An Introduction to Object-Oriented
Analysis and Design and the Unified

Process
“Applying UML and Patterns, 3™
ed.” — Craig Larman, pp. 1 — 100

Kakarontzas George
gkakaron@teilar.qgr

mailto:gkakaron@teilar.gr

" J
Important skills for an object-
oriented developer

m Object-Oriented Analysis and Design
(OOA/D)

m UML

m Requirement Analysis

m Design Patterns

m Principles and Guidelines
m [terative Development

m The most basic skill: “Know how to assign
responsibilities to objects”

" J
Analysis and Design

m Analysis: Do the right thing

Investigate what is the problem and what are the
requirements, rather than a solution.

A broad term, best qualified, as in requirements analysis or
object-oriented analysis (what are the domain objects?)

m Design: Do the thing right

Design a conceptual solution to the problem, omitting obvious
Implementation detalils

Again a broad term, best qualified, as in object-oriented
design, database design etc.

Object-Oriented analysis and

design

m Object-Oriented Analysis: Discover the domain concepts
(the objects of the problem domain)

m Object-Oriented Design: Define software objects and
how they collaborate to fulfill the requirements

Plane

tailNumber

!

{

object-oriented

}

visualization of
domain concept

public class Plane

representation in an private String tailNumber;

programming language public List getFlightHistory() {...}

What is UML

“The Unified Modeling Language (UML) is a
V|sual language for specifying, constructing and
documenting the artifacts of systems. Itis a
general-purpose modeling language that can be
used with all major object and component
methods, and that can be applied to all

application domains (e.g., healt

N, flnance,

telecom, aerospace) and implementation

platforms (e.g., J2EE, .NET) [O
Management Group: “"UML 2.0
Specification”]

nject
nfrastructure

» I
What UML isn’t

m UML is not an Object-Oriented Analysis and
Design process (i.e. a systematic way to develop
software systems).

m UML will not teach you an Object-Oriented way
of thinking:
It will not tell you how to assign responsibilities to
objects or whether your design is good or bad.
m UML is not meant to be the complete solution for
your software development (unless you use it as
In Model-Driven Architecture — MDA)

"
Software Development Processes
and UP

m A software development process describes an approach
to building, deploying and possibly maintaining software.
m The Unified Process (UP) has emerged as a popular

iterative software development process for building
object-oriented systems.

m UP:
Is iterative

Provides an example structure for OOA/D

Is flexible (can be combined with practices from other OO
processes)

Iterative Development

Development is organized in a series of fixed-length iterations (mini-

projects).

m Each iteration includes it's own requirement analysis, design,
Implementation, integration and testing.

m This method is also:

Incremental: system grows with each iteration.
Evolutionary: feedback from each iteration evolves specification and

design.

Requirements

Design

Implementation &
Test & Integration
& More Design

Time

Requirements

Design

Final Integration
& System Test

\. /
e

3 weeks (for example) 5

Implementation &
Test & Integration
& More Design

Final Integration
& System Test

| Iterations are fixed in

length, or timeboxed.

"

Feedback from
iteration N leads to
refinement and
adaptation of the
requirements and
design in iteration
N+1.

The system grows
incrementally.

Convergence to true system path
m Build — Feedback — Adapt Cycles

m Helps resolve and prove the risky and critical design
decisions early rather than late

m Over time the system converges over its true path.

Early iterations are farther from the e) . L
path” of the system. Via feedback and In late iterations, a significant chang
adaptation, the system converges towards requirements is rare, but can occur.
the most appropriate requirements an late changes may give an organizati
design. competitive business advantage.

-

one iteration of design,
implement, integrate, and test

"
Benefits of lterative Development

m Less project failure, better productivity, and
lower defect rates.

m Early mitigation of high risks.
m Early visible progress.

m Early user engagement provides feedback for
system adaptation to true stakeholder needs.

m Managed complexity: avoids analysis paralysis.

m A chance to improve the process itself iteration
by Iteration.

Iteration Timeboxing

m [terations should be short.
Between two to three weeks.

Less than two weeks: too short for meaningful
throughput and feedback.

More than six weeks: complexity becomes
overwhelming
m |[terations have fixed length (timeboxing)

If it seems difficult meeting the deadline de-scope
(move tasks or requirements to future iterations).

" S
Why Is Waterfall Bad?

m [t Is a proven fact that on average 45% of
the features of waterfall projects was
never used.

m 25% change In requirements Is typical in
software projects. Therefore Is Impossible
to freeze the requirements early on.

" B
Risk-Driven and Client-Driven
lterative Planning

m The goals of early iterations are:

To identify and drive down the high risks

e Early iterations focus on building, testing and
stabilizing the core architecture.

Build visible features that clients care most
about.

" J
Agile Processes

m It is not possible to exactly define agile
methods. However main characteristics include
short timeboxed iterations with evolutionary
refinement of plans, requirements, and design.

m In addition, they promote practices and
principles that reflect an agile sensibility of
simplicity, lightness, communication, self-
organizing teams, and more.

" I
Critical Unified Process Practices

m Basic:
Short timeboxed iterations
Evolutionary and adaptive development

m |In Addition:

Address high-risk and high-value early
Engage users
Build core architecture early

Continuously verify quality (test often, early and
realistically)

" I
Critical Unified Process Practices
(cont.)

Apply use cases where appropriate
Do some visual modeling (with UML)
Carefully manage requirements

Practice change requrest and configuration
management.

" A
Unified Process Phases

m Inception — approximate vision, business case, scope,
vague cost estimates, buy and/or build.

m Elaboration — refined vision, iterative implementation of
the core architecture, resolution of high risks,
identification of most requirements and scope, more
realistic estimates.

m Construction — iterative implementation of the remaining
lower risk and easier elements, and preparation for
deployment.

m Transition — beta tests, deployment.

" I
Schedule-Oriented Terms In the
Unified Process

development cycle

A
e _ _ N
iteration phase
N
g N
inc. elaboration construction transition
A A A
milestone release increment final production

An iteration end-
point when some
significant decision
or evaluation
occurs.

A stable executable
subset of the final
product. The end of
each iteration is a
minor release.

The difference
(delta) between the
releases of 2
subsequent
iterations.

release

At this point, the
system is released
for production use.

=
Some Unified Process Terminology

m Artifact: A general term for any work product:
code, web graphics, database schema, text
documents, diagrams, models and so on.

m Discipline: A set of activities and related artifacts
In one subject area such as the activities within
requirements analysis.

m The UP describes work activities, such as writing
a use case, within disciplines.

Unified Process.Disciplines

A mini-project that includes work in most
disciplines, ending in a stable executable.

Sample
UP Disciplines

Business Modeling
Focus ot
of this Requirements E—
book EE—

Design
P

A

Note that
although an
iteration includes
work in most
disciplines, the
relative effort and
emphasis change
over time.

This example is
suggestive, not
literal.

Implementation

Test
Deployment — |
Configuration & Change — |
Management

Project Management

Environment

Iterations

" S
Relationship Between Disciplines
and Phases

Sample incep-
UP Disciplines tion |

‘ transi-

elaboration l construction .
tion

_ The relative effort in
Business disciplines shifts
Modeling across the phases.

Requrements) | |Thisexampleis
S S S S SN SR S S SRS S SR S N B suggestive, not literal.

Design

Implementation

" J
Inception Phase

m Explores the following questions:
What is the vision and business case for this project?
Feasible?
Buy and/or build?

Rough unreliable range of cost: Is it $10K-100K or in
the millions?

Should we proceed or stop?

m Should be short (e.g. one week for most
projects)

" S
Artifacts that may start in Inception

m Vision and business case

m Use-Case model

m Supplementary Specification

m Glossary

RISk List & Risk Management Plan
Prototypes and Proof-of-Concepts
teration Plan

Phase Plan & Software Development Plan
Development Case

" S
Reqguirements and
Requirements Analysis

m “Requirements are capabilities and conditions to

which the system — and more broadly, the
oroject — must conform” [Jacobson, Booch and
Rambaugh: “The Unified Software Development
Process”, Addison-Wesley, 1999]

m A prime challenge of requirement analysis Is to
find, communicate and remember (write down)
what is really needed, in a form that is clear both
to clients and team members.

"
Types and Categories of
Requirements

m In UP requirements are categorized according to the
FURPS+ model [R. Grady: “Practical Software Metrics
for Project Management and Process Improvement”,
Prentice-Hall Inc, 1992.]

Functional — features, capabilities, security
Usability — human factors, help, documentation
Reliability — frequency of failure, recoverability, predictability

Performance: response times, throughput, accuracy, availability,
resource usage

Supportability — adaptability, maintainability, internationalization,
configurability

" S
Types and Categories of
Requirements (cont.)

m The ‘+' In FURPS+ Indicates sub-factors such
as:

Implementation — resource limitations, languages and
tools, hardware, ...

Interface — constraints imposed by interfacing with
external systems

Operations — system management in its operational
setting

Packaging — for example a physical box
Legal — Licensing and so forth

" A
Use Cases

m Informally they are stories of system usage.
m A mechanism to capture requirements

m They are written in a text form but can also be
drawn in diagrams.
The text is more important: writing use cases Is a text-
writing activity: Use cases are not diagrams, they
are text.
m The hard part Is not learning the use case
diagram, which is very simple, but learning how
to identify and write good use cases.

ample UP Artifact Relationships

Domain Model

Business Sale 1 1.* L_Sallfs
Modeling date ineftem
quantity

objects, attributes,
associations

- Use-Case Model \ scope, goals, Vision

actors, features

Process Sale =—
Process ——
cuassee 1. Customer
Cashier names grrlc\;/esh._. .
I . Cashier
% makes new
sale. terms, attributes,
3 validation ~ Glossary
Require- Use Case Diagram Use Case Text
ments —
system =
events
=
Operation: : Cashier :
enterltem(...) | make | Supplementary
system ! NewSale() ! Specification
Post-conditions: operations | I L =
[I =—.
- < ! _enterlter_n !) _
(id, quantity) | non-functional reqs, =——
I I quality attributes
Operation Contracts System Sequence DiagramS/

requirements

Design Model
° ‘ : ProductCatalog ‘ : Sale
! [
|
enterltem !
Design (itemID, guantity) |
e

spec = getProductSpec(itemID)

|
|
|
|
[
|
|
I addLineltem(spec, quantity) |
[I

Brief Format of Use Cases

m Uses cases are text describing the usage
of the system by an actor to meet a goal.

m Initially they can be written in a brief

format, e.q.

“Process sale: A customer arrives at a checkout with
items to purchase. The Cashier uses the POS (Point Of
Sales) system to record each purchased item. The
system presents a running total and line-item details.
The customer enters payment information, which the
system validates and records. The system updates
Inventory. The customer receives a receipt from the
system and leaves with the items.”

= I
Actors, Scenarios and Use Cases

m An actor is something with behavior, such as a
person (identified by role), computer system, or
organization, e.g. Cashier.

m A scenario is a specific sequence of actions and
Interactions between actors and the system
(also called a use case instance).

m A use case Is a collection of related success and
failure scenarios, that describe an actor using
the system to achieve a goal.

" J
Use case definition by RUP

m Another use case definition by RUP: “A set of
use-case instances, where each instance is a
sequence of actions a system performs that
yields an observable result of value to a
particular actor”.

m The use case model may optionally include a
use case diagram:
Names of use cases and actors
A context diagram of system and its environment
A quick way to list use cases by names

" J
Why use cases?

m They are a simple way of capturing user
goals: they don’t send your average
business person to comal

m Emphasize the user goals and
perspective.

m Don’t concentrate on secondary Issues
(use case relationships, use case
packages and so forth). Instead do the
hard work of simply writing text stories.

Three Kinds of Actors

m Primary Actor: has user goals fulfilled through
using services of the SuD (System under
Development) — e.g. Cashier

Why identify? To find user goals, which drive use
cases.

m Supporting Actor: provides a service to the
SuD (e.g. payment authorization service).
Why identify? Clarify external interfaces and protocols

m Offstage Actor: has an interest in the behavior

of the use case (but Is not primary or supporting)
— e.g. tax agency.

Why identify? To ensure than all necessary interests
are identified and satisfied.

Three Common Use Case Formats

m Brief: One paragraph summary (usually the
main success scenario or happy path)

When? During early requirements analysis.

m Casual: Multiple paragraphs covering various
scenarios.

When? As above

m Fully Dressed: Includes all steps and variations.
Also includes supporting sections (e.g.
preconditions)

When? After many use cases have been identified
and written in brief then in the 15t requirements
workshop 10% of them (the most important) are
written in detail.

Use Case Tem Gplate

m The most widely used template for fully
dressed use cases Is the one suggested by
Alistair Cockburn (http://alistair.cockburn.us/

Use Case Section Comment
Use Case Name Start with a verb
Scope The system under design
Level “user goal” or “subfunction”
Primary Actor Calls on the system to deliver

Its services

Stakeholders and Who cares about this use
Interests case and what do they want.

http://alistair.cockburn.us/

Use Case Temnlate (cont.)

Use Case Section

Comment

Preconditions

What must be true on start
and worth telling the reader

sSuccess
Guarantees

What must be true on
succesful completion, and
worth telling the reader

Main Success

A typical, unconditional,

Scenario happy path scenario of
success
Extensions Alternate scenarios of

success and failure

Use Case Temnlate (cont.)

Use Case Section Comment
Special Related non-functional
Requirements requirements
Technology and Varying 1/O methods and data
data variations list |formats

Frequency of Influences investigation,
occurrence testing and timing of

Implementation

Miscellaneous Such as open issues

" J
Scope and Level

m Scope:

System use case: describes the use of one software (or
hardware+software) system

Business use case: enterprise-level process description
m Level:

User-Goal level: a common kind that describes the scenarios to
fulfill the goals of a primary actor (corresponds to an Elementary
Business Process — EBP)

Subfunction level: substeps required to support a user goal.
Factors out duplicate substeps in many use cases (e.g. Pay by
Credit).

" I
Primary Actors —
Stakeholders and Interests List

m Primary Actor: the principal actor that
calls upon system services to fulfill a goal.

m Stakeholders and Interests list: Very
Important since identifying all stakeholders
and their interests answers the guestion
‘What should be in the use case?’ — ‘That
which satisfies all stakeholders’ interests’

Stakeholders and Interests:
— Cashier; Wants accurate, fast entry, and no payment errors, as cash drawer short-

ages are deducted from his/her salary.
- Salesperson: Wanis sales commissions updated.

= B
Preconditions — Success

Guarantees (Postconditions)
m Mention them only when you are stating

something non-obvious and noteworthy

m Preconditions: state what must always be true
before a scenario Is began.

Imply completion of another scenario (e.g. login)

Don’t mention them if obvious (e.g. the system has
power)

m Success guarantees: state what must be true on
successful completion of the use case. Should
meet the needs of all stakeholders.

Preconditions: Cashier is identified and authenticated.
Success Guarantee (or Postconditions): Sale is saved. Tax is correctly calculated.

Accounting and Inventory are updated. Commissions recorded. Receipt is generated.
Payment authorization approvals are recorded.

B
Main Success Scenario
(or Basic Flow)

m Also called the ‘happy path’ scenario. Describes
the typical success path that satisfies the
Interests of the stakeholders.

m Often does not include any conditions of
branching.

More comprehensible and extensible to defer all
conditional handling to the Extensions section.

Main Success Scenario (or Basic Flow): _

1. Customer arrives at POS checkout with goods and/or services to purchase.

2. Cashier starts a new sale.

3. Cashier enters item identifier. o . _

4. System records sale line item and presents item description, price, and running total.
Price calculated from a set of price rules.

Cashier repeats steps 3-4 until indicates done.

- 1

Three Kinds of Steps Iin scenarios

1. An Interaction between actors

Not that SuD itself should be considered as
an actor when it plays an actor role
collaborating with other systems.

2. A validation (usually by the system)

3. A state change by the system (for
example recording or modifying
something).

The first step Is a trigger that starts the
scenario

" A
Extensions or Alternate Flows

m Extensions comprise the majority of the text, indicating
all other scenarios (besides the main success scenario)

success and failures.
m Main success scenario + extensions: Should satisfy
“nearly” all stakeholders’ interests.

Non-functional requirements are expressed in the
Supplementary Specification

m Extensions are branches from the main success
scenario with respect to its steps and have two parts: (a)
the condition and (b) its handling.

- T T T T ke A WVENNLEL T WHE USE
3a. Invalid item ID (not found in system):
1. System signals error and rejects entry.
2. Cashier responds to the error:

I . | .

" J
Extensions (cont.)

m Extension handling can be summarized in one step or
Include a sequence of steps.

m At the end of the extension handling, by default the
scenario merges back with the main success scenario,
unless the extension indicates otherwise (e.g. the
system halts)

m Complicated extension points (e.g. paying by credit) are
usually expressed as separate use cases (with

2c. Cashier berforms Find Product Help to obtain true item 1D and price.
m If an extension is possible during any step then is
marked with an asterisk.

TT RN T aseawk IIRIRT WS I_luws,:

. ,
a. At any time, Manager requesls an override operation:

1 Quctam amtere Aac o o

-S IQoen- Jnaclticl):%a? %%:er;grgre]n srl;[%t relate to the

use case can be mentioned in the Special
Requirements sections.

m Many prefer mentioning all non-functional
requirements in the Supplementary Specification
artifact, because usually all non-functional
requirements are considered as a whole during

architectural analysis.

Special Requirements;

— Touch screen Ui on a large fiat panel monitor. Text must be visibie from 1 meter.

~ Credit authorization response within 30 seconds 90% of the time.

— Somehow, we wanf robust recovery when access 1o remote services such the inven-
tory system is failing.

— Language internationalization on the text displayed.

— Pluggable business rules to be insertabile at steps 3and 7.

" I
Technology and
Data Variations List

m Technical variations in how something must be done.

Example: Constraints imposed by stakeholders for input/output
devices (e.g. POS system must support credit account input both
using a card reader and keyboard”

It is skillful to avoid these early commitments however this is not
always possible.

m Variations in data schemes are also sometimes
necessary, such as UPCs or EANSs for item identifiers

Technology and Data Variations List:
“a. Manager override entered by swiping an override card through a card reader, or
entering an authorization code via the keyboeard.
33, :}temc:dentiﬁer entered by bar code laser scanner (if bar code is present) or key-
oard.
3b. fem identifier may be any UPC, EAN, JAN, or SKU coding scheme.
7a. Credit account information entered by card reader or keyboard.,

7b. Qredit payment signature captured on paper receipt. But within two vears, we pre-
dict many customers will want digital signature caplure.

Congratulations: Use Cases are Written and Wrong (!)

The NextGen POS team is writing a few use cases in multiple short requirements workshops, in parallel
with a series of short timeboxed development iterations that involve production-quality programming and
testing. The team is incrementally adding to the use case set, and refining and adapting based on feedback
from early programming, tests, and demos. Subject matter experts, cashiers, and developers actively partic-
ipate in requirements analysis.

That’s a good evolutionary analysis process—rather than the waterfall—but a dose of “requirements real-
ism” is still needed. Written specifications and other models give the illusion of correctness, but models lie
(unintentionally). Only code and tests reveals the truth of what's really wanted and works.

The use cases, UML diagrams, and so forth won’t be perfect—guaranteed. They will lack critical information
and contain wrong statements. The solution is not the waterfall attitude of trying to record specifications
near-perfect and complete at the start—although of course we do the best we can in the time available, and
should learn and apply great requirements practices. But it will never be enough.

This isn’t a call to rush to coding without any analysis or modeling. There is a middle way, between the
waterfall and ad hoe programming: iterative and evolutionary development. In this approach the use cases
and other models are incrementally refined, verified, and clarified through early programming and testing.

You know you're on the wrong path if the team tries to write in detail all or most of the use cases before
' beginning the first development iteration—or the opposite.

Guideline 1: Prefer Essential Ul-

Free Use Cases

m Ask what is the goal of that goal?
Example:

m Cashier wants to login => login screen

|dentify myself and get authenticated => any authentication
method will do (e.g. biometric reader on keyboard)
* Prevent theaft

m If the true goal is authentication then why not make it fast and
easy (e.g. fingerprinting) => usability analysis (i.e. are their
fingers covered in grease? Do they have fingers?)

m Essential writing style Is expressing user

Intentions and system responsibilities, rather
than concrete actions.

‘Guideline: Write Use Cases in an essential style; keep the |
-user interface out and focus on actor intent.

"
Guideline 1: Prefer Essential Ul-

Free Use Cases (cont.)
m Essential style

1. Administrator identifies itself
2. System authenticates
m Concrete style
1. Administrator enters id and password In
dialog box (see picture 3)
m Concrete use cases may be useful during

GUI design In a later phase, but are better

avoided during early requirements
analysis.

Guideline 2: Write terse use cases

m Keep your use cases short and to the
point.

m Avoid noise words

"
Guideline 3: Write Black-Box Use

Cases

m Don’t describe the internal working of the
system, its components or design.
m Concentrate on responsiblilities

Define what the system does (analysis), rather than
How it does it (design)

Black-box style Not Black-box style
The system records The system writes the sale to a
the sale. database ... or (even worse);

The system generates a SQL INSERT
statement for the sale

" I
Guideline 4: Take an Actor and
Goal Perspective

m Write requirements that focus on users or
actors of a system, asking what goals they

try to satisfy (“an observable result of
value to a particular actor”)

m Focus on understanding what the actors
considers as valuable result.

"
User goals are important!

How the sales

How the customer
explained it

How the project leader
understood it

How the engineer
designed it wrote it executive described it

How the programmer

g

oL

What the customer
documented installed was billed supported it really needed

How the project was What operations How the customer How the helpdesk

How to Find Use Cases

m Choose the system boundary
Just the software application?
Software + Hardware?

Software + Hardware + Person?
Organization?

m |dentify the primary actors

These questions might help: (a) Who starts and stops the
system? (b) Who does user and security management? (c) Who
does system administration? (d) Is time an actor (e.g. real-time
systems) (e) Is there a monitoring process that restarts the
system if it fails? (f) Push or pull updates? (g) Are there any
external or robotic systems involved? (h) Who evaluates system
activity or performance? (i) Who evaluates logs? Are they
remotely retrieved? (j) Who gets notified when there are errors or
failures?

How to Find Use Cases (cont.)

m |[dentify the goals for each primary actor

Actors and Goals are usually discovered
together.

Start with actors

Find their goals, which may reveal more
actors, and so on.

m Define use cases that satisfy user goals

As you discover goals, you can nhame your
use cases, or

You can start with an Actor-Goal list and then
name the use cases.

" S
Why ask about Actor Goals rather
than Use Cases?

m Asking about goals helps discovering real
user requirements instead of current

practices (and the complications that come
with them)

B Remember the difference:

This is what you
get by asking users
about use cases

This is what you
get by asking users
about their goals

Who are the Primary Actors?

m It depends on the context!

' Enterprise Selling Things
Checkout Service
_.--® Sales Tax
Agency
POS System
Goal: Collect

Sales Activity
® System gashier

taxes on sales

_-® Customer

| \ \\
Goal: Buy items Goal: Analyze sales Goal: Process sales
and performance data

Tests to Help You Find Use Cases

m Use cases can be at different levels:
Negotiate a supplier contract

Handle returns
qog e returns

Move Piece on Game Board

An argument can be made that all the above are valid
use case at different levels.

m What is a useful level for application
requirements analysis? There are several rules
of thumb:

The Boss Test
The EBP Test
The Size Test

The Boss Test

m Your boss asks, “What have you been doing all
day?” You reply: “Logging in!” Is your boss

nappy?

m In this case probably not! A use case should

nave some real measurable value. Something
that would make the boss happy.

m That said use cases that fail the boss test
shouldn’t always be ignored: they might be low
level, but important and difficult (such as user
authentication in some cases).

" A
The EBP Test

m \What's an Elementary Business Process (EBP)?

A task performed by one person in one place at one time, in
response to a business event, which adds measurable business
value and leaves the data in a consistent state, e.g. Approve
Credit or Price Order.

m Don'’t take the definition too literally

m EBPs are not single step actions (e.g. print a document),
rather the main success scenario would be 5 or 10
steps.

m EBPs don'’t require days to complete or multiple
sessions.

m EBPs add observable ore measurable bussines value.
m For all the above are good candidates for use cases.

" A
The Size Test

m A good use case shouldn’t be too short.

m Usually fully dressed use case

descriptions require between 3 to 10
pages of text.

Candidate Use Cases Revisited

m Negotiate a supplier contract:

Much longer and broader than EBP (business use
case, not a system use case)

m Handle returns
OK with the boss! Seems like an EBP. Size is good.
m Login

Fails the boss test! Boss won't be happy if that's what
you do all day long!

m Move Piece on Game Board
Single step — fails the size test.

Reasonable Violations of the Tests

m [t IS sometimes useful to separate
subfunctions as separate use cases,
simply because they are included in many
other use cases (e.g. Pay by Credit)

m Also Authenticate User may not pass the
boss test, but be complex enough to
warrant careful analysis, such as for a
‘single sign-on’ feature.

Use Case UML Diagrams

m Cockburn, Fowler, Larman and others downplay
the importance of use case diagrams and all
sugest using the text form instead.

m That said, use case diagrams can provide a nice

summary of use cases, and the ways the actors
use It.

m In the following slides we will show the basic
UML diagrammatic elements for use cases, with
the advice to keep it simple and concentrate In
the writing of text use cases.

Use Case

m Represents a user
goal for an actor of
the system

m Actors may be
humans (e.g.
secretary, cashier
etc.), but also external
systems (e.g.
payment authorization
service)

m The UML symbol for a
use case is an ellipse
with the name of the
use case

Actors

m Actors can be l
humans or £
subsystems

m The symbol of an
actor I1s a stickman

m If the actoris a
subsystem we
suggest using an

alternate symbol with <=actor==

the stereotype Bank Authorization Service

<<Actor>> for

emphasis.

" J
System Boundary

m To separate the
requirements that are part
of the SuD from external
subsystems, we draw
system use cases in a chient
system box which visualizes
the system boundary

m Inside the system box we
place the use cases and
outside it actors and
external systems.

ATh

Deposit Cash

Assoclation

ATh

m To declares the
relationship between
an actor and the SuD ﬂﬁ
we associate the %x
actor with the system R N
use cases by drawing
a line between the

actor and the use
case.

m Actors may be
primary, supporting or
offstage.

Include relationships

m Inclusion is a special
type of association In
which a use case
always includes
another use case.

m The direction of the
arrow Is from the use
case that includes to
the use case that Is
Included.

m Include relationships
are depicted with a
dashed arrow

A
Client ™~

Extension

m Extension, similar
to Inclusion, is a

relationship

between two use

==gcior==
- Cash Export Unit

cases, one which S
extends and the | T

y N\ T Authenticate
other who's Giont T~ Hmilgd’efi?
extended. ’

m The extended
use case IS
conditionally
triggered by
some condition
(e.g. insufficient
funds)

	An Introduction to Object-Oriented Analysis and Design and the Unified Process � “Applying UML and Patterns, 3rd ed.” – Craig Larman, pp. 1 – 100
	Important skills for an object-oriented developer
	Analysis and Design
	Object-Oriented analysis and design
	What is UML
	What UML isn’t
	Software Development Processes and UP
	Iterative Development
	Convergence to true system path
	Benefits of Iterative Development
	Iteration Timeboxing
	Why is Waterfall Bad?
	Risk-Driven and Client-Driven Iterative Planning
	Agile Processes
	Critical Unified Process Practices
	Critical Unified Process Practices (cont.)
	Unified Process Phases
	Schedule-Oriented Terms in the Unified Process
	Some Unified Process Terminology
	Unified Process Disciplines
	Relationship Between Disciplines and Phases
	Inception Phase
	Artifacts that may start in Inception
	Requirements and �Requirements Analysis
	Types and Categories of Requirements
	Types and Categories of Requirements (cont.)
	Use Cases
	Slide Number 28
	Brief Format of Use Cases
	Actors, Scenarios and Use Cases
	Use case definition by RUP
	Why use cases?
	Three Kinds of Actors
	Three Common Use Case Formats
	Use Case Template
	Use Case Template (cont.)
	Use Case Template (cont.)
	Scope and Level
	Primary Actors – �Stakeholders and Interests List
	Preconditions – Success Guarantees (Postconditions)
	Main Success Scenario �(or Basic Flow)
	Three Kinds of Steps in scenarios
	Extensions or Alternate Flows
	Extensions (cont.)
	Special Requirements
	Technology and �Data Variations List
	Slide Number 47
	Guideline 1: Prefer Essential UI-Free Use Cases
	Guideline 1: Prefer Essential UI-Free Use Cases (cont.)
	Guideline 2: Write terse use cases
	Guideline 3: Write Black-Box Use Cases
	Guideline 4: Take an Actor and Goal Perspective
	User goals are important!
	How to Find Use Cases
	How to Find Use Cases (cont.)
	Why ask about Actor Goals rather than Use Cases?
	Who are the Primary Actors?
	Tests to Help You Find Use Cases
	The Boss Test
	The EBP Test
	The Size Test
	Candidate Use Cases Revisited
	Reasonable Violations of the Tests
	Use Case UML Diagrams
	Use Case
	Actors
	System Boundary
	Association
	Include relationships
	Extension

