
Specifying Reuse Concerns in Agent System Design Using A
Role Algebra

Anthony Karageorgos

PhD Student
Dept. of Computation

UMIST, Manchester M60 1QD,
UK

+44-161-2003306
karageorgos@computer.org

Simon Thompson

Team Leader
Intelligent Agents Research

Group, BT Exact Technologies
+44-1473 605531

simon.2.thompson@bt.com

Nikolay Mehandjiev

Lecturer
Dept. of Computation

UMIST, Manchester M60 1QD,
UK

+44-161-2003319
nikolay@computer.org

During the design of an agent system many decisions will be taken that determine
the structure of the system, for reasons that are clear to the designer and customers
at the time. However, when later teams approach the system it may not be obvious
why particular decisions have been taken. This problem is particularly acute in the
case of designers attempting to integrate services from many different service
providers. In this paper a mechanism for recording these decisions is described. We
illustrate how design decisions can be captured and how these abstractions can then
be used in as the basis of reuse in an extension of the Zeus agent toolkit.

Introduction

Multi-agent system architectures can be naturally viewed as organised societies of
individual computational entities e.g. [6, 15, 19], and hence the problem of designing a
multi-agent system refers to designing an agent organisation The criteria affecting an
agent organisation design decision are numerous and highly dependent on factors that
may change dynamically. Therefore, there is no standard best organisation for all
circumstances [14, 15]. As a result, agent organisation design rules are left vague and
informal, and their application is mainly based on the creativity and the intuition of the
human designer. This can be a serious drawback when designing large and complex real-
world agent systems. Therefore, many authors argue that social and organisational

abstractions should be considered as first class design constructs and that the agent system
designer should reason at a high abstraction level, e.g. [9, 12].

Designing agent organisations

Early research prototypes of agent-based systems were built in an ad-hoc manner.
However, the need to engineer agent systems solving real-world problems has given rise
to a number of systematic methodologies for agent oriented analysis and design such as
MESSAGE [5], GAIA [19] and SODA [12]. All these methodologies involve a number
of analysis and design sub-models emphasising particular analysis and design aspects.

Existing approaches to designing agent systems could be further improved in the
following ways:

• A more systematic way to construct large agent system design models from the
analysis models. The steps involved in transforming analysis to design models are not
specified to a detail that enables at least some degree of automation by a software tool

Agent System Designer

DESIGNER GUI

CONSTRAINT
PROBLEM SOLVER

Role Model Library

AGENT
GENERATOR

Application Engineer

Legacy Application
Developer

Figure 1. Conceptual View of Proposed System

[16].

• By considering non-functional requirements on design time. The aim should be to
achieve as optimum organisation on design time as possible. To achieve this, some
means for considering non-functional requirements before actually deploying the
multi-agent system is needed. This hypothesis is along the lines of similar works [13,
14] where the behaviour of a multi-agent system is modelled and studied before actual
system deployment.

• By reusing organisational settings. This view regarding reuse of organisational
settings has been inspired by the concepts introduced in [21]. It is believed that that
work can be further extended by classifying known organisational patterns, and by
providing some rigorous means for selecting them in a particular design context.

In this paper we examine how these concerns can be addressed and how we can
implement an environment that supports the reuse of design knowledge using the
abstractions of role modelling that we have developed.

Our Approach

Figure 1 shows an overview of our approach. Our objective is to develop a technology
that supports engineers in describing the design concerns that have motivated choices
about models of implementation in particular systems, and to place this knowledge in a
repository. The repository would then be used by subsequent engineers who wished to
reuse subsystems or to modify and rebuild the legacy system itself.
We believe that further value can be added to the system by providing advice to the
engineer using constraint satisfaction technology that can provide possible solutions to
compositional design problems.
Finally the resulting designs can be used to generate template systems linked to libraries
of domain specific implementation code.
The rest of this paper can be divided into three parts. We will describe the role modeling
abstractions that we have developed; we then show how they can provide adequate
representational power to capture some of the design knowledge in an example derived
from a real development project. Finally we describe how we have implemented a
prototype that demonstrates that this knowledge can be used to support design reuse.

Background

Existing role-based approaches to multi-agent system design stress the need to identify
and characterise relations between roles [1, 9]. However, only a small number of
approaches investigate the consequences of role relations on the design of multi-agent

systems, e.g. [9]. This is partly due to lack of formal foundations of role relationships.
Therefore, in this work we first identified role relations that would affect multi-agent
system design and subsequently we formalised them in an algebraic specification model.
Role identification was based on organisational principles and in particular on role theory
[3].

Role theory emphasises that various relations may exist between roles. For example, an
examiner cannot also be a candidate at the same time and therefore appointing these roles
to a person at the same time results to inconsistency. Role relations can be complex. For
example, a university staff member who is also a private consultant may have conflicting
interests. In this case, appointing these roles to the same person is possible but it would
require appropriate mechanisms to resolve the conflicting behaviour.

Role characteristics

Following [9], a role is defined as associated with a position and a set of characteristics.
Each characteristic includes a set of attributes. Countable attributes may further take a
range of values. More specifically, a role is capable of carrying out certain tasks and can
have various responsibilities or goals that aims to achieve. Roles normally need to
interact with other roles, which are their collaborators. Interaction takes place by
exchanging messages according to interaction protocols. A collection of interacting roles
representing collective behaviour constitutes a role model.

Roles can be extended to create specialised roles by a process called role specialisation or
refinement [1, 9]. Specialised roles represent additional behaviour on top of the original
role behaviour in a manner similar to inheritance in object-oriented systems.

In order for roles to pragmatically represent behaviour in an application domain, they
need to model issues relevant to non-functional requirements in that domain. Therefore,
the above role definition is extended to include performance variables. Performance
variables are parameters whose value defines the run-time behaviour represented by a
role. For example, if the behaviour a role represents requires using some resource like
storage space, the resource capacity can be modelled by a performance variable.
Performance variables can also be defined at an agent level. In that case, their value is a
function of the function of the respective performance variables of all roles the agent is
capable of playing. This allows us to apply design heuristics by imposing constraints on
the values of the agent performance variables that must be observed when allocating roles
to agents. This is illustrated in the example given below

A role algebra for agent system design

Based on role theory [3] and on case studies of human activity systems, e.g. [17], six
basic role relations have been identified. In this section, a formal model of role relations is
defined, referred by the term role algebra. Using relations from the role algebra,
constraints driving the assignment of roles to agents can be specified and hence the agent
organisation design process can be partially automated.

Relations of the Role Algebra

Let R be a set of roles. For any r1, r2 ∈ R, the following binary relationships may hold:

1) Equals (eq) ⎯ This means that r1 and r2 describe exactly the same behaviour. For
example, the terms Advisor and Supervisor can be used to refer to people supervising
PhD students. When two roles are equal, an agent playing the one role also plays the other
at the same time. The relation Equals ⊆ R×R is an equivalence relation since it is
reflexive, symmetric and transitive:

a) ∀ r : R (r eq r)

b) ∀ (r1, r2) : R×R (r1 eq r2 ⇒ r2 eq r1)

c) ∀ (r1, r2, r3) : R×R×R ((r1 eq r2) ∧ (r2 eq r3) ⇒ (r1 eq r3))

2) Excludes (not) ⎯ This means that r1 and r2 cannot be assigned to the same agent
simultaneously. For example, in a conference reviewing agent system, an agent should
not be playing the roles of paper author and paper reviewer at the same time.
Furthermore, a role cannot exclude itself ⎯ if it would then no agent would ever play it.
Therefore, the relation Excludes ⊆ R×R is anti-reflexive and symmetric:

a) ∀ r : R (¬(r not r))

b) ∀ (r1, r2) : R×R (r1 not r2 ⇒ r2 not r1)

3) Contains (in) ⎯ This means that a role is a sub-case/specialisation of another role.
Therefore, the behaviour the first role represents completely includes the behaviour of the
second role. For example, a role representing Manager behaviour completely contains the
behaviour of the Employee role. When two roles such that the first contains the second are
composed, the resulting role contains the characteristics of the first role only. Therefore,
the relation Contains ⊆ R×R is reflexive and transitive:

a) ∀ r : R (r in r)

b) ∀ (r1, r2, r3) : R×R×R ((r1 in r2) ∧ (r2 in r3) ⇒ (r1 in r3))

4) Requires (and) ⎯ The Requires relation can be used to describe that when an agent
is assigned a particular role, then it must also be assigned some other specific role as well.
This is particularly applicable in cases where agents need to conform to general rules or

Figure 2: Semantics of role relations

has plays

A R

AGENT ORGANISATION

a1

a2

a3

r1

r2

r3
r4

r5

play organisational roles. For example, in a university application context, in order for an
agent to be a Library_Borrower it must be a University_Member as well. Although the
behaviour of a Library_Borrower could be modelled as part of the behaviour of a
University_Member, this would not be convenient since this behaviour could not be
reused in other application domains where being a Library_Borrower is possible for
everyone. Furthermore, each role requires itself. Intuitively, the roles that some role r
requires are also required by all other roles that require r. Therefore, the relation Requires
⊆ R×R is reflexive, and transitive:

a) ∀ r : R (r and r)

b) ∀ (r1, r2, r3) : R×R×R ((r1 and r2) ∧ (r2 and r3) ⇒ (r1 and r3))

5) Addswith (add) ⎯ The Addswith relation can be used to express that the behaviours
two roles represent do not interfere in any way. For example, the Student and the
Football_Player roles describe non-excluding and non-overlapping behaviours. Hence,
these roles can be assigned to the same agent without any problems. The relation
Addswith ⊆ R×R is reflexive and symmetric:

a) ∀ r : R (r add r)

b) ∀ (r1, r2) : R×R ((r1 add r2) ⇒ (r2 add r1))

6) Mergeswith (merge) ⎯ The Mergeswith relation can be used to express that the
behaviours of two roles overlap to some extend or that different behaviour occurs when
two roles are put together. For example, a Student can also be a Staff_Member. This refers
to cases when PhD students start teaching before they complete their PhD or they register
for another degree (e.g. an MBA) after their graduation. Although members of staff, these
persons cannot access certain information (e.g. future exam papers) due to their student
status. Also, their salaries are different. In cases like this, although the two roles can be
assigned to the same agent, the characteristics of the composed role are not exactly the
characteristics of the two individual roles put together. The relation Mergeswith ⊆ R×R is
symmetric:

a) ∀ (r1, r2) : R×R (r1 merge r2 ⇒ r2 merge r1)

Semantics of role relations

To describe the semantics of role relations we represent an agent organization by a two-
sorted algebra (fig. 1). The algebra includes two sorts, A representing agents and R
representing roles.

Let Has: A → R be a relation mapping agents to roles. The term “has” means that a role
has been allocated to an agent by some role allocation procedure or tool. It is possible for
an agent to have roles that do not contribute to defining the agent behaviour. For example,
this happens when roles merge with other roles. For each a ∈ A, let a.has be the set of
roles that the agent a maps to in the relation Has. In other words, a.has denotes the
relational image of the singleton {a} ⊆ A in the relation Has.

 Let Plays: A → R be a relation mapping agents to roles again. The term “plays” means
that that the behaviour a role represents is actively demonstrated by the agent, for
example the role does not merge with other roles that are also played by the agent. For
each a ∈ A, let a.plays denote the set of roles that the agent a maps to in the relation
Plays. In other words, a.plays denotes the relational image of the singleton {a} ⊆ A to the
relation Plays.

The meaning of the relations between roles can now be described as follows:

• Equals ⎯ An agent has and plays equal roles at the same time.

∀ a : A, (r1, r2) : R×R ⋅ (r1 eq r2 ⇔ ((r1 ∈ a.has ⇔ r2 ∈ a.has) ∧ (r1 ∈ a.plays ⇔ r2 ∈
a.plays)))

• Excludes ⎯ Excluded roles cannot be assigned to the same agent.

∀ a : A, (r1, r2) : R×R ⋅ (r1 not r2 ⇔ ¬(r1 ∈ a.has ∧ r2 ∈ a.has))

• Contains ⎯ Contained roles must be assigned and played by the same agent as their
containers.

∀ a : A, (r1, r2) : R×R ⋅ (r1 in r2 ⇔ ((r2 ∈ a.has ⇒ r1 ∈ a.has) ∧ (r2 ∈ a.plays ⇒ r1 ∈
a.plays)))

• Requires ⎯ Required roles must be played by the same agent as the roles that
require them.

∀ a : A, (r1, r2) : R×R ⋅ (r1 and r2 ⇔ (r1 ∈ a.plays ⇒ r2 ∈ a.plays))

• MergesWith ⎯ When two roles merge, only the unique role that results from their
merge is played by an agent.

∀ a : A, (r1, r2) : R×R ⋅ (r1 merge r2 ⇔ ∃1 r3 : R ⋅((r1 ∈ a.has ∧ r2 ∈ a.has) ⇒ (r1 ∉
a.plays ∧ r2 ∉ a.plays ∧ r3 ∈ a.has)))

For example, let us assume that roles r2 and r3 merge resulting to role r4. Based on
the above semantic definition, if an agent has r2 and r3 then it must also have r4 and
it must not play r2 and r3 (the agent may or may not play r4 depending on the
relations of r4 with the other roles the agent has). The example of a Mergeswith

relation between roles r2, r3, and r4, where r4 is played by the agent, is depicted in
fig. 1.

• AddsWith ⎯ There is no constraint in having or playing roles that add together.

∀ a : A, (r1, r2) : R×R ⋅ (r1 add r2 ⇔ (r1 ∈ a.has ⇒ ((r2 ∈ a.has ∨ r2 ∉ a.has) ∧ (r2
∈ a.plays ∨ r2 ∉ a.plays))))

Using the above semantic axioms, it is trivial to verify that the properties of role relations
that we have introduced hold.

Furthermore, relations between more than two roles can be defined in a similar manner. In
that case, a predicate notation is more convenient to represent role relations. For example,
when three roles r1, r2, and r3 merge to r4 this can be noted by merge(r1, r2, r3, r4). In this
paper, we will not provide any formal definitions for relations among roles with arity
greater than two.

Role relations, as defined in the above algebra, constrain the way that roles can be
allocated to agents. Therefore, the agent organisation design problem is transformed to a
constraint satisfaction problem that must be solved for roles to be allocated to agents. The
problem can be constrained further by including constraints based on general design
heuristics. These constraints are expressed on the performance variables of the agents. For
example, the system designer should be able to define the maximum number of roles that
an agent could play, or an upper limit to the resource capacity that the roles an agent plays
would require. Furthermore, role allocation heuristics could also be specified. For
example, roles requiring access to similar resources could be required to be assigned to
the same agent.

Example: supporting mobile work teams

For this example we consider a case study concerning telephone repair service teams. The
aim is to build an agent system that would assist field engineers to carry out their work.
Among the issues involved in such a system are those of travel management, teamwork
coordination, and expertise knowledge management [17, 18].

Travel management is about support to mobile workers for moving from one repair task
location to another. It involves finding the position of each worker, obtaining relevant
travel information, planning the route to the next repair task location and allocating travel
resources as required. Teamwork coordination is about allocating and coordinating the
execution of repair tasks in a decentralised manner taking into account the personal
preferences and working practices of the mobile workers. Work knowledge management
concerns storage and dissemination of expertise work knowledge.

Role identification

In order to model the above system in terms of roles, the first thing to do is to identify the
roles involved in the case study. According to [10] a way to identify roles in an
application domain is to start from identifying use cases, associating each use case with a
goal, creating a goal hierarchy from the use case hierarchy and coalescing semantically
relevant goals in roles. For the purpose of our example we consider the following three
use cases: Teamwork coordination, Travel management and Work Knowledge
Management.

 Applying the methodology suggested in [10], the following roles can be identified (fig.
2):

1. Employee: This role describes generic behaviour of the members of the customer
service teams. An example of this type of behaviour is accessing common team resources
including work practice announcements and business news.

2. Coordinator: The Coordinator role describes the behaviour required to coordinate the
work of a field engineer. This includes bidding for and obtaining repair work tasks from a
work pool, negotiating with other workers and the team manager as required and
scheduling and rescheduling work task execution.

Figure 3: Role models for the telephone repair

TravelManager
TravelInfoBase

memory

Knowledge finder Knowledge
base

Employee

Brulebase
memory

Mentor

Manager

Coordinator

WorkPool
memoryCustomer

3. Manager: The Manager role models the behaviour of the team manager. This
includes confirming task allocation, monitoring work and ensuring that business rules are
followed.

4. Mentor: The mentor role provides assistance to field engineers for non-technical
issues.

5. WorkPool: The WorkPool role maintains a pool of telephone repair requests.
Customers interact with this role to place requests and engineers interact with this role to
select tasks to undertake.

6. Customer: The Customer role models the behaviour of a customer. In involves placing
telephone repair requests, receiving relevant information and arranging appointments with
field engineers.

7. Brulebase: This role maintains a database of business rules. It interacts with manager
providing information about the current work policy of the business.

8. TravelManager: The TravelManager role provides travel information to the field
engineer including current location, traffic information and optimal route to next
telephone repair task.

9. TravelinfoBase: This role store travel information from various travel resources i.e.
GPS and traffic databases.

10. Knowledgefinder: This role searches for experts and obtains assistance regarding
complex work tasks.

11. Knowledgebase: The Knowledgebase role maintains and manages a database of
expertise about telephone repair tasks.

Specifying design constraints

In fig. 4 compositional constraints for the roles described are specified in RCL (Role
Constraint Language).

 RCL is simple declarative constraint language we introduced to represent design
constraints on agent and role characteristics. Any non-obvious use of RCL in fig. 5 is
described below together with the relevant design constraints. RCL itself is described in
detail in [8].

Roles in RCL are specified in a manner similar to programming languages. Roles that
directly manipulate databases require access to some storage space. This is modelled by
the performance variable memory. The memory requirements of each role are different.
For example, Travelinfobase and Knowledgebase require twice as much memory as
Workpool and Brulebase.

Part of the definition of the characteristics of the Manager role is shown in more detail in
fig. 3. The collaborators of the Manager role are the Coordinator and Brulebase roles and
its interaction protocol is the Contract Net. The Employee role is contained in both
Manager and Coordinator roles. Furthermore, a Manager cannot coexist with Mentor or
Coordinator and for security purposes a Customer cannot coexist with Employee,
Travelinfobase or Knowledgebase. In order for an agent to be Mentor it must also be an
Employee.

Figure 4: Compositional constraints for telephone repair service teams roles

/* ROLE DEFINITIONS */

Role employee, coordinator, mentor,
 customer, travelmanager,
 knowledgefinder;

Role workpool, brulebase, workerassistant;
 travelinfobase, knowledgebase {
 int memory;

 workpool.memory = 1;
 brulebase.memory = 1;
 travelinfobase.memory = 2;
 knowledgebase.memory = 2;
 workerassistant.memory = 1;

Role manager {
 collaborators = {Coordinator,
 Brulebase};
 protocols = {contracting};

/* ROLE CONSTRAINTS */

in(employee, coordinator);
in(employee, manager);

not(customer, employee);
not(customer, travelinfobase);
not(customer, knowledgebase);
not(mentor, manager);
not(manager, coordinator);

and(mentor, employee);

merge(coordinator, travelmanager,
knowledgefinder,
workerassistant);

/* GENERAL CONSTRAINTS */

Constraint Y {
 forall a:Agent {
 a.memory <= 2
 }
}

When an agent plays all three Coordinator, TravelManager and KnowledgeFinder roles
then overheads occur in synchronising results from these three different activities. This is
modelled as a merging of the Coordinator, Travelmanager and Knowledgefinder resulting
to the WorkerAssistant role. The WorkerAssistant role requires some storage space to
store intermediate synchronisation results.

An example of non-functional requirements is the limit to the memory each agent could
occupy. In this case study, agents supporting field engineers should be able to operate in
PDAs with limited amount of memory. This is modelled as a general design constraint on
the performance variable memory. A possible agent organisation satisfying the above
design constraints is depicted in fig. 5.

Implementation

We have developed an experimental implementation of the system shown in figure 1 that
provides support for engineers to describe design concerns in the role algebra described
above and then to reuse previous role models in their implementations.
In order to implement these tools we needed to change the development process assumed
by the Zeus toolkit.

Figure 5: Agent types for the telephone repair service teams case study

has plays

Travelinfo
base

memory 2

Travelinfo
base

has plays

Employee
Manager

Employee

memory 2

Manager
Brulebase

WorkPool

Brulebase

WorkPool

has plays

memory 0

Customer Customer

has plays

Employee
Coordinator

Employee

memory 1

Travel
manager
Knowledge
Finder
Worker
Assistant

Worker
Assistant

has plays

memory 2

Knowledge
base

Knowledge
base

Mentor Mentor

In Figure 6 we show how role selection and the notion of agent type definition and
selection is incorporated into the process at the design phase before realisation and
configuration and then deployment.

Conclusions - further work

Existing approaches to agent organisation design do not pay enough attention to semi-
automating the transformation of analysis into design. In this paper, a simple role algebra
enabling automatic allocation of roles to agents has been introduced. This approach
enables reuse of organisational design settings by representing them as role models being
able to be manipulated considering the proposed role algebra.

However, there are issues that have not been addressed yet. For example, agents can play
different roles in different contexts and hence the possible contexts should be considered
when designing agent organisations. Furthermore, it is planned to use the role algebra to

Domai
Analysis Design Realisation

Implem -
entations Runtime

Support
Problems Solutions

- Onto logy
c rea tion
- Ag ent c rea tion
- Utility Agent
 Config ura tion
- Ta sk Ag ent
 Config ura tion
- Cod e

- Ro le m od e l se lec tion
- Ro le insta ntia tion
- Ag ent typ e d efinition

AAggee nnttss –– RRoollee ss –– GGooaa llss –– TTaa sskkss

- Ta sk Desc rip tion

VISUALISATION
DEBUGGING

AGENT DEFINITION
SYSTEM
CONFIGURATION

IDENTIFICATION OF
ONTOLOGY, ROLE,
TASKS/SERVICES &
AGENT TYPES

ROLE
MODELLING

DDee ppllooyymmee nntt

Figure 6. New Agent Design Process in Zeus

enable allocating and de-allocating roles to agents dynamically on run-time. This will
require alterations to the mechanisms for naming and namespace management that are
currently used in Agent standards and agent systems, and may provide support for a open
agent type management system.

More importantly than either of these considerations for further action is the need to
demonstrate the value of this approach. We have shown that role modelling is a feasible
mechanism for recording design knowledge and reusing it at a later date. We have no
evidence that our method is a better way of doing this than any other approach, or indeed
that it is better than not doing it at all! To provide answers to the questions posed by
development teams before they commit to a technology ("how much will it cost", "what
sort of training will we need", "what it the return on investment we can expect", "what
impact will this have on our development timescales") will require a substantial
investigation to measure the impact of industrialised versions of this technology on a
number of real world projects. This investigation will have to study the impact on code
reuse, productivity, cost and quality of product, and show that the technology can be used
by developers with typical skills and abilities.

Before such a study can be mounted a great deal needs to be done, we need to move our
implementations beyond the small examples that we have tried so far. We will need to
implement tools that are attractive and intuitive for developers and we will need to
integrate the technology with widespread defacto standards. Last, but by no means least,
we will be required to document and implement a large number of role models to provide
our trailists with sufficient material to test the validity of the approach.

Acknowledgements

This work has been supported by BT under a grant from the office of the Chief
Technologist (No. ML816801/MH354166).

References

[1] Andersen, E., Conceptual Modelling of Objects: a role modelling approach, in Dept
of Computer Science. 1997, University of Oslo: Oslo.

[2] Artikis, A. and J. Pitt, A Formal Model of Open Agent Societies, in Proceedings of
Autonomous Agents 2001. 2001: Montreal. p. 192-193.

[3] Biddle, B.J., Role Theory: Expectations, Identities and Behaviours. 1979, London:
Academic Press.

[4] Depke, R., R. Heckel, and J.M. Kuster, Improving the Agent-oriented Modeling
Process by Roles, in Proceedings of the fifth international conference on Autonomous
Agents. 2001, ACM Press: Montreal, Canada.

[5] Evans, R., MESSAGE: Methodology for Engineering Systems of Software Agents.
2000, BT Labs: Ipswich.

[6] Ferber, J. and O. Gutknecht. A meta-model for the analysis and design of
organisations of Multi-Agent systems. in International Confernce in Multi-Agent Systems
(ICMAS 98). 1998. Paris, France: IEEE Press.

[7] Hilaire, V., et al., Formal Specification and Prototyping of Multi-Agent Systems, in
Engineering Societies in the Agents' World ESAW'00 (in ECAI'00). 2000: Berlin.

[8] Karageorgos, A. and N. Mehandjiev, Specifying Role Constraints in RCL. 2001,
UMIST: Manchester. p. 35.

[9] Kendall, E.A., Role models - patterns of agent system analysis and design. BT Tech.
Journal, 1999. 17(4): p. 46-57.

[10] Kendall, E.A. and L. Zhao. Capturing and Structuring Goals. in Workshop on Use
Case Patterns, Object Oriented Programming Systems Languages and Architectures
(OOPSLA),. 1998.

[11] Nwana, H.S., et al., Zeus: A toolkit for Building Distributed Multi-Agent Systems.
Applied Artificial Intelligence Journal, 1999. 13(1): p. 187-203.

[12] Omicini, A. SODA : Societies and Infrastructures in the Analysis and Design o
Agent-based Systems. in Workshop on Agent-Oriented Software Engineering. 2000.
Limetick, Ireland.

[13] Parunak, V., J. Sauter, and S. Clark, Toward the Specification and Design of
Industrial Synthetic Ecosystems, in Intelligent Agents IV: Agent Theories, Architectures,
and Languages, M.P. Singh, A. Rao, and M.J. Wooldridge, Editors. 1998, Springer
Verlag: Berlin. p. 45-59.

[14] Scott, W.R., Organisations: Rational, Natural and Open Systems. 1992, New York:
Prentice Hall International.

[15] So, Y.-p. and E.H. Durfee, Designing Organisations for Computational Agents, in
Simulating Organisations: Computational Models of institutions and groups, M.J.
Prietula, K.M. Carley, and L. Gasser, Editors. 1998, AAAI Press. p. 47-64.

[16] Sparkman, C.H., S.A. DeLoach, and A.L. Self. Automated Derivation of Complex
Agent Architectures from Analysis Specifications. in Agent-Oriented Software
Engineering (AOSE-2001). 2001. Montreal, Canada.

[17] Stark, J., et al., ACSOSS: a case study applying the MESSAGE analysis method.
2001, BT Labs: Ipswich.

[18] Thompson, S.G. and B.R. Odgers. Collaborative Personal Agents for Team
Working. in Proceedings of the AISB Symposium. 2000. Birmingham, England.

[19] Wooldridge, M., N.R. Jennings, and D. Kinny, The Gaia methodology for agent-
oriented analysis and design. International Journal of Autonomous Agents and Multi-
Agent Systems, 2000. 3(3): p. 285-312.

[20] Yu, L. and B.F. Schmid. A Conceptual Framework for Agent Oriented and Role
Based Workflow Modelling. in CaiSE Workshop Conference on Agent Oriented
Information Systems (AOIS´99). 1999. Heidelberg: MIT Press.

Zambonelli, F.; Jennings, N.R.; and Wooldridge, M. J. 2000. Organizational Abstractions for the
Analysis and Design of Multi-Agent Systems. In Proceedings of the 1st Workshop on Agent-
Oriented Software Engineering, Springer-Verlag.

