
An Introduction to Object-Oriented
Analysis and Design and the Unified
Process
 “Applying UML and Patterns, 3rd
ed.” – Craig Larman, pp. 1 – 100

Kakarontzas George
gkakaron@teilar.gr

mailto:gkakaron@teilar.gr

Important skills for an object-
oriented developer
 Object-Oriented Analysis and Design

(OOA/D)
 UML
 Requirement Analysis
 Design Patterns
 Principles and Guidelines
 Iterative Development
 The most basic skill: “Know how to assign

responsibilities to objects”

Analysis and Design

 Analysis: Do the right thing
 Investigate what is the problem and what are the

requirements, rather than a solution.
 A broad term, best qualified, as in requirements analysis or

object-oriented analysis (what are the domain objects?)
 Design: Do the thing right

 Design a conceptual solution to the problem, omitting obvious
implementation details

 Again a broad term, best qualified, as in object-oriented
design, database design etc.

Object-Oriented analysis and
design
 Object-Oriented Analysis: Discover the domain concepts

(the objects of the problem domain)
 Object-Oriented Design: Define software objects and

how they collaborate to fulfill the requirements

What is UML

 “The Unified Modeling Language (UML) is a
visual language for specifying, constructing and
documenting the artifacts of systems. It is a
general-purpose modeling language that can be
used with all major object and component
methods, and that can be applied to all
application domains (e.g., health, finance,
telecom, aerospace) and implementation
platforms (e.g., J2EE, .NET) [Object
Management Group: “UML 2.0 Infrastructure
Specification”]

What UML isn’t

 UML is not an Object-Oriented Analysis and
Design process (i.e. a systematic way to develop
software systems).

 UML will not teach you an Object-Oriented way
of thinking:
 It will not tell you how to assign responsibilities to

objects or whether your design is good or bad.
 UML is not meant to be the complete solution for

your software development (unless you use it as
in Model-Driven Architecture – MDA)

Software Development Processes
and UP
 A software development process describes an approach

to building, deploying and possibly maintaining software.
 The Unified Process (UP) has emerged as a popular

iterative software development process for building
object-oriented systems.

 UP:
 Is iterative
 Provides an example structure for OOA/D
 Is flexible (can be combined with practices from other OO

processes)

Iterative Development
 Development is organized in a series of fixed-length iterations (mini-

projects).
 Each iteration includes it’s own requirement analysis, design,

implementation, integration and testing.
 This method is also:

 Incremental: system grows with each iteration.
 Evolutionary: feedback from each iteration evolves specification and

design.
Requirements

Design

Implementation &
Test & Integration

& More Design

Final Integration
& System Test

Requirements

Design

3 weeks (for example)
The system grows
incrementally.

Feedback from
iteration N leads to
refinement and
adaptation of the
requirements and
design in iteration
N+1.

Iterations are fixed in
length, or timeboxed.

Time
Implementation &
Test & Integration

& More Design

Final Integration
& System Test

Convergence to true system path
 Build – Feedback – Adapt Cycles
 Helps resolve and prove the risky and critical design

decisions early rather than late
 Over time the system converges over its true path.

Early iterations are farther from the "true
path" of the system. Via feedback and
adaptation, the system converges towards
the most appropriate requirements and
design.

In late iterations, a significant change
requirements is rare, but can occur. S
late changes may give an organizatio
competitive business advantage.

one iteration of design,
implement, integrate, and test

Benefits of Iterative Development

 Less project failure, better productivity, and
lower defect rates.

 Early mitigation of high risks.
 Early visible progress.
 Early user engagement provides feedback for

system adaptation to true stakeholder needs.
 Managed complexity: avoids analysis paralysis.
 A chance to improve the process itself iteration

by iteration.

Iteration Timeboxing

 Iterations should be short.
 Between two to three weeks.
 Less than two weeks: too short for meaningful

throughput and feedback.
More than six weeks: complexity becomes

overwhelming
 Iterations have fixed length (timeboxing)

 If it seems difficult meeting the deadline de-scope
(move tasks or requirements to future iterations).

Why is Waterfall Bad?

 It is a proven fact that on average 45% of
the features of waterfall projects was
never used.

 25% change in requirements is typical in
software projects. Therefore is impossible
to freeze the requirements early on.

Risk-Driven and Client-Driven
Iterative Planning
 The goals of early iterations are:

1. To identify and drive down the high risks
 Early iterations focus on building, testing and

stabilizing the core architecture.
2. Build visible features that clients care most

about.

Agile Processes

 It is not possible to exactly define agile
methods. However main characteristics include
short timeboxed iterations with evolutionary
refinement of plans, requirements, and design.

 In addition, they promote practices and
principles that reflect an agile sensibility of
simplicity, lightness, communication, self-
organizing teams, and more.

Critical Unified Process Practices

 Basic:
 Short timeboxed iterations
 Evolutionary and adaptive development

 In Addition:
 Address high-risk and high-value early
 Engage users
 Build core architecture early
 Continuously verify quality (test often, early and

realistically)

Critical Unified Process Practices
(cont.)
Apply use cases where appropriate
Do some visual modeling (with UML)
Carefully manage requirements
Practice change requrest and configuration

management.

Unified Process Phases

 Inception – approximate vision, business case, scope,
vague cost estimates, buy and/or build.

 Elaboration – refined vision, iterative implementation of
the core architecture, resolution of high risks,
identification of most requirements and scope, more
realistic estimates.

 Construction – iterative implementation of the remaining
lower risk and easier elements, and preparation for
deployment.

 Transition – beta tests, deployment.

Schedule-Oriented Terms in the
Unified Process

inc. elaboration construction transition

iteration phase

development cycle

release

A stable executable
subset of the final
product. The end of
each iteration is a
minor release.

increment

The difference
(delta) between the
releases of 2
subsequent
iterations.

final production
release

At this point, the
system is released
for production use.

milestone

An iteration end-
point when some
significant decision
or evaluation
occurs.

Some Unified Process Terminology

 Artifact: A general term for any work product:
code, web graphics, database schema, text
documents, diagrams, models and so on.

 Discipline: A set of activities and related artifacts
in one subject area such as the activities within
requirements analysis.

 The UP describes work activities, such as writing
a use case, within disciplines.

Unified Process Disciplines

Iterations

Sample
UP Disciplines

Business Modeling

Requirements

Design

Implementation

Test

Deployment

Configuration & Change
Management

Project Management

Environment

Focus
of this
book

Note that
although an
iteration includes
work in most
disciplines, the
relative effort and
emphasis change
over time.

This example is
suggestive, not
literal.

A four-week iteration (for example).
A mini-project that includes work in most
disciplines, ending in a stable executable.

Relationship Between Disciplines
and Phases

Sample
UP Disciplines

Business
Modeling

Requirements

Design

Implementation

...

The relative effort in
disciplines shifts
across the phases.

This example is
suggestive, not literal.

incep-
tion elaboration construction transi-

tion

...

Inception Phase

 Explores the following questions:
What is the vision and business case for this project?
 Feasible?
 Buy and/or build?
 Rough unreliable range of cost: Is it $10K-100K or in

the millions?
 Should we proceed or stop?

 Should be short (e.g. one week for most
projects)

Artifacts that may start in Inception

 Vision and business case
 Use-Case model
 Supplementary Specification
 Glossary
 Risk List & Risk Management Plan
 Prototypes and Proof-of-Concepts
 Iteration Plan
 Phase Plan & Software Development Plan
 Development Case

Requirements and
Requirements Analysis
 “Requirements are capabilities and conditions to

which the system – and more broadly, the
project – must conform” [Jacobson, Booch and
Rambaugh: “The Unified Software Development
Process”, Addison-Wesley, 1999]

 A prime challenge of requirement analysis is to
find, communicate and remember (write down)
what is really needed, in a form that is clear both
to clients and team members.

Types and Categories of
Requirements
 In UP requirements are categorized according to the

FURPS+ model [R. Grady: “Practical Software Metrics
for Project Management and Process Improvement”,
Prentice-Hall Inc, 1992.]
 Functional – features, capabilities, security
 Usability – human factors, help, documentation
 Reliability – frequency of failure, recoverability, predictability
 Performance: response times, throughput, accuracy, availability,

resource usage
 Supportability – adaptability, maintainability, internationalization,

configurability

Types and Categories of
Requirements (cont.)
 The ‘+’ in FURPS+ indicates sub-factors such

as:
 Implementation – resource limitations, languages and

tools, hardware, …
 Interface – constraints imposed by interfacing with

external systems
Operations – system management in its operational

setting
 Packaging – for example a physical box
 Legal – Licensing and so forth

Use Cases

 Informally they are stories of system usage.
 A mechanism to capture requirements
 They are written in a text form but can also be

drawn in diagrams.
 The text is more important: writing use cases is a text-

writing activity: Use cases are not diagrams, they
are text.

 The hard part is not learning the use case
diagram, which is very simple, but learning how
to identify and write good use cases.

Operation:
 enterItem(…)

Post-conditions:
- . . .

Operation Contracts

Sale

date
. . .

Sales
LineItem

quantity

1..*1 . . .

. . .

Domain Model

Use-Case Model

Design Model
: Register

enterItem
(itemID, quantity)

: ProductCatalog

spec = getProductSpec(itemID)

addLineItem(spec, quantity)

: Sale

objects, attributes,
associations

Require-
ments

Business
Modeling

Design

Sample UP Artifact Relationships

: System

enterItem
(id, quantity)

Use Case Text

System Sequence Diagrams

make
NewSale()

system
events

Cashier

Process
Sale

: Cashier

use
case

names

system
operations

Use Case Diagram

Vision

Supplementary
Specification

Glossary

scope, goals,
actors, features

terms, attributes,
validation

non-functional reqs,
quality attributes

requirements

Process Sale

1. Customer
arrives ...
2. Cashier
makes new
sale.
3. ...

Brief Format of Use Cases
 Uses cases are text describing the usage

of the system by an actor to meet a goal.
 Initially they can be written in a brief

format, e.g.
“Process sale: A customer arrives at a checkout with
items to purchase. The Cashier uses the POS (Point Of
Sales) system to record each purchased item. The
system presents a running total and line-item details.
The customer enters payment information, which the
system validates and records. The system updates
inventory. The customer receives a receipt from the
system and leaves with the items.”

Actors, Scenarios and Use Cases

 An actor is something with behavior, such as a
person (identified by role), computer system, or
organization, e.g. Cashier.

 A scenario is a specific sequence of actions and
interactions between actors and the system
(also called a use case instance).

 A use case is a collection of related success and
failure scenarios, that describe an actor using
the system to achieve a goal.

Use case definition by RUP

 Another use case definition by RUP: “A set of
use-case instances, where each instance is a
sequence of actions a system performs that
yields an observable result of value to a
particular actor”.

 The use case model may optionally include a
use case diagram:
 Names of use cases and actors
 A context diagram of system and its environment
 A quick way to list use cases by names

Why use cases?

 They are a simple way of capturing user
goals: they don’t send your average
business person to coma!

 Emphasize the user goals and
perspective.

 Don’t concentrate on secondary issues
(use case relationships, use case
packages and so forth). Instead do the
hard work of simply writing text stories.

Three Kinds of Actors
 Primary Actor: has user goals fulfilled through

using services of the SuD (System under
Development) – e.g. Cashier
Why identify? To find user goals, which drive use

cases.
 Supporting Actor: provides a service to the

SuD (e.g. payment authorization service).
Why identify? Clarify external interfaces and protocols

 Offstage Actor: has an interest in the behavior
of the use case (but is not primary or supporting)
– e.g. tax agency.
Why identify? To ensure than all necessary interests

are identified and satisfied.

Three Common Use Case Formats
 Brief: One paragraph summary (usually the

main success scenario or happy path)
When? During early requirements analysis.

 Casual: Multiple paragraphs covering various
scenarios.
When? As above

 Fully Dressed: Includes all steps and variations.
Also includes supporting sections (e.g.
preconditions)
When? After many use cases have been identified

and written in brief then in the 1st requirements
workshop 10% of them (the most important) are
written in detail.

Use Case Template
 The most widely used template for fully

dressed use cases is the one suggested by
Alistair Cockburn (http://alistair.cockburn.us/

 Use Case Section Comment
Use Case Name Start with a verb
Scope The system under design
Level “user goal” or “subfunction”
Primary Actor Calls on the system to deliver

its services
Stakeholders and
Interests

Who cares about this use
case and what do they want.

http://alistair.cockburn.us/

Use Case Template (cont.)
Use Case Section Comment

Preconditions What must be true on start
and worth telling the reader

Success
Guarantees

What must be true on
succesful completion, and
worth telling the reader

Main Success
Scenario

A typical, unconditional,
happy path scenario of
success

Extensions Alternate scenarios of
success and failure

Use Case Template (cont.)
Use Case Section Comment

Special
Requirements

Related non-functional
requirements

Technology and
data variations list

Varying I/O methods and data
formats

Frequency of
occurrence

Influences investigation,
testing and timing of
implementation

Miscellaneous Such as open issues

Scope and Level

 Scope:
 System use case: describes the use of one software (or

hardware+software) system
 Business use case: enterprise-level process description

 Level:
 User-Goal level: a common kind that describes the scenarios to

fulfill the goals of a primary actor (corresponds to an Elementary
Business Process – EBP)

 Subfunction level: substeps required to support a user goal.
Factors out duplicate substeps in many use cases (e.g. Pay by
Credit).

Primary Actors –
Stakeholders and Interests List
 Primary Actor: the principal actor that

calls upon system services to fulfill a goal.
 Stakeholders and Interests list: Very

important since identifying all stakeholders
and their interests answers the question
‘What should be in the use case?’ – ‘That
which satisfies all stakeholders’ interests’

Preconditions – Success
Guarantees (Postconditions)
 Mention them only when you are stating

something non-obvious and noteworthy
 Preconditions: state what must always be true

before a scenario is began.
 Imply completion of another scenario (e.g. login)
 Don’t mention them if obvious (e.g. the system has

power)
 Success guarantees: state what must be true on

successful completion of the use case. Should
meet the needs of all stakeholders.

Main Success Scenario
(or Basic Flow)
 Also called the ‘happy path’ scenario. Describes

the typical success path that satisfies the
interests of the stakeholders.

 Often does not include any conditions of
branching.
More comprehensible and extensible to defer all

conditional handling to the Extensions section.

Three Kinds of Steps in scenarios
1. An interaction between actors
 Not that SuD itself should be considered as

an actor when it plays an actor role
collaborating with other systems.

2. A validation (usually by the system)
3. A state change by the system (for

example recording or modifying
something).

 The first step is a trigger that starts the
scenario

Extensions or Alternate Flows
 Extensions comprise the majority of the text, indicating

all other scenarios (besides the main success scenario)
success and failures.

 Main success scenario + extensions: Should satisfy
“nearly” all stakeholders’ interests.
 Non-functional requirements are expressed in the

Supplementary Specification
 Extensions are branches from the main success

scenario with respect to its steps and have two parts: (a)
the condition and (b) its handling.

Extensions (cont.)

 Extension handling can be summarized in one step or
include a sequence of steps.

 At the end of the extension handling, by default the
scenario merges back with the main success scenario,
unless the extension indicates otherwise (e.g. the
system halts)

 Complicated extension points (e.g. paying by credit) are
usually expressed as separate use cases (with
hyperlinks).

 If an extension is possible during any step then is
marked with an asterisk.

Special Requirements
 Non-functional requirements that relate to the

use case can be mentioned in the Special
Requirements sections.

 Many prefer mentioning all non-functional
requirements in the Supplementary Specification
artifact, because usually all non-functional
requirements are considered as a whole during
architectural analysis.

Technology and
Data Variations List
 Technical variations in how something must be done.

 Example: Constraints imposed by stakeholders for input/output
devices (e.g. POS system must support credit account input both
using a card reader and keyboard”

 It is skillful to avoid these early commitments however this is not
always possible.

 Variations in data schemes are also sometimes
necessary, such as UPCs or EANs for item identifiers
encoded in barcode symbology.

Guideline 1: Prefer Essential UI-
Free Use Cases
 Ask what is the goal of that goal?

 Example:
 Cashier wants to login => login screen

 Identify myself and get authenticated => any authentication
method will do (e.g. biometric reader on keyboard)
 Prevent theaft

 If the true goal is authentication then why not make it fast and
easy (e.g. fingerprinting) => usability analysis (i.e. are their
fingers covered in grease? Do they have fingers?)

 Essential writing style is expressing user
intentions and system responsibilities, rather
than concrete actions.

Guideline: Write Use Cases in an essential style; keep the
user interface out and focus on actor intent.

Guideline 1: Prefer Essential UI-
Free Use Cases (cont.)
 Essential style

 1. Administrator identifies itself
2. System authenticates

 Concrete style
1. Administrator enters id and password in

dialog box (see picture 3)
 Concrete use cases may be useful during

GUI design in a later phase, but are better
avoided during early requirements
analysis.

Guideline 2: Write terse use cases

 Keep your use cases short and to the
point.

 Avoid noise words
 Guideline: Write terse use cases.

Guideline 3: Write Black-Box Use
Cases
 Don’t describe the internal working of the

system, its components or design.
 Concentrate on responsibilities

 Define what the system does (analysis), rather than
 How it does it (design)

 Guideline: Write black-box use cases.
Black-box style Not Black-box style
The system records
the sale.

The system writes the sale to a
database … or (even worse);
The system generates a SQL INSERT
statement for the sale

Guideline 4: Take an Actor and
Goal Perspective
 Write requirements that focus on users or

actors of a system, asking what goals they
try to satisfy (“an observable result of
value to a particular actor”)

 Focus on understanding what the actors
considers as valuable result.

 Guideline: Take an Actor and Goal Perspective

User goals are important!

How to Find Use Cases
 Choose the system boundary

 Just the software application?
 Software + Hardware?
 Software + Hardware + Person?
 Organization?

 Identify the primary actors

 These questions might help: (a) Who starts and stops the
system? (b) Who does user and security management? (c) Who
does system administration? (d) Is time an actor (e.g. real-time
systems) (e) Is there a monitoring process that restarts the
system if it fails? (f) Push or pull updates? (g) Are there any
external or robotic systems involved? (h) Who evaluates system
activity or performance? (i) Who evaluates logs? Are they
remotely retrieved? (j) Who gets notified when there are errors or
failures?

How to Find Use Cases (cont.)
 Identify the goals for each primary actor
Actors and Goals are usually discovered

together.
Start with actors
Find their goals, which may reveal more

actors, and so on.
 Define use cases that satisfy user goals
As you discover goals, you can name your

use cases, or
You can start with an Actor-Goal list and then

name the use cases.

Why ask about Actor Goals rather
than Use Cases?
 Asking about goals helps discovering real

user requirements instead of current
practices (and the complications that come
with them)

 Remember the difference:
This is what you
get by asking users
about use cases

This is what you
get by asking users
about their goals

Who are the Primary Actors?
 It depends on the context!

Goal: Process sales

Cashier

Customer

POS System

Checkout Service

Goal: Buy items

Enterprise Selling Things

Sales Tax
Agency

Goal: Collect
taxes on sales Sales Activity

System

Goal: Analyze sales
and performance data

Tests to Help You Find Use Cases
 Use cases can be at different levels:

 Negotiate a supplier contract
 Handle returns
 Log in
Move Piece on Game Board
An argument can be made that all the above are valid

use case at different levels.
 What is a useful level for application

requirements analysis? There are several rules
of thumb:
 The Boss Test
 The EBP Test
 The Size Test

The Boss Test
 Your boss asks, “What have you been doing all

day?” You reply: “Logging in!” Is your boss
happy?

 In this case probably not! A use case should
have some real measurable value. Something
that would make the boss happy.

 That said use cases that fail the boss test
shouldn’t always be ignored: they might be low
level, but important and difficult (such as user
authentication in some cases).

The EBP Test
 What’s an Elementary Business Process (EBP)?

 A task performed by one person in one place at one time, in
response to a business event, which adds measurable business
value and leaves the data in a consistent state, e.g. Approve
Credit or Price Order.

 Don’t take the definition too literally
 EBPs are not single step actions (e.g. print a document),

rather the main success scenario would be 5 or 10
steps.

 EBPs don’t require days to complete or multiple
sessions.

 EBPs add observable ore measurable bussines value.
 For all the above are good candidates for use cases.

The Size Test

 A good use case shouldn’t be too short.
 Usually fully dressed use case

descriptions require between 3 to 10
pages of text.

Candidate Use Cases Revisited
 Negotiate a supplier contract:

Much longer and broader than EBP (business use
case, not a system use case)

 Handle returns
OK with the boss! Seems like an EBP. Size is good.

 Log in
 Fails the boss test! Boss won’t be happy if that’s what

you do all day long!
 Move Piece on Game Board

 Single step – fails the size test.

Reasonable Violations of the Tests

 It is sometimes useful to separate
subfunctions as separate use cases,
simply because they are included in many
other use cases (e.g. Pay by Credit)

 Also Authenticate User may not pass the
boss test, but be complex enough to
warrant careful analysis, such as for a
‘single sign-on’ feature.

Use Case UML Diagrams
 Cockburn, Fowler, Larman and others downplay

the importance of use case diagrams and all
sugest using the text form instead.

 That said, use case diagrams can provide a nice
summary of use cases, and the ways the actors
use it.

 In the following slides we will show the basic
UML diagrammatic elements for use cases, with
the advice to keep it simple and concentrate in
the writing of text use cases.

Use Case
 Represents a user

goal for an actor of
the system

 Actors may be
humans (e.g.
secretary, cashier
etc.), but also external
systems (e.g.
payment authorization
service)

 The UML symbol for a
use case is an ellipse
with the name of the
use case

Actors

 Actors can be
humans or
subsystems

 The symbol of an
actor is a stickman

 If the actor is a
subsystem we
suggest using an
alternate symbol with
the stereotype
<<Actor>> for
emphasis.

System Boundary
 To separate the

requirements that are part
of the SuD from external
subsystems, we draw
system use cases in a
system box which visualizes
the system boundary

 Inside the system box we
place the use cases and
outside it actors and
external systems.

Association

 To declares the
relationship between
an actor and the SuD
we associate the
actor with the system
use cases by drawing
a line between the
actor and the use
case.

 Actors may be
primary, supporting or
offstage.

Include relationships
 Inclusion is a special

type of association in
which a use case
always includes
another use case.

 The direction of the
arrow is from the use
case that includes to
the use case that is
included.

 Include relationships
are depicted with a
dashed arrow

Extension
 Extension, similar

to inclusion, is a
relationship
between two use
cases, one which
extends and the
other who’s
extended.

 The extended
use case is
conditionally
triggered by
some condition
(e.g. insufficient
funds)

	An Introduction to Object-Oriented Analysis and Design and the Unified Process � “Applying UML and Patterns, 3rd ed.” – Craig Larman, pp. 1 – 100
	Important skills for an object-oriented developer
	Analysis and Design
	Object-Oriented analysis and design
	What is UML
	What UML isn’t
	Software Development Processes and UP
	Iterative Development
	Convergence to true system path
	Benefits of Iterative Development
	Iteration Timeboxing
	Why is Waterfall Bad?
	Risk-Driven and Client-Driven Iterative Planning
	Agile Processes
	Critical Unified Process Practices
	Critical Unified Process Practices (cont.)
	Unified Process Phases
	Schedule-Oriented Terms in the Unified Process
	Some Unified Process Terminology
	Unified Process Disciplines
	Relationship Between Disciplines and Phases
	Inception Phase
	Artifacts that may start in Inception
	Requirements and �Requirements Analysis
	Types and Categories of Requirements
	Types and Categories of Requirements (cont.)
	Use Cases
	Slide Number 28
	Brief Format of Use Cases
	Actors, Scenarios and Use Cases
	Use case definition by RUP
	Why use cases?
	Three Kinds of Actors
	Three Common Use Case Formats
	Use Case Template
	Use Case Template (cont.)
	Use Case Template (cont.)
	Scope and Level
	Primary Actors – �Stakeholders and Interests List
	Preconditions – Success Guarantees (Postconditions)
	Main Success Scenario �(or Basic Flow)
	Three Kinds of Steps in scenarios
	Extensions or Alternate Flows
	Extensions (cont.)
	Special Requirements
	Technology and �Data Variations List
	Slide Number 47
	Guideline 1: Prefer Essential UI-Free Use Cases
	Guideline 1: Prefer Essential UI-Free Use Cases (cont.)
	Guideline 2: Write terse use cases
	Guideline 3: Write Black-Box Use Cases
	Guideline 4: Take an Actor and Goal Perspective
	User goals are important!
	How to Find Use Cases
	How to Find Use Cases (cont.)
	Why ask about Actor Goals rather than Use Cases?
	Who are the Primary Actors?
	Tests to Help You Find Use Cases
	The Boss Test
	The EBP Test
	The Size Test
	Candidate Use Cases Revisited
	Reasonable Violations of the Tests
	Use Case UML Diagrams
	Use Case
	Actors
	System Boundary
	Association
	Include relationships
	Extension

