
A SEMI-AUTOMATED PROCESS FOR OPEN SOURCE
CODE REUSE*

Apostolos Kritikos, George Kakarontzas and Ioannis Stamelos
Computer Science Department, Aristotle University of Thessaloniki, 54124 Thessaloniki, Thessaloniki, Greece

{akritiko, stamelos}@csd.auth.gr, gkakaron@teilar.gr

Keywords: Reuse, Free Libre / Open Source Software (FLOSS), Reuse process, Software components.

Abstract: It is clear that Free Libre / Open Source Software (FLOSS) has been demonstrating increasing importance
continually for some years now. As a result, millions of lines of code are becoming available online. In
many cases, this code, is carefully designed, implemented, tested and therefore represents a very good
option for reusability. Lately, more and more companies, especially Small and Medium Enterprises (SMEs),
are reusing open source code to develop their own software. Source code forges such as SourceForge,
Google Code etc., serve as component pools providing plenty of alternatives. In this work we are proposing
a semi-automated reuse process model for discovering open source code online, based on the requirements
of the system under design. This model illustrates the greedy approach of a reuse engineer, who wishes to
reuse as much code as he can and implement the least possible.

1 INTRODUCTION

Code reuse is not a new phenomenon. Both software
companies and individual developers know that
there are certain blocks of code which form classic
components in most of the commercial software
projects. Moreover, there is the case where code that
has been developed for specific requirements, serves
as a base for a similar project that a future client
requests. We usually refer to this kind of code as
legacy code.

The vast adoption of FLOSS brought to surface
the collaborative development of software. In
addition the code of this software was made freely
available online, allowing everyone to see, alter and
in many cases even commercialize the derived work.
This new development culture led to millions of free
lines of code that transformed the WWW to a huge
pool of reusable code which was lately organized to
large code repositories that are known as forges
(SourceForge, Google Code, etc.).

This paper is an experience report trying to
capture specific, discrete steps the reuse engineer

* This work is partially funded by the European Commission in
the context of the OPEN-SME “Open-Source Software Reuse
Services for SMEs” project, under the grant agreement no. FP7-
SME-2008-2 / 243768

takes in order to reuse as much source code as
possible. We then make an attempt to organize these
steps in a semi-automated reuse process model. In
this work we use the term ‘reuse engineer’ to
identify the role who attempts to reuse code by
adapting either the code to the system under
development or the system under development to the
retrieved code, or both. The reuse engineer can be
any developer especially in contexts where a
systematic reuse program is absent, which is very
often the case with SMEs, or it may be an actual
engineer who has been assigned the task of
retrieving and adapting reusable components in a
more systematic reuse approaches.

The rest of the paper is organized as follows. In
Sec. 2 we propose a place for our model within the
software product's life cycle. Sec. 3 describes case
studies and the speculations arose by them which led
to the process model. Sec. 4 provides a detailed
description of our process model. Sec. 5 discusses
related work. Finally the last section summarizes our
conclusions and provides speculations for further
research.

179

2 THE REUSE PROCESS INSIDE
THE SOFTWARE PRODUCT’S
LIFECYCLE

Software, as any other type of product has its
lifecycle. In (ISO/IEC 15288, 2002) the phases of a
product’s lifecycle are defined as follows: (1)
Concept (2) Development (3) Production (4)
Utilization (5) Retirement.

Although the nature of the lifecycle of a software
product might consist of slightly different phases, it
is obvious that any attempt for code reuse will take
place in the activity of software construction or the
activities of extension / customization of the
software product. These activities take place during
the phases of development, production and
utilization in the aforementioned product’s lifecycle
scheme.

In order for a software product to be able to
benefit from code reuse, its initial description needs
to be decomposed to small, simple, stand-alone
requirements. Given that such a pre-process was
made, each of the aforementioned requirements
could represent a component to be implemented, or
found from another source, and be reused after
possible adaptation.

The component-based approach, as mentioned in
(Crnkovic et. al, 2006), is based in code reuse in the
sense that existing components are combined in
order to form the desired software. As far as the
product’s lifecycle in this approach is concerned,
(Crnkovic et. al, 2006) propose a variation of the
Waterfall model, which is called Component-based
Waterfall model. This modified waterfall model,
follows the same phases as the classical one, which
are: (1) Requirements (2) Design (3) Implementation
(4) Verification (5) Maintenance. The only
difference is that in each one of this phases we work
with components.

Both the abstract product lifecycle model and the
Component-based Waterfall Software product
lifecycle pinpoint the fact that code reuse, as a
process, fits in the phases of code implementation or
maintenance, where source code is being produced.

3 CASE STUDIES: SOFTWARE
DEVELOPMENT BASED ON
CODE REUSE

Reuse engineering is based in covering the
requirements of the software product we are about to

implement piece by piece. In order to be able to
work this way we need to define the notion “piece of
software”. Most of the reusable code exists in open
source software repositories. Additionally it is a
common practice for open source software
developers to organize their code in components,
bigger or smaller.

Figure 1: System under development decomposed in
components (component tree).

With this in mind we can now go back to
requirements and organize them to possible
components following an approach similar to the
one depicted in figure 1.

Initially, we consider each requirement as a
separate component. Then, based on how
complicated a function each one of these
components encapsulates, we either decompose
them to simpler, dividing their functionality to trivial
ones, or not.

Eventually we will come with a tree structure
that has as a root node the software product itself,
and leaves, the components that need to be
implemented in order to successfully implement the
software product as a whole.

As long as we have this set of components at
hand, we can start searching for their
implementations in reusable code repositories.
During this component “safari” we might face one
of the following situations:
• The component we seek exists: In this case all

we have to do is customize and integrate this
component with the rest of our work.

• The component we seek does not exist, but
subsets of it do: In this case we might need to go
back to our component tree and extend it by
breaking the component which we are currently
dealing with, to simpler ones.

• The component we seek does not exist and
dividing it to simpler seems more time
consuming than actually implementing it: In this
case there is no other option but implementing
the component from scratch. Given the fact that

ENASE 2010 - International Conference on Evaluation of Novel Approaches to Software Engineering

180

in this case the component is usually a trivial
artifact to implement we can always refer to
development forums or online courses to “reuse”
trivial snippets of code (for example read from or
write to a file, creating a Java Comparator, etc.).
Usually a Google search does the trick.
In order to test the effectiveness of code reuse in

action we experimented with two different scenarios
which we describe here.
Searching for a Log-in Component. The objective
is to seek for a reusable component that implements
a web based login functionality in the form of a Java
Bean.

The code reuse process is the following:
1. We are going for a quick solution (therefore we

use Google) and search for “login java bean”.
2. The second result is entitled “Authenticating

users using a Java Bean”. It looks promising.
3. We find source code available and a good

documentation of what we are trying to do with
this specific component in the web page we
visited. Also personal information about the
author informs us that he is a researcher and a
developer in a software company.

4. There is no sign of copyright but there is no sign
that the code is under any kind of open source
license either.

5. Most probably, after a personal request to the
author we will be able to reuse it.

During this process:
• We needed approximately 30” (seconds) to

perform the search
• We needed approximately 5’ (minutes) to have

a first glance for the integrity of the site
In total: 5.5’ minutes.
Wordnet Handler – Double Code Reuse to
Surpass Library Conflict: We have developed a
Java class that serves as a handler for WordNet, the
lexical database for the English language. In this
implementation we use Java WordNet Library
(JWNL) as a means to connect and handle WordNet.
We want to embody our work to the bigger software
product we are currently working to.

A major conflict with JWNL library, while trying
to deploy our work as a Java OSGI bundle, forces as
to use another Java compatible WordNet library.
Logically, the handler’s code will need to be
rewritten as well.

We have spotted our new library candidate to be
Java WordNet Interface (JWI). We would like to
find reusable code to create a new WordNet handler
class too. While searching to the documentation of
the JWI library, at the official site of the library, we

come across a sample class that implements most of
the desired functionality. Instead of adapting the
newly discovered reusable code we decide to try an
experiment. To reuse the code we discovered to
adapt our first handler implementation. The fact that
WordNet provides specific data makes all library
implementations similar and, as expected, their
API’s too. Combining this insight with the reusable
code we have in hand, we come up with a new Java
WordNet Handler in less than an hour. More
specifically we needed:
• 10’ to search for reusable code for JWI (the new

library)
• 5’ to become familiar with this code
• 30’ to alter the old handler in order to use JWI
• 10’ to test functionality
In total: 55’ < 1 hour

For consistency reasons we mention that our
initial implementation was also a product of code
reuse. In order for our initial handler to come to its
final version the timeframe, respectively, was:
• 1 ½ hours to search for reusable code
• 4 hours to customize and adapt the reusable

code to the general needs of the project
• 2 hours to test our final code
In total: 7,5 hours.

The observations made during the above case
studies and other similar to them, lead us to the reuse
process that we describe next.

4 A SEMI-AUTOMATED OPEN
SOURCE SOFTWARE REUSE
PROCESS

In this section we try to organize the knowledge
derived from the case studies of the previous section
to a model. Based on the aforementioned
speculations we propose an open source software
reuse process model (see figure 2). Although it
might seems a bit daedal at first glance, once
explained it is becomes really simple to understand
and follow.

We start by defining the software product that
needs to be developed (from now on we will refer to
it as System Under Development). It can be
considered as a unique component. Therefore, it is
possible to be available in reusable code
repositories. The reuse engineer performs a search to
source code forges. If the search is successful, one or
more results are returned. The reuse engineer
proceeds then in code adaptation, packs the derived

A SEMI-AUTOMATED PROCESS FOR OPEN SOURCE CODE REUSE

181

Figure 2: Open Source software reuse process model.

work and the software product is ready to be handed
out to the customer. At this point one might notice
that no specific methodology for choosing the best
component (in case our search returns more than
one) is being proposed. While this is true, it is not an
omission. In this work we choose to introduce our
model in a basic form, revealing its core
functionality. Component evaluation was
intentionally left as an open issue for future research.

Once the reuse engineer has eliminated the
possibility of finding reusable code for all the
functionality he needs, he moves on by decomposing
the System Under Development into components.
This is the point where he, unintentionally most of
the times, starts creating the tree of components we
described in the previous section.

There is a small possibility that the System
Under Development is too simple to be decomposed
to discrete components. In this case our model
proposes that it should be developed from scratch.
Another possible scenario could be that the
decomposition of the System Under Development
and search for the derived components could require
more time than the development of the project from
scratch. Once the development from scratch decision
is made, the System Under Development is being

implemented, packed and it is ready to be handed
out to the customer.

Most of the times, however, the requirements
can be translated as discrete components. In this
case, the reuse engineer must start searching for
these components, one by one. In our process model
this part of the development procedure is highlighted
by the decision making rhombus entitled
“UNIMPLEMENTED COMPONENTS?”. Its role is
binary. On one hand it starts the loop of trying to
find reusable code for the unimplemented
components. On the other hand it is the condition
that ends the loop, and the whole process in essence,
as it keeps track on whether there are any
components left unimplemented. When no more
functionality needs implementation, the System
Under Development is considered finished, is being
packed and is ready to be handed out to customer.

For every unimplemented component a sub
process starts in order to decide whether reusable
code can be found to implement the functionality
needed or the source code of this component must be
written from scratch.

As we mentioned in section three when breaking
components to simpler ones, we face the danger to
get lost in the procedure and eventually come up
with having spent more time to find reusable code

ENASE 2010 - International Conference on Evaluation of Novel Approaches to Software Engineering

182

for a component than it would actually have taken us
to implement it. In order to avoid this kind of
pitfalls, our process model forces the reuse engineer,
for each one of the components, to speculate on
whether it is really worthy of implementing using
reusable code. There are two possible scenarios
where searching for reusable code should be
discouraged:
• The component needed is very specific,

therefore a lot of time might be spent in
searching accompanied by a high probability of
not returning any results.

• The implementation of the component is trivial;
therefore it will take less time for an
experienced programmer to implement it, than
for the reuse engineer to spot reusable code that
will cover its requirement.

If the reuse engineer decides that the component
is not worth searching for reusable solutions he is
left with only one option; implementing it from
scratch. Looking at the model, though, one notices a
different step to proceed than from scratch
implementation: “SEARCH FOR TRIVIAL
CODE”. Developers were reusing code way before
open source, or the various source code repositories
flourish. This need for reuse comes from the
empirical observation that some snippets of code are
being found in most of software projects. Reading
from or writing to a file, connecting to a database,
creating a comparator in Java, are functionalities we
meet so often, when it comes to software
engineering, that have come to be considered
bibliography code. It is this kind of code that we opt
for the reuse engineer to find implemented by
following the “SEARCH FOR TRIVIAL CODE
PATH”. This way, even when seeking for reusable
components leads to a dead-end the reuse engineer
can be sure that has exhausted every possible way of
performing effective code reuse. After retrieving as
many snippets of code as possible, the code is being
adapted in the needs of the component under
development, the code of the component is being
finalized, and the reuse engineer is ready to move on
to the next component. Of course, when all kinds of
search fail, implementing from scratch is inevitable.

Finally we are going to examine the case where
the component under development cannot be found
as is in a repository of open source code and the
reuse engineer needs to break it to simpler
components of less functionality. No matter how
complex a component he is dealing with, the reuse
engineer needs to be sure that it does not exist in
some code forge. Therefore, as our model illustrates,

he performs a search to forges. After receiving no
results he must examine whether the component can
be further decomposed to simpler components. If not
this means he deals with a component of medium or
little complexity and therefore the whole process
goes back to the previous paragraph where we
discussed the role of the “SEARCH FOR TRIVIAL
CODE” search / implementation model. In case the
component can be decomposed to simpler ones our
process model will consider them as
“UNIMPLEMENTED COMPONENTS” and the
reuse process will continue as normal.

We define the proposed model as semi-
automated because, as it became clear by this
section, the presence of the reuse engineer, is
considered essential. When we speak about a reuse
engineer, we refer to an expert, a software engineer
trained to develop software using reusable code. As
we already explained, normal developers can take on
that role or in more systematic reuse approaches this
role can be assigned to persons with this specific
task as part of a development team.

5 RELATED WORK

(Crnkovic et. al., 2006) present a modification of the
waterfall process for component reuse, in which
there are two processes one for developing reusable
components and another for developing systems
with these reusable components. The authors discuss
in detail the modifications of the activities of the
waterfall model for system development with
component reuse. To connect these two
aforementioned processes they include an additional
process called ‘Component Assessment’ which
should be carried out as much as possible
independently from the system development to
reduce time-to-market. In general an assessment
activity should comprise the following: (a)
Component discovery, (b) Component selection
according its suitability for current and/or future
products, (c) Component verification, and (d)
Storage of the component and its metadata for future
reference. Our proposed process can be used by
reuse engineers to carry out the component
discovery and selection in a more systematic way
when they reuse FLOS software.

Some proposed processes for component
retrieval from the Internet repositories aim at
pushing the automation of this process as much as
possible.

In (Hummel and Atkinson, 2007) a process
called Extreme Harvesting is proposed, which uses

A SEMI-AUTOMATED PROCESS FOR OPEN SOURCE CODE REUSE

183

unit tests that are developed in the context of an
agile software development process (e.g. Extreme
Programming) as a search criterion for reusable
components. There are two variants of the Extreme
Harvesting process, definitive harvesting and
speculative harvesting. With speculative harvesting
the reusable components retrieved are close to what
the developers wanted but not a perfect match and
the developers are required to adapt the system for
the integration of the retrieved components.
Therefore the process is not fully automated but is
supported by an Eclipse plug-in.

Another tool supported process is proposed in
(McCarey et al., 2005) in which the authors describe
Rascal an intelligent agent, which oversees the
development of new code and uses AI techniques to
match the characteristics of the developed code with
existing code from reuse repositories (e.g. the
Sourceforge FLOSS repository). This process aims
at more automation than (Hummel and Atkinson,
2007) since the search process is triggered by the
intelligent agent and the discovered components are
presented to the reuser without his intervention.
However, ultimately the developer is responsible for
deciding the suitability of the retrieved components
and for integrating them to the new system.

In relation to (Hummel and Atkinson, 2007) and
(McCarey et al., 2005) our work aims at
understanding the reuse process as a human activity
first and then propose the tools for supporting this
activity. Although tools such as the ones proposed in
(Hummel and Atkinson, 2007) and (McCarey et al.,
2005) are undoubtedly useful, our approach
concentrates more at the moment on the reuse
process itself, with the hope of better understanding
the issues involved. We believe that a better
understanding of the issues is also a prerequisite for
more effective tool support.

Besides the searching and retrieval of reusable
components, which is the basic area of our research,
there is also a whole other spectrum of issues in
software reuse in general and FLOS software reuse
in particular. These include licensing issues and
quality issues. There is progress towards supporting
these aspects of reuse as well. For example the
FOSSology project (Gobeille, 2008) is best known
for finding the licensing of FLOS software which is
a very important factor especially for commercial
firms who wish to reuse open source software
(Madanmohan and De, 2008). Projects such SQO-
OSS (Gousios et. al, 2008) aim at providing quality
related information for reusable software to enhance
the trust of the users and re-users of FLOS software.

6 CONCLUSIONS AND FUTURE
WORK

In this experience report we discussed about the role
of code reuse when it comes to a software product’s
lifecycle and the software product’s development
process. We tried to provide, in the form of a case
study the reuse engineer’s approach in software
development using concepts related to component
based approach theory. Finally we proposed a semi-
automated open source software reuse model in the
form of a flow chart and presented how it organizes
the steps, a reuse engineer is taking in order to create
a software product with the less effort possible in
terms of programming from scratch.

As we pointed earlier in this paper, this process
model is a first attempt at providing a well defined
way of implementing reuse engineering. Currently
our model requires the presence of an expert, a reuse
engineer, in order to take various kinds of decisions
such as whether a component needs to break to
simpler ones or not, which one of the reusable
components discovered should we use to our
implementation and why, what kind of adaptation
the reusable code needs and so on and so forth.

As future research we would like to examine the
possibilities of providing an even more automated
process model that will be able to deal with some
trivial although essential decisions such as the
proposal of the best component in case the search
returned more than one candidates based in specific
metrics. Another interesting approach could be to try
and measure the fitness of a component inside the
system under development. By fitness we mean the
similarity a component has with the others in terms
of design patterns, coding style, quality metrics, etc.
Once it reaches a certain level of maturity, the
process model could ultimately be transformed into
a tool using the open source forges as a reusable
software pool providing a semi-automated way to
any developer who wishes to discover and evaluate
alternatives of free, reusable code.

REFERENCES

ISO/IEC 15288, System Engineering – System Life Cycle
Processes, First Edition, ISO/IEC, 2002.

I. Crnkovic, M. Chaudron and S. Larsson. 2006.
Component-Based Development Process and
Component Lifecycle. In Proceedings of the
international Conference on Software Engineering
Advances (October 29 - November 03, 2006). ICSEA.

ENASE 2010 - International Conference on Evaluation of Novel Approaches to Software Engineering

184

IEEE Computer Society, Washington, DC, 44. DOI=
http://dx.doi.org/10.1109/ICSEA.2006.28

O. Hummel and C. Atkinson: “Supporting Agile Reuse
Through Extreme Harvesting”, in proc. of the 8th
International XP Conference, pp. 28-37, Springer,
2007

F. McCarey, M. Ó Cinnéide and N. Kushmerick: “Rascal:
A Recommender Agent for Agile Reuse", Artificial
Intelligence Review, vol. 24, no. 3-4, pp. 253-276,
Springer, November 2005

R. Gobeille: “The FOSSology project”, In Proceedings of
the 2008 international Working Conference on Mining
Software Repositories (MSR '08), pp. 47-50, ACM,
2008

T. R. Madanmohan and R. De’, “Open Source Reuse in
Commercial Firms”, IEEE Software, vol. 21, Dec.
2004, pp. 62-69

I. Samoladas, G. Gousios, D. Spinellis and I. Stamelos:
“The SQO-OSS Quality Model: Measurement Based
Open Source Software Evaluation”, IFIP 20th World
Computer Congress, Working Group 2.3 on Open
Source Software, pp. 237-248, Springer, 2008

A SEMI-AUTOMATED PROCESS FOR OPEN SOURCE CODE REUSE

185

