
©2010 IEEE. Personal use of this material is permitted.
However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new
collective works for resale or redistribution to servers or lists,
or to reuse any copyrighted component of this work in other
works must be obtained from the IEEE.

Component Recycling for Agile Methods
George Kakarontzas

Department of Informatics
Aristotle University of Thessaloniki

54124 Thessaloniki, Greece, and
Department of Computer Science and Telecom.

TEI of Larissa
41110 Larissa, Greece

Email: gkakaron@teilar.gr

Ioannis Stamelos
Department of Informatics

Aristotle University of Thessaloniki
54124 Thessaloniki, Greece
Email: stamelos@csd.auth.gr

Abstract—Given the increasing size and complexity of today’s
systems, reusability is an important quality aspect. In this work
we consider development and reuse of reusable components
in the context of agile methods. To distinguish the proposed
approach from the more established systematic reuse approaches
we call our proposal component recycling instead of component
reuse. For the development of recyclable components we show
how inherent characteristics of agile methods, particularly the
provision of useful and complete partial components during
the lifecycle, can be used constructively for the development
of components. These components are placed in a component
repository for later recycling. The requirements implemented at
each iteration serve as the design rationale for the components
and distinguish earlier components from their later versions
providing tracing.

I. INTRODUCTION

Systematic reuse is achieved today with plan driven ap-
proaches such as the software product line approach [1]. These
approaches require extensive planning so that assets are flex-
ible enough to accommodate the needs of multiple products.
On the other hand agile approaches aim at delivering high-
quality software to the customers and they value this as their
primary objective. Reuse in the context of agile approaches
has received minor attention so far and the practices followed
by most agile methods are not considering reuse practices at
all. However we believe that reuse benefits such as increased
quality, time performance and cost reduction are important
for satisfying the main objective of agile methods which is
the customers’ satisfaction.

The rest of the paper tries to address reusability, or recycling
as we call it, in the context of agile methods. In Sec. II, we
discuss understandability metrics that are related to reuse and
we examine the evolution of these metrics during the iterations
of an agile process with an aim to improve them suggesting
key practices for the reuse potential of the developed modules.
Then in Sec. III, we elaborate on the key reuse practices that
can be used in full-fledged agile processes to increase the
potential for reuse and exemplify the practices with examples
from a real case study. This ‘merging’ is similar to the ap-
proach of Agile Modeling [2] which adds modeling practices
to agile processes such as XP. The result of our proposal is
a process which is agile but reuse oriented. Next in Sec. IV,

we describe related work. Finally in Sec. V, we provide future
research directions and conclude.

II. REUSE IMPROVEMENT

Reusability is improved with understandability and un-
derstandability in general is improved with simplicity. The
simpler the recyclable components the more understandable
they will be. There are many examples of reuse assessment
based on established complexity metrics and also new metrics
developed specifically for reuse. To mention a few in [3] the
reusability of class libraries in Java and Eifel is examined. The
authors use a subset of the Chidamber and Kemerer metrics to
evaluate reusability. In [4] the authors develop new coupling
measures for assessing the reusability of Java components. In
[5] the author suggests that a black-box view for component
reusability is the most important, ignoring internal factors.
The author then presents the most influential metrics for the
reusability of classes and combines these metrics in a single
formula (a new metric called “Reusabity for a class Rc”) that
can be used as a reusability oracle when developers consider
including a class in a reuse repository. In this work we used
the popular Chidamber and Kemerer metrics [6] as good
indicators of understandability and we examined the evolution
of these metrics for the classes that evolved from the first to
the fourth and last iteration of an iteratively developed project.
The selected project is used as teaching material for Object
Oriented software construction in a known university and
therefore good OO principles of design and implementation
are followed throughout. We can safely assume that more
complicated commercial projects will most certainly exhibit
worst values for the CK metrics than those mentioned here.

We have used the open source cjkm tool [7] to collect the
Chidamber and Kemerer metrics as well as two additional
metrics which relate to complexity for ten classes which
existed throughout the project’s iterations. The metrics on the
average increased during the iterations of the project as can
be seen in Table I. In this table we have used a simple sum
of the metrics’ value as an indication of the complexity 𝐶 in
which all eight metrics are considered to contribute equally in
the total complexity of classes (i.e. 𝐶 =

∑8
𝑖=1 𝑚𝑖). The two

2010 Seventh International Conference on the Quality of Information and Communications Technology

978-0-7695-4241-6/10 $26.00 © 2010 IEEE

DOI 10.1109/QUATIC.2010.72

397

additional metrics in Table I are the afferent coupling metric
(Ca) and the number of public methods (NPM).

TABLE I
EVOLUTION OF UNDERSTANDABILITY METRICS THROUGH ITERATIONS

Iteration WMC DIT NOC CBO RFC LCOM Ca NPM C
1st 4.1 0.9 0.2 2.1 9.6 0.9 1.9 2.6 22.3
2nd 7.3 0.9 0.3 3.5 17.8 11.4 3.4 5.7 50.3
3rd 9.3 0.9 0.3 4.0 21.7 15.4 3.7 6.6 61.9
4rth 11.3 0.9 0.5 4.1 26.7 22.7 4.1 7.6 77.9

Complexity increase during the iterations is inevitable be-
cause at each iteration more requirements are implemented
and therefore the source code for these requirements will
have an effect in the objects involved. We can control com-
plexity following software engineering principles consistently
(e.g. low coupling, high cohesion etc.), but regardless more
requirements imply additional complexity. However one of
the premises of agile methods is that each iteration deliv-
ers production quality software that partially addresses the
functional and quality requirements of the application. This is
important because it reduces the risk and also helps steering
the requirements in the right direction since clients can use the
functionality and gain a better understanding of the product.
This observation combined with the fact that early iterations’
objects are less complex suggests that is meaningful to keep
these early snapshots of our application objects for future
reuse, since (a) they provide a useful service by definition
and (b) they are less complex than the respective components
at the end of the project. In a sense this is what happens in all
iterative methods anyway: each iteration results in objects that
are reused in the next iteration. We just extend this to future
applications as well.

The benefits for keeping the early components for future
reuse include the following: (a) Reduced application affinity:
The final application will implement a number of requirements
𝑅𝑆1 = (𝑅1, 𝑅2, ..., 𝑅𝑛). A reuser will probably need a subset
of these requirements plus some additional ones, lets say
𝑅𝑆2 = (𝑅1, 𝑅2, 𝑅3, 𝑅𝑘), 𝑅𝑘 /∈ 𝑅𝑆1. The code in relation
to the requirements that do not belong in 𝑅𝑆2 but belong in
𝑅𝑆1 represents noise that the developer will need to handle by
first understanding and then removing the unwanted services.
Then she will need to test the component and finally integrate
it into the new application. Notice that removing unwanted
services from the public interface in general does not work
since the implementation of a service affects several methods.
(b) Improved Classification: The classification of application
components will be much easier if they are classified exactly
after they are implemented, because at this point (after the inte-
gration testing) we are assured that the components work cor-
rectly and we know exactly why these components were built
the way they were. In other words, both the requirements of
the iteration and the design decisions are recent. Therefore it is
very easy to relate the service providers (i.e. the components)
to the exact requirements that they implement at the end of
each iteration. (c) Improved Integration: The association of the
components with the requirements that they implement eases
integration of the recycled components to new applications.

The reason is that the developers decide to reuse components
when the only thing they know are the requirements of the
services that they should provide (i.e. when they have not
started yet the implementation of these components). If it is
easy to find components based on the requirements then it
becomes feasible to adapt the application’s architecture locally
around the recycled component in a way that enables the
integration of the recycled component to the new system.
Bosch has observed that “Practitioners have found that ‘as-is’
reuse seldom occurs and that reusable components generally
need to be adapted to match the system requirements” [8],
and Crnkovic et. al. that “a tradeoff between desired design
and a possible design using the existing components must
be analyzed” [9]. Adaptation therefore works both ways:
we need to adapt the recycled components but also assess
alternative designs to host them. Early requirements-based
identification of recycled components allows the maximum
flexibility for the integration activity. (d) Improved Quality
Assurance: In the absence of independent certifying authorities
for software components, developers will need to establish
trust using more traditional quality assurance techniques. The
most widely used QA technique is testing. Both unit and
integration testing play an important role in agile methods.
Since tests are built and run consistently they also evolve as
code evolves. Associating snapshots of tests with the snapshots
of components in the reuse repository becomes therefore
a pragmatic approach in establishing the required trust for
recyclable components. Reusers can run the same tests and
tests can serve as executable specifications for the recyclable
components aiding understandability even further. Associating
requirements and tests with the reused components in the
repository may be proved a far more effective way of doc-
umentation than traditional textual approaches and does not
impose additional overhead for the agile developers.

For the aforementioned reasons, we propose that the inter-
mediate components that are produced during the evolution
of an application’s lifecycle should be kept in a repository
and be associated with the requirements and the tests that
are produced at each iteration. Furthermore each component
should be related in a hierarchy with the evolution of the
same component to its next version. Thus a ‘root’ component
will implement the services related to the first requirements
that were implemented, the components at level 2 with the
requirements implemented in the second iteration and so on.
The hierarchical organization helps in discriminating compo-
nents through their requirements and provides a learning path
for reusers who can study the evolution of the component
throughout the lifecycle. Furthermore the reuser will choose
the component version that better matches his or her require-
ments whereas with the current approach to reuse repositories
the only available component for reuse is the “final” version
which may include unwanted functionality and dependencies
and be much more difficult to understand than earlier versions.

The main classes for the repository are depicted in Fig. 1.
Each Application belongs to an ApplicationDomain
and is built in a number of Iterations. Each Iteration

398

Fig. 1. Main classes of the IID recycling repository

delivers a number of Features which are compos-
ing elements of high-level application Requirements. A
Component participates in a number of Features and
is built in an Iteration. Furthermore Components are
associated with the unit Tests that verify their behavioral
correctness. Each Component can have a base Component
as its parent and a number of extension Components in the
hierarchical organization of the repository.

Next we will describe the additional practices for the pro-
duction of recyclable components in the context of a generic
agile methodology.

III. REUSE PRACTICES IN THE CONTEXT OF AN AGILE

METHODOLOGY

The practices that we propose for populating the reuse
repository with components are explained in the next three
sub-sections and they are: (a) A modified requirements priori-
tization practice, (b) component classification in the repository
using unit tests and (c) reuse refactorings . To illustrate
how these practices work, we will be using examples based
on a real case study in which we applied the approach
proposed in this work. The case study is a Java Enterprise
Edition 5 (JEE5) component-based application which is used
by an educational institution. The institution each year needs
additional personnel to cover mostly laboratory courses but
also theory courses for which the permanent staff is absent
or unavailable. Applicants provide evidence for their qualifi-
cations including university degrees, professional experience
certificates etc. An evaluation committee at each department
evaluates the evidence for each applicant that applied for a
teaching position and publishes a formal evaluation report
which lists all applicants for a position in their evaluation
order. The process for the evaluation is legislated and the
rules for the evaluation are very specific and quantitative. The
department committee decides if the evidence provided are
real and if they are related to the position. Unrelated or unreal
qualifications are not considered at all during the evaluation
process. However each type of qualification is quantified. For
example the years of professional experience are calculated
using a formula that takes into account both the duration of the

Fig. 2. A subset of the application’s components

employment and the monthly salary. With the salary parameter
it is determined if the employment was full-time or part-time,
and if it was part-time only a percentage of the duration is
attributed to the applicant.

The system consists of four modules: (a) Applicant module:
This module allows an applicant to fill his or her qualifications
online and apply for positions. The applicant prints the appli-
cation from the system and submits the printed application as
well as printed evidence for his qualifications in the secretariat
office of each department. (b) Evaluator module: This module
allows the evaluators to check the authenticity and specificity
of each qualification in relation to a position. The system
makes the required calculations based on the authentic and
specific qualifications and produces the evaluation reports. (c)
Secretariat module: This module allows the departments’ sec-
retaries to publish the available positions, accept applications
and check them into the system. Only checked in applications
are considered, and (d) Administrator module: This module
allows the administrator of the system to setup departments,
courses, user accounts etc.

In Fig. 2 we can see a subset of the applica-
tion components which are relevant to the discussion
at subsequent sections. Each Teacher has a num-
ber of Qualifications which can belong to cer-
tain subclasses of the Qualification superclass (e.g.
DegreeQualification, TeachingQualification
etc.). Each Department has an evaluation Committee
which creates evaluation records for each one of the qual-
ifications (e.g. a CommitteeDegreeQualEval for a
DegreeQualification etc.). Notice that since the system
was developed in JEE5 these components represent entities
which are mapped in a database using the Java persistence
technology.

A. Requirements prioritization

In our approach we apply the practice of requirements’
prioritization using the importance of the requirements for the
clients, the risk that they represent for the project, but also

399

the reuse potential of each requirement. Requirements with
greater reuse potential should be implemented first as long as
they are also important for the users and after the high-risk
requirements have been addressed. Prioritizing requirements
this way improves the probability that our components will
need less rework by the reusers. The reason is that components
that are implemented in the first iterations will not contain
methods, dependencies etc. that the reusers will need to under-
stand and isolate or remove entirely because they are irrelevant
to their application needs. These methods and dependencies
will of course be introduced at later iterations since they are
important for the current application, but they will be based
on possibly more reusable components that we have already
kept in our repository which do not contain these possibly
unwanted and application-specific elements. The reuser will
then pick up the component that seems to be a better fit
for his or her reuse needs without the need to handle the
complexity introduced by unwanted functionality. To judge
the requirements according to their reuse potential we need
to have a rough idea on the kind of applications that may
be developed in the future to which the components might
be useful. This ‘rough idea’ does not represent a specified
application set as in software product lines, but rather an
application domain that these components may be useful. In
our case study for example an obvious candidate domain
that we may reuse many of the application’s components
would be to evaluate candidates for private sector companies.
Contrary to our current application scenario for which the
public educational institution is legislated by governmental
rules the private sector scenario is based more on the intuition
of the evaluators and hence some application requirements will
be less reusable than others.

Requirements can be expressed in many ways. Some of
the most popular include use cases[10], user stories[11] and
features[12]. In our approach we prefer the usage of features
as they are defined in Feature Driven Development because
their scale is small enough to be implemented from a few
hours or days to a maximum of two weeks and they highlight
the involved components. A feature is “a small client-valued
function expressed in the form: action result object, with
the appropriate prepositions between the action, result and
object”[12]. On the other hand use cases can be as large
as whole business processes and user stories are written in
index cards and are intended for further development. We do
not insist on the usage of features as long as the scale is
appropriate (not too small, not too large) and the involved
domain objects are highlighted in the requirements. With our
approach features should be classified in relation to their reuse
potential as highly reusable, moderately reusable and applica-
tion specific. Features which are highly reusable should be
implemented first, followed by features which are moderately
reusable and lastly by the application specific features.

To give an example of this practice we consider a subset
of the requirements of the evaluation system. We concentrate
here on the requirements that are related to the evaluation of
professional experience given as features:

1) Confirm the acceptance of a professional experience
2) Provide justification for the rejection or alteration of

duration of a professional experience
3) Calculate the duration of a professional experience
4) Alter the duration of a professional experience
5) Adjust the duration of a professional experience based

on the monthly salary

The features 1–2 are highly reusable since in every eval-
uation system conceivable the evaluators will need to accept
or reject a professional experience presented by the applicant
(feature 1) and in the case that they reject it for some reason
they should be able to provide their justification for doing
so (feature 2). Features 3–4 are moderately reusable because
they involve the duration of the experience as an evaluation
criterion. Although duration can be an important evaluation
criterion in most cases, in some cases it is the subjective
judgment of the evaluator that matters more than the actual
duration. Finally the 5th feature is very application specific
and introduces a lot of complexity in the involved components.
Basically it states that the system should be able to reduce
automatically the duration of professional experience using
the monthly salary as an indication of what is considered a
full month. In order to implement this feature we will need
to ‘pollute’ our general professional qualification component
with attributes (salary received and base salary) and methods
(setters and getters) specific to this feature which will not
be needed in future reuse scenarios. Also methods that are
needed in more reusable features (e.g. the calculateDuration
method) will need to be modified (e.g. by adding the base
salary parameter and the actual code that reduces the duration).
This is an example of a feature that alters many methods which
makes (as we already mentioned) simply hiding the unwanted
services from the public interface infeasible in the general
case. Furthermore the implementation of this feature will re-
quire changes to the user interface both for the applicants who
will need to fill in their monthly salaries and the evaluators
who will need to assess it. The salary related fields will also
be stored in the database tables.

Our approach allows the reuser to choose among the
possible versions of a component in the repository the less
conflicting with his current reuse requirements. Suppose for
example that in a new evaluation system the reuser needs also
to evaluate professional experience records however instead
of an automatic quantifiable process he needs to allow the
evaluators to assign a grade (e.g. in the scale 1-5) to each
professional experience record. With this requirement the most
appropriate version to use would be the first since salaries and
durations are irrelevant. Furthermore even for the maintainer
of an application we see benefits with this approach since the
component versions linked to the features that they implement
provide a learning path from the relatively simple early
components to the complete final versions. The maintainer is
enabled to study the evolution of the components as they were
implemented and therefore understand them more easily.

400

B. Component classification in the repository using unit tests

Our approach for the classification of components in the
repository uses unit tests and Test-Driven Development to
explicitly scope a component’s functionality. The developer
defines a set of tests 𝑇 as the set of tests that the component
should pass. After passing this set of tests and refactoring the
code the component is thought as a complete new version
of either an existing component in the repository or a new
component. If the component is new (i.e. it was just created
as a result of this iteration’s features) it will spawn its own
hierarchy in the repository. If the component on the other hand
already exists there are two different cases:

The first case is that the component is built as part of the
current application. Then the set of tests of the component so
far should also pass for the new component and additional
tests should be added to verify the new features in which
the new version participates. The hierarchy of the components
created as part of the same application is thus flat. If previous
tests are violated then this signifies as usual a problem with
either the understanding of the features required, errors in the
component’s code or errors in the testing code. In any case
this situation should be resolved as usual and the component
repository should be updated accordingly to capture the correct
result of the evolution. For example in Fig. 3 components
𝑋𝑣1, 𝑋𝑣2 and 𝑋𝑣3𝐴 are iterative successive versions of the
same component. Each version participates in some additional
features and adds some additional tests. However each new
version does not violate any of the previous tests or cancels
any of the previous features. That is 𝑇𝑣1 ⊆ 𝑇𝑣2 ⊆ 𝑇𝑣3𝐴 and
𝐹𝑣1 ⊆ 𝐹𝑣2 ⊆ 𝐹𝑣3𝐴.

The second case is the construction of a new component
for a future application based on a reusable component which
is part of the repository. In that case as we already said the
component reuser can choose any version of the component
for reuse and not only the final version. If the reuser reuses
the component by adding functionality without disturbing the
existing functionality then there is a chance that the new
component will satisfy the tests and provide the features of
the reused components in addition to its own new tests and
features. In such a case the reuser can classify the newly
created component as an additional extension of the existing
component which he reused. This is depicted in Fig. 3 with
the component 𝑋𝑣3𝐵 . The reuser created this component by
reusing a previous version of the component 𝑋 (version 𝑋𝑣2

and not the final version 𝑋𝑣3𝐴. If the newly created component
still satisfies the tests of component 𝑋𝑣2 and provides its
features then it can be classified as an extension of the
component 𝑋𝑣2. Notice that the component is incompatible
with 𝑋𝑣3𝐴. Also notice that in the above discussion the term
‘extension’ is used in its more traditional sense and not as the
well-known OO technique.

C. Reuse refactorings

Refactoring is the alteration of code for improving its
internal structure without affecting its functionality [13].
Refactoring is one of the most powerful techniques for the

Fig. 3. Component hierarchies based on tests and features

improvement of Object-Oriented software and is one of the
standard practices applied with agile methods. Refactoring in
the context of agile methods is strongly supported by the
use of unit tests which ensure the behavioral preservation
after the refactoring. We do not propose any new refactor-
ings specifically designed for reuse, because many already
proposed refactorings are geared toward the improvement of
maintainability (e.g. extracting a superclass or extracting an
interface) and simplicity of the source code. In fact it has
been shown that refactoring as a general practice improves
the reusability of the source code [14].

The “reuse refactorings” practice is simply an advice to look
for refactorings that are appropriate for the improvement of
reusability of the source code for the foreseeable application
domains that this code might be used. To give a simple
example, the class Teacher in Fig. 2 has a very application-
specific name, because a generic evaluation system will prob-
ably not be used in the context of an educational institution
in which the applicants are teachers. This can be changed to
the more general name Applicant. This could improve the
chance that in the future and assuming we have created a large
repository of thousands of components, a simple text search
could yield the expected result. This renaming refactoring is
in fact one of the simplest and is supported by the modern
IDEs (e.g. the NetBeans IDE).

IV. RELATED WORK

In [15] the authors propose a method called Extreme
Harvesting. Extreme harvesting is a method for the efficient
retrieval of reusable software components in the Internet.
Searching is based on the use of tests which are developed in
the context of an agile method (i.e. test matching). Program-
mers develop unit tests as usual in the context of an agile
development process (e.g. Extreme Programming). However
before developing the code that passes the already developed
tests, they use the unit test as a search criterion in open source
search engines such as Koders and Merobase.

In [16] we proposed the use of Test-Driven Development
(TDD) practice of the agile methods for the creation of
component variants of a software product line. We discussed
how unit tests of an agile development method can be used for
the organization of software components in a reuse repository.
We found that many of the practices and principles of agile

401

methods (e.g. TDD, YAGNI) are in fact supportive towards
the reuse of software components and their classification in a
reuse repository.

In [17] the authors analyze the modification of Extreme
Programming practices in a large project of the financial
domain. Because of the large scale of this project many of
the XP practices were modified and some additional practices
were added. In relation to code reuse a particularly interesting
modified practice is the so called forward refactoring practice.
Refactoring is the modification of existing code, without
modifying the provided functionality [13] for improved main-
tainability, understandability and other quality properties. In
forward refactoring existing code is refactored so that it can
be reused for the implementation of new functionality.

In [18] the authors propose the use of an intelligent agent,
Rascal, which ‘watches’ the development of a class and
proposes ‘similar’ classes which already exist in a reuse repos-
itory (e.g. the Sourceforge OSS repository). The advantage of
Rascal is that the searching process does not begin by the
programmer but takes place automatically in the backstage by
the intelligent agent. For the similarity matching the authors
use AI techniques. The approach aims at supporting reusable
components’ retrieval in the context of an agile method
without additional overhead for the developers.

Lately there is an intense interest on the application of agile
development practices in the context of a Software Product
Line approach [1], with relevant publications (e.g. [19], [20])
and a special issue of the Journal of Systems and Software
[21].

Concluding, the convergence of agile methods with reuse
practices, are classified in three distinct categories: (a) Usage
of agile practices in the context of an SPL approach (e.g.
[19], [20], [21]), (b) Usage of isolated agile practices or mod-
ifications of these practices for the development of reusable
components (i.e. development for reuse) (e.g. [16], [17]), and
(c) Support for searching and retrieval of reusable components
in the context of an agile method (i.e. development with reuse)
(e.g. [15], [18]).

Our work aims at supporting reuse for companies that
develop software using an agile approach. Instead of con-
centrating on an isolated practice we proposed a number of
modified agile practices aiming at a holistic approach for both
development with and for reuse in the context of an agile
process.

V. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

In this work we presented an approach to building a recy-
clable component repository that exploits the iterative develop-
ment style of agile processes. We strongly believe that the final
versions of the domain or business components of a software
project are very application specific and hence they are rarely
reused. However one can imagine an agile development project
as a journey that starts from a rough general idea and ends with
an application-specific set of components, with intermediate
stations at each iteration’s end. These intermediate stations, as
we saw in Sec. II, are more reusable grounds. We proposed

a set of practices that collectively may help the developers
increase the reuse potential of their components and create a
reuse repository.

Future work includes more case studies, a more usable
component repository and experimental validation of the im-
provement of reuse using the proposed approach.

REFERENCES

[1] Paul Clements and Linda Northrop: “Software Product Lines: Practices
and Patterns”, Addison-Wesley, 2002

[2] Scott Ambler: “Agile Modeling: Effective Practices for eXtreme Program-
ming and the Unified Process”, Wiley, 2002

[3] S. Araban and A. Sajeev: “Reusability Analysis of Four Standard Object-
Oriented Class Libraries”, Software Engineering Research and Applica-
tions, Springer, pp. 171-186, 2006

[4] G. Gui and P. D. Scott: “Ranking reusability of software components
using coupling metrics”, Journal of Systems and Software, vol. 80, no.
9, Sep. 2007

[5] J. Barnard: “A new reusability metric for object-oriented software”,
Software Quality Journal, vol. 7, pp. 35-50, Mar. 1998

[6] Shyam R. Chidamber and Chris F. Kemerer: “A Metrics Suite for Object
Oriented Design”, IEEE Transactions on Software Engineering, vol. 20,
no. 6, pp. 476-493, IEEE, June 1994

[7] Diomidis Spinellis: “Tool Writing: A Forgotten Art?”, IEEE Software,
vol. 22, no. 4, pp. 9-11, IEEE, July/Aug. 2005

[8] Jan Bosch: “Superimposition: a component adaptation technique”, Infor-
mation and Software Technology, vol. 41, no. 5, pp. 257-273, Elsevier,
Mar. 1999

[9] Ivica Crnkovic, Michel Chaudron, and Stig Larsson: “Component-Based
Development Process and Component Lifecycle”, International Confer-
ence on Software Engineering Advances (ICSEA’06), p. 44, IEEE, 2006

[10] Frank Armour and Granville Miller: “Advanced Use Case Modelling”,
Addison-Wesley, 2001

[11] Kent Beck and Cynthia Andres: “Extreme Programming Explained:
Embrace Change, 2nd ed.”, Addison Wesley Professional, 2004

[12] Stephen R. Palmer and John M. Felsing: “A Practical Guide to Feature-
Driven Development”, Prentice Hall, 2002

[13] Tom Mens and Tom Tourwe: “A Survey of Software Refactoring”, IEEE
Transactions on Software Engineering, vol. 30, no. 2, pp. 126–139, IEEE,
February 2004

[14] Raimund Moser, Alberto Sillitti, Pekka Abrahamsson and Giancarlo
Succi: “Does Refactoring Improve Reusability?”, 9th International Con-
ference on Software Reuse, LNCS vol. 4039, pp. 287–297, Springer, 2006

[15] Oliver Hummel and Colin Atkinson: “Supporting Agile Reuse Through
Extreme Harvesting”, in proc. of the 8th International XP Conference,
pp. 28–37, Springer, 2007

[16] George Kakarontzas, Ioannis Stamelos, and Panagiotis Katsaros: “Prod-
uct Line Variability with Elastic Components and Test-Driven Develop-
ment”, International Conference on Inovations in Software Engineering
(ISE’08), pp. 146–151, IEEE Computer Society, 2008

[17] Lan Cao, Kannan Mohan, Peng Xu and Balasubramaniam Ramesh:
“How Extreme Does Extreme Programming Have to Be? Adapting XP
Practices to Large-Scale Projects”, 37th Annual Hawaii International
Conference on System Sciences (HICSS’04)-Track 3, IEEE Computer
Society, 2004

[18] Frank McCarey, Mel Ó Cinnéide and Nicholas Kushmerick: “Rascal:
A Recommender Agent for Agile Reuse”, Artificial Intelligence Review,
vol. 24, no. 3–4, pp. 253–276, Springer, November 2005

[19] Ralf Carbon, Mikael Lindvall, Dirk Muthig and Patricia Costa: “Inte-
grating Product Line Engineering and Agile Methods: Flexible Design
Up-front vs. Incremental Design”, First International Workshop on Agile
Product Line Engineering, 2006

[20] Kun Tian and Kendra Cooper: “Agile and Software Product Line
Methods: Are They So Different?”, 1st International Workshop on Agile
Product Line Engineering (APLE’06), IEEE Computer Society, 2006.

[21] Kendra Cooper and Xavier Franch (eds.): “Agile Product Line Engineer-
ing”, Journal of Systems and Software, vol. 81, no. 6, June 2008

402

