
Human Resource Assessment in Software Development Projects Using Fuzzy
Linguistic 2-Tuples

Vassilis C. Gerogiannis
Dept. of Business
Administration

Technological Educational
Institute of Thessaly

Larissa, Greece
gerogian@teithessaly.gr

Elli Rapti
Institute of Research and
Technology of Thessaly
Centre for Research and

Technology
Volos, Greece

erapti@ireteth.certh.gr

Anthony Karageorgos
Dept. of Wood and Furniture

Design and Technology
Technological Education

Institute of Thessaly
Karditsa, Greece

karageorgos@teithessaly.gr

Panos Fitsilis
Dept. of Business
Administration

Technological Education
Institute of Thessaly

Larissa, Greece
fitsilis@teithessaly.gr

Abstract—Proper selection and allocation of human resources
to software development tasks is one of the key challenges in
software development projects. In this paper we present a
fuzzy linguistic approach that supports the selection of suitable
human resources based on their skills and the required skills
for each project task. The proposed approach uses 2-tuple
fuzzy linguistic terms and results in an objective aggregation of
the ratings of required task related skills and provided skills
from candidate human resources. The approach applies a
group-based, multi-criteria, similarity degree-based
aggregation algorithm. To reflect the contribution of one skill
to the learning of other skills, the approach also considers
possible relationships between skills. A numerical example is
presented as a proof of concept to demonstrate the
applicability of the approach.

Keywords-software project management; human resource
evaluation; 2-tuple fuzzy linguistic representation/computation
model

I. INTRODUCTION
The problem of human resource allocation in software

projects refers to the proper assignment of available human
resources to various development tasks [1]. The process
usually followed by software project management includes
the division of the project effort into tasks, each one
requiring specific skills, capabilities, and experience from
the available human resources (e.g., analysts, programmers,
testers etc.) [2]. Once the various development tasks to be
performed have been defined, the most suitable candidates
for each task should be selected according to task skill-
related requirements [3]. Managing personnel in software
projects still remains a complicated task due to the dynamic
and complex context in which it takes place [4]. The problem
of finding the “best human resource” is not always related to
the optimal decision, since finding the “most suitable human
resource” is required instead. Another key challenge is to
achieve an, as much as possible, objective evaluation of
skills of available human resources, according to various
task-related skill requirements.

In dealing with the problem of knowledge/skills
representation and evaluation in uncertain and imprecise
settings, fuzzy logic [5] proves to be an efficient conceptual

base, due to the fact that most human evaluation forms are
approximate by their nature [3]. In this paper, we use the
fuzzy linguistic 2-tuple representation/computation model
[6] to build an assessment approach for human resources in
software development tasks, according to provided/required
skills/competencies. The presented approach is based on a
group-based fuzzy multi-criteria method [7] that applies
similarity degree-based aggregation to derive an objective
assessment for provided/required skills/competencies. Since
skills/competencies in software development are not always
independent of each other (i.e., prior knowledge in various
skills contributes to learning of other skills) [8], an
advantageous characteristic of the proposed approach is the
consideration of possible skill relationships and
dependencies. The approach has been developed in the
context of the SPRINT SMEs R&D project [9] that aims to
suggest methods for software process improvement in the
context of small and medium sized software development
organizations.

The paper is organized as follows. In Section II we
provide a brief overview of the relevant literature, while in
Section III we describe the proposed approach for the
evaluation and selection of human resources in software
development tasks, providing a proof of concept example. In
Section IV we briefly discuss upon the usefulness of the
approach results and, finally, in Section V we conclude this
work by presenting our future research plans.

II. OVERVIEW OF RELATED WORK
Various approaches have been proposed in the literature

aiming to support the evaluation and allocation of personnel
in software development projects. For example, in [8] the
authors present the Best-Fitted Resource (BFR) methodology
which considers how prior knowledge in various skills
contributes to the learning of other skills. The BFR approach,
although similar with the one presented in the current paper,
does not take into account fuzziness and vagueness issues in
characterizing capabilities and the levels of expertise
required. There is also a lot of research focusing on use of
methods from the area of computational intelligence, such as
constraint satisfaction solving [2] and fuzzy logic [3, 10], to
rank available developers according to how suitable they are

2014 Second International Conference on Artificial Intelligence, Modelling and Simulation

978-1-4799-7600-3/14 $31.00 © 2014 IEEE

DOI 10.1109/AIMS.2014.15

217

to certain tasks. However, in the relevant literature, we have
found only few approaches for human resource evaluation in
software projects which are based on fuzzy logic and also try
to consider dependencies between skills. One such
representative method is suggested in [3]. The main
assumption of these approaches, such the one presented in
[3], is that a software development organization maintains a
knowledge base of fuzzy rules to describe, somehow
arbitrarily, management knowledge about skill relationships
and, consequently, follow a fuzzy inference mechanism to
undertake human resource evaluation and decision. On the
contrary, the presented approach is a group-based one that
emphasizes on deriving subjective values for skill
relationships and required/provided skill evaluations from
corresponding objective expert judgments expressed by
decision makers/project managers.

III. DESCRIPTION OF THE APPROACH
The proposed approach follows seven steps, which are

described in the following sections accompanied with short
illustrative examples, where appropriate.

Step A. Group-based linguistic evaluation of required
skills
Assuming that a software development task � is planned

to be executed as a set � = {��, ��, … , ��} comprised by �
individual development activities � , the approach applies
group-based decision making by requiring from � project
managers 	
 (� = 1, 2, … , �) to initially express levels of �
skills
 required for each individual activity to be completed
successfully. Skill requirements are expressed in a qualitative
form by utilizing the 2-tuple fuzzy linguistic terms approach
as introduced in [6]. Specifically, the 2-tuple linguistic
representation/computation model was chosen as the
underlying basis of the suggested approach, as it can
effectively avoid loss/distortion of information, an issue
typical with other fuzzy linguistic methods when dealing
with fuzzification/de-fuzzification of information [6, 11].

A 2-tuple linguistic variable is denoted as (��, ��), where
�� corresponds to the central value of the ��� linguistic term
in a term set and �� ∈ (−0.5, 0.5) is the distance from ��. For
example, let us assume that three project managers (� = 3)
evaluate four skills (� = 4) (e.g., Object Oriented Design,
C++, Visual Basic and Java) required to perform four
activities (� = 4) of a software development task. We
assume that during this specific development task four
software components have to be developed and, thus, there
are, respectively, four development activities that have to be
implemented. We further assume that in order to express
their evaluations, project managers have used a linguistic
label set � = ���, ��, … , ���, where � + 1 is the granularity of
the selected linguistic term set, which includes the following
terms: �� = ��� (Very Very Low) , �� = �� (Very Low) ,
�� = � (Low) , �� = � (Medium) , �� = � (High) , �! =
�� (Very High) , �" = ��� (Very Very High) . Project
managers may also select different linguistic term sets (i.e.,
sets having different granularities or semantics) to express
their evaluations on the required skills. In this case, all skill

assessments have to be unified into a uniform linguistic term
set by following the method proposed in [12, 13]. Since
project managers evaluate each activity according to the
required skills using linguistic terms from the term set �, the
linguistic evaluation #�$ for an activity �� (� = 1, 2, … , �)
with respect to each skill
$ (% = 1, 2, … , �) is transformed
into a 2-tuples of the form (��, 0), according to the following
transformation function [6]:

&: ' → ' × [0.5,0.5), &(��) = (��, 0), �� ∈ ' (1)

Table I presents an example of project managers’
evaluations in the form of 2-tuples for the levels of skills
required for each one of four development activities (� = 4)
comprising a software development task. In each cell of
Table I there are two evaluation values in the form of
tuple1/tuple2, where tuple1 and tuple2 are both linguistic 2-
tuples. The first tuple in each cell (tuple 1) corresponds to the
judgment expressed by a project manager for the level of
skill required from a human resource to perform an activity.
The second tuple in each cell (tuple 2) corresponds to the
judgment expressed by a project manager for the level of
skill that characterizes a candidate human resource with
respect to a required skill. These second tuples (i.e., tuple 2
values) will be used in step 5 of the approach to derive an
objective evaluation for the skills available from the
candidate human resources. For example, according to
project manager 	� a ‘Very Very High’ level of competency
in Java is required for activity ��, expressed by the 2-tuple
(���, 0). In addition, project managers may have different
expertise and background in managing software projects and
assessing the needs of software development tasks; therefore,
a different relative importance level-weight -
 can be
assigned to each project manager. In Table I we assume for
simplicity reasons equal importance weights (i.e., each -
 is
equal to 1/3) for all three project managers involved in the
case example.

Step B. Similarity degree-based aggregation of different
skills’ evaluations
By performing group-based linguistic evaluation, all

skills required to perform a software development task are
characterized by subjective project manager judgments.
However, some of the provided judgments may be biased
towards each required skill. To derive a more objective
assessment, the proposed approach applies similarity degree-
based aggregation as introduced in [7]. The final aggregated
assessments consider not only the relative importance
weights -
 of project managers but also similarities in their
respective evaluations. Therefore, the approach makes
aggregation results to reflect the collective judgments of
project managers more reasonably and more objectively. The
similarity degree-based aggregation follows three sub-steps:

1) Similarity degree calculation: A similarity degree
���/#�$

 , #�$
6 7 ∈ (0�, �1] is calculated between any two skills’

evaluations provided by two managers 	
 and 	6 (� ≠ ;, � =
1, 2, … , �, ; = 1, 2, … , �) for each activity �� (� =
1, 2, … , �) with respect to each skill
$ (% = 1, 2, … , �). To
calculate the similarity degree value, the distance between

218

#�$

 and #�$

6 evaluations is computed, which is equal to
<>?�/#�$

 7 − >?�(#�$
6)< , where >?� is the reverse function

that transforms a 2-tuple linguistic variable into a numerical
value [6].

In particular, given a linguistic term set �, @ ∈ [0, �] is a
number representing the aggregation result of a symbolic
aggregation operation. Let � = ABC�D(@) and E = @ − � be
two values such that � ∈ [0, �] and � ∈ [−0.5�, �0.5) . The
value � is the symbolic translation. The 2-tuple that
expresses the equivalent information with the value @ results
from the translation function >(@) [6]:

>: [0, �] → ' × [−0.5�, �0.5) (2)

>(@) = (��, �) = F ��, � = ABC�D(@)
E = @ − �, � ∈ [−0.5�, �0.5)

� (3)

A 2-tuple linguistic variable can be transformed into an
equivalent number @ ∈ [0, �] by the reverse function >?� as
follows [6]:

>: ' × [−0.5�, �0.5) → [0, �] (4)

>?�(��, �) = � + � = @ (5)

The similarity degree value ���/��$

 , ��$

6 7 is then
computed according to the following formula [7]:

���/#�$

 , #�$

6 7 = 1 − G
>?�/#�$

 7 − >?�(#�$
6)

�
G (6)

where � + 1 is the granularity of the used linguistic term set.
The closer the similarity degree to 1, the more similar the
evaluations of any two project managers are for the same
activity with respect to a particular skill.

For example, considering the evaluations given by
project managers 	� and 	� for activity �� with respect to
skill
� , that is expertise in object oriented design,
Δ?�(#��

�) = 1 and Δ?�(#��
�) = 0 (Table I), the similarity

degree between these two evaluations, according to (6) is
���(#��

� , #��
�) = 0.83. Accordingly, we calculate

���(#��
� , #��

�) and ���(#��
� , #��

�), which are equal to 1 and
0.83, respectively.

2) Average and relative similarity degree calculation:
For each project manager, the average similarity degree
'��$(
) and the relative similarity degree K'��$(
) are
calculated, regarding the evaluation of each activity
�� (� = 1, 2, … , �) with respect to each skill
$ (% =
1, 2, … , �). These are respectively given by the following
equations [7]:

'��$(
) =
∑ ���/#�$

 , #�$
6 7O

6P�,6Q

� − 1
 (7)

K'��$(
) =
'��$(
)

∑ '��$(6) O
6P�

 (8)

As an example, having calculated in the previous step the
similarity degrees for activity �� with respect to skill
�

(object oriented design), the average similarity degree for
each project manager according to (7) is '���(�) =
0.92, '���(�) = 0.83 and '���(�) = 0.92.
Consequently, the relative similarity degree for each project
manager according to (8) is K'���(�) = 0.34 ,
K'���(�) = 0.32 and K'���(�) = 0.34.

3) Importance level calculation: The importance level
S�$

 for each project manager 	
 is calculated by considering
his/her relative importance weight -
 and the relative
similarity degree of his/her evaluations, as follows [7]:

S�$

 =

-
 × K'��$(
)

∑ T-6 × K'��$(
)UO
6P�

 (9)

Having assumed equal relative importance weights for all
three project managers (i.e., each -
 is equal to 1/3, Table I)
and considering the calculated relative similarity degrees, we
compute the importance level of the assessment of each
project manager for activity �� with respect to skill
� using
formula (9), that is w��

� = S��
� = S��

� = 0.33 . The
importance levels of the assessments of the three project
managers are found to be equal, since, for simplicity reasons,
they are assigned to equal relative importance weights.
However, in the general case involving project managers
with different relative importance weights, the levels of their
assessments can be unequal.

Step C. Calculation of aggregated rating of importance for
each required skill
The objective aggregation for all activities’ ratings is

computed by utilizing the weighted average operator, as
defined for fuzzy linguistic 2-tuples in [6]. In particular, for a
set of linguistic 2-tuples {(��, ��), (��, ��), … , (�6, �6)} and
their corresponding weights {S�, S�, … , S6} , the 2-tuple
weighted average operator �̅ is computed as follows [6]:

�̅ = > X
∑ (>?�(��, ��) × S�)6

�P�

∑ S�
6
�P�

Y

= > X
∑ (@� × S�)6

�P�

∑ S�
6
�P�

Y

(10)

In equation (10), @� is calculated by the reverse function
>?� described in (5). The final aggregated rating FX�$ of
each activity �� (� = 1, 2, … , �) with respect to each skill
$
(% = 1, 2, … , �) can be computed by applying the weighted
average operator on the linguistic evaluations of the activities
and using as weights the previously calculated importance
levels for these assessments. Thus, according to (10) the final
aggregated ratings FX�$ are calculated as follows:

^#�$ = > X
∑ />?�/#�$

� , ��$
� 7 × S�$

� 7O
�P�

∑ S�$
�O

�P�
Y (11)

The final aggregated ratings for all activities with respect
to the various required skills are presented in Table II.

219

Step D. Task profile evaluation with respect to skill
requirements
Since a software development task is composed by a

number of activities, an overall “profile” can be created for
the composite development task as a vector of linguistic 2-
tuples. This profile represents the level of resource skills
required for the task successful implementation, according to
the project managers’ evaluations. The task profile _`$ with
respect to each required skill
$ can be calculated by
applying the weighted average operator (10) to the
previously calculated final aggregated ratings of skills (11)
and using as weights the importance degrees a� of the
development activities �� which comprise the software
development task. The importance degree a� of a
development activity �� (Table II, column 2) reflects the
value-priority of the software component that results from
the activity implementation. Thus, the task profile _`$ is
computed according to the following formula

_`$ = > X
∑ />?�/^#�$7 × a�7�

�P�

∑ a�
�
6P�

Y (12)

where � is the total number of activities for each task. The
resulted task profile for all individual required skills is
calculated as a vector of linguistic 2-tuples and it is presented
in the second column of Table III. From this specific task
profile, we can conclude that, for this specific task, high
level knowledge in C++ is required (i.e., the corresponding
2-tuple is equal to (�, 0.14)) and not so high-level
knowledge in Visual Basic and Java (i.e., the corresponding
2-tuples are equal to (�, 0.24) and (��, 0.34), respectively).

Step E. Linguistic evaluation of skills available from
candidate human resources
After having calculated the task profile, we continue by

evaluating candidate human resources according to their
available skills with respect to the specific task required
skills. To consider and evaluate objectively the
capability/suitability of b candidate human resources A with
respect to the task required skills
$ (% = 1, 2, … , �) , the
previous steps are repeated. In particular, each project
manager evaluates all candidate human resources according
to their level of knowledge on different required skills using
a linguistic label set � = ���, ��, … , ��� . The linguistic
evaluations K�$ of resources according to their skills are then
transformed into 2-tuples in the form (��, 0) according to (1).
In Table I the second tuple in each cell (tuple 2) corresponds
to the judgment expressed by the corresponding project
manager for the level of skill of each one human resource
from the set of four candidates (b = 4) with respect to each
required skill. For example, according to project manager 	�,
human resource A� is characterized by a ‘Very Low’ level of
knowledge regarding object oriented design.

To derive an objective assessment for these judgments,
the similarity degree value between any two project
managers’ evaluations is calculated using formula (6). The
importance level is calculated according to (9), using the
average and relative similarity degree, calculated by (7) and

(8), respectively. Then, a final aggregated rating ^K�$ of each
resource A� (� = 1, 2, … , b) with respect to each skill
$
(% = 1, 2, … , �) is calculated according to (11). Finally, the
capability/suitability of each resource cs� (� = 1, 2, … , b) is
computed by applying the weighted average operator (10) on
the final aggregated rating ^K�$, using as weights the
previously calculated task profile assessments _`$ (% =
1, 2, … , �) (12) for each individual required skill.

In the presented example, the final aggregated ratings
^K�$ of each resource A� with respect to each skill
$ are
shown in columns 3-6 of Table III. The capability/suitability
of each resource cs� is shown in the seventh column of Table
III.

Step F. Consideration of skills’ relationships
Skills/competencies in software development are not

always independent of each other. On the contrary, prior
knowledge in various skills contributes to the learning of
other skills [8]. For example, prior knowledge in object
oriented design can be considered helpful to develop skills in
C++ programming. In this step of the approach we consider
skill relationships, which represent the level to which
knowledge on one skill contributes to the improvement (via
learning) of another skill. To this end, each manager
evaluates subjectively skill relationships and a skill-
relationships table is constructed, where relationships
between skills are depicted in linguistic terms using a
linguistic label set � = ���, ��, … , ���, as shown in Table III.
For example, according to project manager 	� , existing
competency in C++ programming contributes at a ‘Very
Very High’ level to improve skills in object oriented design.

To evaluate objectively the skill-relationships with
respect to the task required skills
$ (% = 1, 2, … , �) , the
previous steps are repeated again. Specifically, the linguistic
evaluations f�$ of skill-relationships are transformed into 2-
tuples in the form (��, 0) according to (1). To derive a more
objective assessment, the similarity degree values between
the project managers’ evaluations are calculated using
formula (6). The importance levels are calculated according
to (9), using the average and relative similarity degree
calculated by (7) and (8) respectively. Finally, the objective
skill-relationships are extracted through the final aggregated
rating ^'K�$ of each relationship between any two skills
/
$, % = 1, 2, … , �7 . The final aggregated ratings ^'K�$ of
skill-relationships are calculated according to (11) and they
are presented in Table IV.

Step G. Re-evaluation of the capabilities of human
resources
As a last step of the approach, the capabilities of human

resources on each required skill need to be re-evaluated
according to the final aggregated rating of skill-relationships,
which were calculated in the previous step. A new value is
computed for the capability/suitability of each human
resource, which results as the maximum value between the
previously calculated capability of a skill and the weighted

220

average contribution on that skill from other skills as
follows:

^K�$
jkl = ��� X^K�$;

∑ /^K�� × ^'K�$7p
�P�,�Q$

∑ ^'K�$
p
�P�,�Q$

Y (13)

Consequently, the re-evaluated final aggregated rating
FR�$ of each human resource A� (� = 1, 2, … , b) with respect
to each skill
$ (% = 1, 2, … , �) is computed by applying the
weighted average operator (10) on the re-evaluated
linguistic evaluations of the human resources, using as
weights the previously calculated task profile assessments
for each individual skill. The re-evaluated resource
capabilities are presented in the last column of Table III.
The comparison between the initial ratings (seventh column
in Table III) and the final ratings (last column in Table III)
of the candidate resources shows that definitely the most
suitable candidate human resource to be involved in the
activities of the development task is resource A�.

IV. DISCUSSION
Systematic utilization of all available human resources in

a software development project is a very important issue. To
address this issue, we introduced a method for the efficient
evaluation and selection of human resources in a software
development project. Using subjective evaluations on skills
required for specific task activities, available human resource
skills and relationships between the various skills, all
expressed by project managers in a qualitative linguistic
form, we are able to extract objective evaluation on resource
capabilities and their suitability for the respective
development task. Specifically, by considering the skill
relationships which reflect the degree to which one skill
contributes to the learning of other skills, the difference
between the most suited human resource and the rest
available resources for a specific task can be intensified, thus
better indicating the most appropriate candidate for the
specific task. According to the results of the proof of concept
example, we can conclude that in the initial evaluation of the
candidate human resources (Table III, seventh column) both
resources A� and A� are assumed almost highly suitable for
the task skill requirements, with ratings 3.64 and 3.94 ,
respectively. However, due to the re-evaluation considering
skill relationships, A� ends up being more suitable (rated as
��(4.96)) with greater difference from A� (Table III, last
column).

V. CONCLUSION
In this paper we presented a fuzzy linguistic approach

based on 2-tuple fuzzy linguistic terms for the assessment of
human resources involved in the development tasks of a
software development project. The method follows a group
and similarity degree-based aggregation algorithm to obtain
an objective aggregation of the ratings of multiple required
task related skills and provided skills from the available
human resources. In addition, skill relationships are
evaluated as 2-tuple fuzzy linguistic terms to represent
dependencies between the various task-related skills and

reflect the contribution of one skill to the learning of other
skills.

As a future work we plan to further improve the
suggested approach by determining resource teams based on
skill substitution and complementarity associations between
candidate human resources. In addition, we aim to address
the provision of appropriate support to the allocation of
human resources to software development tasks by
performing multi-objective optimization (according to
budget and availability constraints) and by applying bio-
inspired optimization approaches.

ACKNOWLEDGMENT
This research has been co-financed by the European

Union (European Social Fund) and Greek national funds
through the Operational Program “Education and Lifelong
Learning” of the National Strategic Reference Framework
(NSRF)-Research Funding Program: ARCHIMEDES III,
Investing in knowledge society through the European Social
Fund, under the “SPRINT SMEs” project (Research in
software process improvement methodologies for Greek
small medium sized software development enterprises).

REFERENCES
[1] T. J. A. Santos, A. M. Lima, C. A. L. Reis, and R. Q. Reis,

"Automated support for human resource allocation in software process
by cluster analysis," in Proceedings of the 4th International Workshop
on Recommendation Systems for Software Engineering, 2014, pp. 30-
31.

[2] A. Barreto, M. d. O. Barros, and C. M. Werner, "Staffing a software
project: A constraint satisfaction and optimization-based approach,"
Computers & Operations Research, vol. 35, pp. 3073-3089, 2008.

[3] D. A. Callegari and R. M. Bastos, "A Multi-criteria Resource Selection
Method for Software Projects Using Fuzzy Logic," in Enterprise
Information Systems, ed: Springer, 2009, pp. 376-388.

[4] L. C. e Silva and A. P. C. S. Costa, "Decision model for allocating
human resources in information system projects," International
Journal of Project Management, vol. 31, pp. 100-108, 1// 2013.

[5] L. A. Zadeh, "Fuzzy sets,"Information and control, vol. 8, pp. 338-
353, 1965.

[6] F. Herrera and L. Martínez, "A 2-tuple fuzzy linguistic representation
model for computing with words," Fuzzy Systems, IEEE Transactions
on, vol. 8, pp. 746-752, 2000.

[7] X. Liao, Y. Li, and B. Lu, "A model for selecting an ERP system based
on linguistic information processing," Information Systems, vol. 32,
pp. 1005-1017, 2007.

[8] L. D. Otero, G. Centeno, A. J. Ruiz-Torres, and C. E. Otero, "A
systematic approach for resource allocation in software projects,"
Computers & Industrial Engineering, vol. 56, pp. 1333-1339, 2009.

[9] SPRINT SMEs Project. Available at: http://sprint.teilar.gr/
[10] N. A. Ruskova, "Decision support system for human resources

appraisal and selection," in Intelligent Systems, 2002. Proceedings.
2002 First International IEEE Symposium, 2002, pp. 354-357.

[11] F. Herrera and L. Martinez, "The 2-tuple linguistic computational
model: advantages of its linguistic description, accuracy and
consistency," International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems, vol. 9, pp. 33-48, 2001.

[12] F. Herrera, E. Herrera-Viedma, and J. Verdegay, "A rational consensus
model in group decision making using linguistic assessments," Fuzzy
Sets and Systems, vol. 88, pp. 31-49, 1997.

[13] F. Herrera, L. Martınez, and P. J. Sánchez, "Managing non-
homogeneous information in group decision making," European
Journal of Operational Research, vol. 166, pp. 115-132, 2005.

221

TABLE I. PROJECT MANAGER EVALUATIONS ON REQUIRED SKILLS (�) / RESOURCES (A)

Activity (v)/
Resource (x)

Project Manager
(z)/Weight of

Importance (|)

Levels of Skills Required for a Task / Skills Available from Candidate Resources (~)
OO design (~�)
tuple1/tuple2

C++ (~�)
tuple1/tuple2

VB (~�)
tuple1/tuple2

Java (~�)
tuple1/tuple2

v�/x�
	�/(1 3⁄) Η(4, 0)/VL(1, 0) L(2, 0)/L(2, 0) VL(1, 0)/ Η(4, 0) VVΗ(6, 0)/VH(5, 0)
	�/(1 3⁄) VVΗ(6, 0)/L(2, 0) VL(1, 0)/VL(1, 0) M(3, 0)/VH(5, 0) VH(5, 0)/M(3, 0)
	�/(1 3⁄) VVΗ(6, 0)/ VL(1, 0) VVL(0, 0)/ VVL(0, 0) M(3, 0)/ VH(5, 0) M(3, 0)/ L(2, 0)

v�/x�
	�/(1 3⁄) VL(1, 0)/VL(1, 0) VL(1, 0)/ VL(1, 0) VH(5, 0)/VH(5, 0) VL(1, 0)/L(2, 0)
	�/(1 3⁄) VVL(0, 0)/VL(1, 0) VL(1, 0)/VL(1, 0) VVΗ(6, 0)/ Η(4, 0) L(2, 0)/L(2, 0)
	�/(1 3⁄) VL(1, 0)/ VVL(0, 0) L(2, 0)/ VL(1, 0) VH(5, 0)/VH(5, 0) L(2, 0)/ L(2, 0)

v�/x�
	�/(1 3⁄) VH(5, 0)/M(3, 0) VH(5, 0)/VH(5, 0) L(2, 0)/Η(4, 0) L(2, 0)/L(2, 0)
	�/(1 3⁄) VVΗ(6, 0)/ Η(4, 0) M(3, 0)/VH(5, 0) L(2, 0)/ L(2, 0) VL(1, 0)/VL(1, 0)
	�/(1 3⁄) VVΗ(6, 0)/ L(2, 0) VVΗ(6, 0)/VVΗ(6, 0) L(2, 0)/ M(3, 0) VL(1, 0)/VL(1, 0)

v�/x�
	�/(1 3⁄) L(2, 0)/VH(5, 0) VVΗ(6, 0)/VVΗ(6, 0) VL(1, 0)/VL(1, 0) VL(1, 0)/VL(1, 0)
	�/(1 3⁄) Η(4, 0)/VVΗ(6, 0) VH(5, 0)/VH(5, 0) VL(1, 0)/VL(1, 0) VL(1, 0)/VL(1, 0)
	�/(1 3⁄) VH(5, 0)/VH(5, 0) VH(5, 0)/VH(5, 0) L(2, 0)/ VL(1, 0) VVL(0, 0)/VVL(0, 0)

TABLE II. FINAL AGGREGATED RATINGS OF ACTIVITIES (FX) AND TASK PROFILE (TP)

Activity (v) Activity
Importance Degree (�)

Required Skills (~) Task Profile (��)
OO design (~�) C++ (~�) VB (~�) Java (~�)

v� VL(1, 0) 5.43/(5, 0.43) 1/(1, 0) 2.43/(2, 0.43) 4.75/(5, −0.25) 3.87/�(4, −0.13)
v� L(2, 0) 0.66/(1, −0.34) 1.31/(1, 0.31) 5.31/(5, 0.31) 1.69/(2, −0.31) 4.14/�(4, 0.14)
v� M(3, 0) 5.69/(6, −0.31) 4.75/(5, −0.25) 2/ (2, 0) 1.31/(1, 0.31) 2.24/�(2, 0.24)
v� VVΗ(6, 0) 3.75/(4, −0.25) 5.31/(5, 0.31) 1.31/(1, 0.31) 0.69/(1, −0.31) 1.34/��(1, 0.34)

TABLE III. FINAL AGGREGATED RATINGS OF RESOURCES (FR) / RE-EVALUATED RATINGS (FR���) AND RESOURCE CAPABILITIES ASSESSMENT (CS)

Resource
(x)

Task
Profile (��)

Required Skills (~) Resource
Capabilities (��)

Resource
Capabilities

(��) (re-
evaluated)

OO design (~�)
(FR/FR���)

C++ (~�)
(FR/FR���)

VB (~�)
(FR/FR���)

Java (~�)
(FR/FR���)

x� H(4, −0.13) 1.31/2.41 1/2.76 4.69/4.69 3.25/3.25 2.07/L 3.08/M
x� H(4, 0.14) 0.69/1.92 1/2.06 4.69/4.69 2/2 1.73/L 2.51/M
x� L(2, 0.24) 3/3.41 5.31/5.31 3/3.27 1.31/3.95 3.64/H 4.13/H
x� VL(1, 0.34) 5.31/5.31 5.31/5.31 1/3.87 0.69/4.67 3.94/H 4.96/VH

TABLE IV. PROJECT MANAGER EVALUATIONS (f) AND FINAL AGGREGATED RATINGS OF SKILL RELATIONSHIPS (FSR)

Required
Skills (~)

Required Skills (~)
OO design (~�) C++ (~�) VB (~�) Java (~�)

� ^'K � ^'K � ^'K � ^'K
OO

design
(~�)

--
--

VH(5, 0)
5/VH(5, 0)

M(3, 0)
2.69/M(3, −0.31)

VH(5, 0)
5/VH(5, 0) -- Η(4, 0) L(2, 0) VH(5, 0)

-- VVΗ(6, 0) M(3, 0) VH(5, 0)

C++ (~�)
VVΗ(6, 0)

5.43/VH(5, 0.43)
--

--
L(2, 0)

2.69/M(3, −0.31)
VH(5, 0)

4.69/VH(5, −0.31) Η(4, 0) -- M(3, 0) Η(4, 0)
VVΗ(6, 0) -- M(3, 0) VH(5, 0)

VB (~�)
L(2, 0)

1.69/L(2, −0.31)
M(3, 0)

2.69/M(3, −0.31)
--

--
L(2, 0)

1.69/L(2, −0.31) L(2, 0) L(2, 0) -- VL(1, 0)
VL(1, 0) M(3, 0) -- VL(1, 0)

Java (~�)
Η(4, 0)

4.57/VH(5, −0.43)
VH(5, 0)

4.31/H(4, 0.31)
VL(1, 0)

2.43/L(2, 0.43)
--

-- Η(4, 0) Η(4, 0) M(3, 0) --
VVΗ(6, 0) Η(4, 0) M(3, 0) --

222

