying the spheres of responsibility heuristic using role relations.................107
Figure 6.1: Conceptual view of the extended Zeus ABS design tool110
Figure 6.2: The extended Zeus agent development methodology ...112
Figure 6.3: The extended Zeus Agent Generator component ..113
Figure 6.4: The role model and role definition editors ...114
Figure 6.5: The Role Constraints Editor component ..115
Figure 6.6: The Role Allocation component ..116
Figure 6.7: Parts of an RCL specification ..118
Figure 6.8: A simple search algorithm for allocating roles to agent types119
Figure 7.1: A high level view of the mobile workforce coordination case study122
Figure 7.2: Use case goals for the telephone repair service teams case study..........................124
Figure 7.3: Role models for the telephone repair service teams case study125
Figure 7.4: Compositional constraints for the telephone repair service teams case study126
Figure 7.5: Snapshot of the extended Zeus toolkit for the mobile workforce case study..........128
Figure 7.6: Agent types for the telephone repair service teams case study..............................129
Figure 7.7: Use case goals for an automotive industry B2B exchange case study131
Figure 7.8: Role models for the automotive industry B2B exchange case study133
Figure 7.9: The mediator pattern ...137
Figure 7.10: Updated role models based on the mediator pattern ...138
Figure 7.11: Compositional constraints for the B2B exchange case study140
Figure 7.12: Agent types for the B2B exchange case study..142
Figure 7.13: Snapshot of the extended Zeus toolkit for the B2B exchange case study.............143
Figure A.1: The RAPPID ABS architecture...170
Figure A.2: A generic agent model in DESIRE..172
Figure A.3: Relations between Gaia models ..175
Figure A.4: Knowledge level concepts in MESSAGE/UML..180
Figure A.5: The Zeus agent development methodology ...184
Figure A.6: The Zeus agent architecture..185
Figure A.7: The KARMA/TEAMCORE Framework...187
Figure B.1: The components of the Zeus agent building toolkit (Collins et al. 1999)..............192
Figure B.2: The Control and Society Tools of the Zeus agent building toolkit........................193
Figure B.3: The agent definition interface of the Zeus agent building tool193
Figure B.4: The Ontology editor..194
Figure B.5: The Zeus agent realisation process (Nwana et al. 1999).......................................195
Figure B.6: The flow of information between an agent and a task..197

 230

Figure B.7: The Zeus ABS structure (Thompson 2001) ...199

Figure B.8: The generic Zeus agent internal structure (Collins and Ndumu 1999)201

 231

List of Tables

Table 3.1: Description and ranking of evaluation framework aspects39

Table 3.2: Comparison of ABS engineering approaches ..40

Table 4.1: Strengths and weaknesses of role modelling approaches ...70

Table 5.1: Role characteristics...74

Table 8.1: Comparing RAMASD with other ABS design methods ..150

Table 8.2: The role schema for the REPAIR_WORKER role ..153

Table 8.3: Role schemata for the MANAGER and CUSTOMER_HANDLER roles154

Table 8.4: Role schemata for the TRAVEL_DEPT and EXPERTISE_KNOWLEDGE roles .155

Table A.1: Evaluation of RAPPID...171

Table A.2: Evaluation of DESIRE...174

Table A.3: Evaluation of Gaia...176

Table A.4: Evaluation of Tropos ...178

Table A.5: Evaluation of MESSAGE/UML...182

Table A.6: Evaluation of the Zeus agent development methodology186

Table A.7: Evaluation of KARMA/TEAMCORE..189

